Long-term single cell passaging of human iPSC fully supports pluripotency and high-efficient trilineage differentiation capacity

Estela Cruvinel^{1,¶}, Isabella Ogusuku^{1,¶}, Rosanna Cerioni¹, <mark>Sirlene Rodrigues¹, J</mark>éssica Gonçalves¹, Maria Elisa Góes², Juliana Morais Alvim¹, Anderson Carlos Silva³, Vanesca de Souza Lino⁵, Enrique Boccardo⁵, Ernesto Goulart⁶ Alexandre Pereira³, Rafael Dariolli,^{1,4} Marcos Valadares¹, Diogo Biagi^{1, *}

¹PluriCell Biotech, São Paulo, 05508-000, Brazil

²Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil

³Laboratory of Genetics and Molecular Cardiology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, SP, 05403-900, Brazil.

⁴Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, 10029, USA.

⁵Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil.

⁶Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil

[¶]Both authors contributed equally to this work.

*Corresponding author

E-mail: diogo.biagi@pluricellbiotech.com.br

Mailing address: 2242 Prof. Lineu Prestes Avenue, Sao Paulo, SP. 05508-000, Brazil.

Telephone number: +55 11 3039-8359

Keywords: human induced-pluripotent stem cells; hiPSC maintenance; hiPSC differentiation

Karyotype

	p10	.p30	p50						
CP5	K ((1 21 2)	XIIIII	K) K X X						
۹		Do H H Is H Is H)					-10	-20
	10 16 06 88 88 10	86 88 84 BC 66 66 66	新自自自致的		p10	p30		p10	psu
	转转转改量。	886821	N N 0 V 1	2.2		n ir n n n	C3.1) X	
	p10	p30	p50	P	Anno Anno Anno Anno Anno Anno Anno Anno)] }] II II II II II II II	٩		10 77 CH BR 28 88 84
4.3	N N K K		21 H K H D		18 27 14 11 18 19	чи <i>че</i> И И И И И И И И И И И И И И И			80 00 00 x8 x8 x8 x8 x x x x x x x x x x x x x x
٩	je je za za za ja	(1 11 11 11 11 11 11						1	
	49 66 Mi 68 XX 68	88 86 86 88 88 88 88		2.3		ХКХИЛ	c3.2		10 11 11 11 11
	14 14 19 14 14 14 1	88 88 68 66 97	υυσυθ.	Б	state		P	11111147	200 000 200 200 000 000
4.5	50 56 38 hb 66	And a constant of the second s	CTANECT CONTRACT CONT			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		11 H H H H H H	80 80 80 88 10 88
Б	99 22 29 22 24 22 24	2000 2000 2000 2000 2000 2000 2000 200	100000 100000 100000 100000 100000 100000 100000 1000000		00000				
	vă da ha se se	88 48 86 88 23 88	80 88 88 X8 35 38	4.	KILENK	14 14 19 11 11	3.3		N N N N N
	28 X8 AA AA 80 .	85 28 as as 20	88 88 be ad	PC2	20 20 20 20 20 40 40 40	12 88 86 82 84 82 84 82 38	BC		10 10 10 16 16 10 01 A
	al 19 10 1 10	N // m m	66 EC 20		00 50 87 80 68 66 68 00 44 65 55 88 58	88 68 88 xx xx xx		植植植植植物	60 08 b0 88 55 44
34.6					10 10 10 10 10 10 11 10 10 10 10 10				
Р)0 19 01 11 11 23 96	and and and and and and and and and and	Lines 1995		63 80 AN 65 479 .	• • • • • •			
	êğê êşê êşê kişî êşê	88 88 86 88 82 88	10 66 56 XX 45 88						
	14 14 14 14 JA	88 88 44 54 VE	AL 22 14 14 14						

S1 Figure. Karyotype confirmed absence of karyotypic abnormalities for all hiPSC clones. G-Banding karyotype of hiPSC clones ACP5, PC2.2-2.4, PC3.1-3.3, PC4.3-4.6, after 10, 30 or 50 single-cell passages. No chromosomalabnormalities were observed.

Integration PCR

ACP5 and PC4 clones were obtained by transfection with plasmids pEB-C5, pEB-TG (both used in ACP reprogramming) and Epi 5 (used in PC4 reprogramming). To check for any episomal integration into host DNA, we performed an integration PCR (S2 Figure) using three sets of primers (S1 Table) targeting specific sites of the plasmids in gDNA as described by Chou and colleagues¹. As positive control we used each iPSC line respective plasmids at dilution ratios of 1:200 (pEB-C5), 1:20,000 (pEB-TG) and 1:500,000 (Epi5).

S2 Figure. RT-PCR confirmed no vector integration into iPSC clones. Integration PCR analysis confirmed no episomal integration into host DNA. As positive control for PC4 clones, we used plasmid Epi5 at a dilution of 1:500,000. For ACP5, plasmids pEB-C5 (1:200) and pEB-TG (1:20,000) were used. BR1 (hESC) was used as negative control.

Flow cytometry and Immunofluorescence

Protein expression was analyzed by Flow Cytometry (FC) and Immunofluorescence (IF). hiPSCs were plated in 96-well plates coated with GELTREX and cultivated for 2 days for IF. Cells were fixed with 4% PFA, permeabilized with Triton 0.1% and Saponin 0.1% (both from Sigma Aldrich, EUA). Cells were stained with antibodies anti-OCT4, NANOG and TRA-1-60. Nuclei were stained using 1 µg/mL of Hoechst 33342 (Sigma Aldrich, EUA) (Figure S3). As for FC, (Figure S4) iPSC were grown until they reached 70-80% confluence and harvested with Versene. Next, cells were fixed and stained using Fluorescent Human ES/iPS Cell Characterization Kit (Merck Millipore Sigma, USA). Both procedures followed manufacturer's instructions.

Cardiomyocytes at the 30th day of differentiation were plated in 96-well plates coated with GELTREX and cultivated for 5 days for IF. Cells were also fixed as previously described. Next, cells were stained with antibodies anti-TNNI1, TNNI3, TNNT2, ACTN2, MYH7, and NKX2.5. For FC, cardiomyocytes were plated in 6-well plates coated with GELTREX and cultivated for 7 days. After cell dissociation, they were fixed with 1% PFA, permeabilized with Triton 0.1% and Saponin 0.1% (both from Sigma Aldrich, EUA) and stained with antibodies anti-TNNI1, TNNI3, TNNT2, and NKX2.5. Titration of antibodies was done until no staining was found in iPSC.

For IF, keratinocytes were plated in a 96-well plate, fixed with 4% PFA, permeabilized and blocked with 0.1% Triton X-100 and 10% fetal bovine serum (Thermo Fisher, USA). Then cells were stained with antibodies anti-K10, K14, Ki67, p63, and CD104. Nuclei were stained using 1 μ g/mL of Hoechst 33342 (Sigma Aldrich, EUA). Image was generated in EVOS FL (Thermo Fisher, USA). As for FC, keratinocytes were fixed with 90% methanol ice cold solution and stained with Alexa488 conjugated anti-keratin 14 antibody for FC.

For definitive endoderm, at the end of day 3, cells were fixed and permeabilized as described previously for cardiomyocytes. Cells were stained with antibodies anti-FOXA2 and anti-CXCR4. For fluorescence visualization, cells were stained with Alexa 488 and Alexa647 Nuclei staining and image acquisition and performed as previously described. For FC, after cell dissociation, they were fixed with 1% PFA, permeabilized with Triton 0.1% and Saponin 0.1% and stained with antibodies anti-FOXA2. hiPSC-CM and hiPSC were used as negative control. To design the gates for positive events we used samples incubated exclusively with secondary antibodies. All FC data was acquired using Canto BD equipment and analyzed by FlowJo Software considering 1% of false positive events.

hiPSC were used as negative control for the reaction for definitive endoderm, keratinocytes and cardiomyocytes. As for the iPSC staining, fibroblasts were used as negative control. Further information about the antibodies used can be found in S3 Table.

S3 Figure. Immunocytochemistry confirmed expression of pluripotency markers at passages 20 and 50. Immunostaining of clones PC4.3, PC4.5 and PC4.6 at passages 20 and 50 showing expression of pluripotency markers OCT4, NANOG (both nuclear) and TRA-1-60 (membranous).

S4 Figure. PC2 and PC3 clones preserved their pluripotency at high passages. Flow cytometry results for pluripotency markers NANOG, OCT4 and SOX2 in clones PC2 and PC3 at passage 30.

EB formation

EBs were generated using a hybrid protocol based on previous publication.^{2,3} Briefly, hiPSCs were dissociated, centrifuged and resuspended at 80,000 cells/mL concentration. 25uL drops (with 2,000 cells each) were done at a petri dish lid; then the lid was carefully inverted and placed on the top of the dish containing 10mL of HBSS1x. After 48h, cell aggregates were collected and transferred to a low attachment 12-well plate (Sarstedt) with Essential 6 medium. Half of the medium was replaced every three days until day 13, when RNA was collected using Trizol (Thermo Fisher, USA). We performed an endpoint RT-PCR using differentiation markers *SOX17*, *MSX1* and *PAX6* (endo, meso, and ectoderm, respectively) and pluripotency marker *DNMT3B* and *NANOG*. As negative control, we used samples extracted from the respective iPSC clones at passage 20. PCR analysis showed that all the hiPSC clones generated EBs containing differentiated progeny of all three germ layers (Figure S5).

S5 Figure. iPSC clones generated EBs containing differentiated progeny of all three germ layers. Endpoint RT-PCR of EB showing expression of markers of derivatives lines from endoderm (*SOX17*), mesoderm (*MSX1*) and ectoderm (*PAX6*); and showing no expression of pluripotent markers *DNMT3B* and *NANOG. GAPDH* was used as housekeeping control.

iPSC-derived keratinocytes calcium treatment

iPSCs at different passages (passage 25 to 50) were plated with mitomicyn C-inactived 3T3 cells (donation from Monica Mathor's laboratory) at a 20% confluence. After 2 days, defined-KSFM medium (Thermo Fisher, USA) was supplemented with 10 ng/mL of BMP4 (R&D Systems, USA) and 1 μ M retinoic acid (Sigma Aldrich, USA) as described by Itoh and colleagues.⁴ At day 4, cells were cultivated with fresh defined-KSFM medium

and, after 28 days of differentiation, iPSC-derived keratinocytes (iPSC-KC) were supplemented with 1 μ M CaCl for 7 days. Medium was exchanged every 2 to 3 days. After treatment with calcium, iPSC-KC were stained using epithelial specific markers K10 and K14. Immunofluorescence showed that after calcium treatment some K10-positive cells were found in all cell clones (S6 Figure).

S6 Figure. Immunostaining showed up-regulation of K-10 after calcium treatment for Keratinocytes derived from all iPSC clones. Cell line HEK and original PC4 fibroblasts were used as positive and negative controls for the reaction, respectively.

iPSC-derived cardiomyocytes beating culture

[Insert Video 1 - <u>https://youtu.be/T9JADZXKfck</u> (40x magnification)]

[Insert Video 2 - https://youtu.be/XLOut0VpXTo (100x magnification)]

Supplementary Videos. Cardiomyocytes generated by long-term cultivating iPSC spontaneously beating. Videos recorded at day 11 of differentiation, showing cardiomyocytes beating on monolayer. The software wondershare filmora was used to add legend and chronometer to the video and the codec (compression-decompression program) used was H.246.

CellCountAnalyser

Cells confluence monitoring is a regular practice in a cell culturing laboratory. Nevertheless, visual monitoring can cause significant misinterpretations, especially considering different operators. Since the high-efficient protocols of differentiation using hiPSCs, in general, are dependent on the proliferative state of these cells, to keep them growing in log-phase seems to be a mandatory step for success.

In this regard, several groups have been proposing, from the simple to very complex, semi-automatic or automatic systems to measure cell confluence based on microscope imaging techniques.^{5–8} Despite the advantages to monitor cell confluence by automated methods, significant issues associated to the quality of images obtained by optical microscopy from cell cultures can also cause some misinterpretation for impairing daily cell maintenance and differentiation protocols.

We have been monitoring cell confluence based on a modified version of the software previously proposed by Busschots et. al..⁸ Despite the easy platform designed to be used in ImageJ software, we have found at least two important issues in this software, 1) there are too many steps to evaluate the confluence spending long time to reach final results and 2) there are significant misinterpretation of results, as higher as the confluence (S4 Table).

Considering these problems, we have created a "One-click Python-based platform" (named CellCountAnalyser) to automate the calculation of confluence in batches of images and also, we created a correction factor based on pre-fabricated images with known confluences from 0 to 100% (5% intervals, S7-A Figure). Based on the quantification of prefabricated images, a linear equation to correlates measured (by original software) vs. real expected confluences was generated. The implementation of the linear equation step generated a new corrected value for measured confluence closer to that visualized in the culture dishes (S7-B Figure and S5 Table). We also created a command line to generate an excel report with quantified confluences and mean \pm STD for all the class/name images. Additionally, an easy step-by-step user manual was written (S7-C Figure). The package with CellCountAnalyser is available to download in this article's supplementary material.

Furthermore, five images with 100X magnification from predefined (and marked to be used in following days) areas of the center and borders of each plate were recorded and quantified daily to monitor cell confluence.

S7 Figure. CellCountAnalyser yielded more accurate cell confluence predictions. A) Set of prefabricated images with known confluences from 0-100%. **B)** Correlation of the confluences measured by the original software and the real values. **C)** CellCountAnalyser users manual.

Primer	Sequence			Amplicon
EBNA1 forward	5'-ATCGTCAAAGCTGCACACAG-3'	_ pEB-C5,	Epi5,	666 bp
EBNA1 reverse	5'-CCCAGGAGTCCCAGTAGTCA-3'	pEB-Tg		
Orip forward	5'-TTCCACGAGGGTAGTGAACC-3'	Eni5		544 bn
Orip reverse	5'-TCGGGGGGTGTTAGAGACAAC-3'	- Epis		544 Op
TG forward	5'-GCCAGGTGGGTTAAAGGAGC-3'			
TG reverse	5'-GGTACTTATAGTGGCTGGGCTGT-	[−] pEB-Tg		127 bp

of fable, bet of primers used for integration for

⁵² Tuble Set of primers used for KTT CK and KT qt CK						
Primer		Sequence	Amplicon			
DNMT2P	Forward	5'- ATAAGTCGAAGGTGCGTCGT -3'	-203 hn			
DINIVITSD	Reverse	5'- GGCAACATCTGAAGCCATTT -3'	203 Up			
NANOG	Forward	5'- CAGCCCTGATTCTTCCACCAGTCCC-3'	391 bp			
NANOG	Reverse	5'- TGGAAGGTTCCCAGTCGGGTTCACC-3'	-			
MCV1	Forward	5'-CGAGAGGACCCCGTGGATGCAGAG-3'	307 bp			
MAAI	Reverse	5'-GGCGGCCATCTTCAGCTTCTCCAG-3'	_			
	Forward	5'-GCCAGCAACACCTAGTCA-3'	138 bp			
PAAO	Reverse	5'-TGTGAGGGCTGTGTCTGTTC-3'				
SOX17	Forward	5'CAAGGGCGAGTCCCGTATC-3'	58bp			
SUAT	Reverse	5'GTCCTTAGCCCACACCATGA-3'				
K 5	Forward	5'ATCTCTGAGATGAACCGGATGATC-3'	75 bp			
KJ	Reverse	5'-CAGATTGGCGCACTGTTTCTT -3'				
V10	Forward	5'- GGGCTCTGGAAGAATCAAAC -3'	185 bp			
K10	Reverse	5'- ATTGTCGATCTGAAGCAGGA -3'				
IVI	Forward	5'- TCCTCCTCCAGTCAATACCC -3'	181 bp			
IVL	Reverse	5'- CTGTGGCTCCTTCTGCTGT -3'	_			
	Forward	5'- GTGGACCTGACCTGCCGTCT -3'	152 bp			
UAPDH	Reverse	5'- GGAGGAGTGGGTGTCGCTGT -3'				

S2 Table. Set of primers used for RT-PCR and RT-qPCR

Ductoin tougot	Dilution used		Manufacturer, Catalog	
Protein target	IF	FC	number	
OCT4	Kit	Kit		
NANOG	Kit	Kit	Merck Millipore Sigma,	
SOX2	-	Kit	SCR078	
TRA-1-60	Kit	-		
Cardiac troponin T (TNNT2)	1:200	1:3500	Fritzgerald, 20R-3024	
Myosin (MYH7)	1:500	-	Interprise, DSHB-A4.951	
Alfa-actinin (ACTN2)	1:500	1:1000	Abcam, ab9465	
Fetal cardiac troponin I (TNNI1)	1:500	1:1000	Thermo Fisher, 701585	
Adult cardiac troponin I (TNNI3)	1:30	1:50	Interprise, DSHB-T-I4	
NKX2.5	1:100	1:100	Cell Signaling, 8792S	
Keratin 10	1:100	-	AbCam, ab9026	
Kanatin 14	1.1000	1.1000	AbCam, ab192055 (FC)	
Keratin 14	1:1000	1:1000	Biolegend, PBR-155P (IF)	
Ki67	1:50	-	AbCam, ab15580	
p63	1:50	-	Zeta Corporation, Z2003L	
integrin alpha-6 (CD49f)	1:100	-	eBioscience/14-0495-82	
integrin beta-4 (CD104)	1:100	-	BD Biosystems, BD555721	
FOXA2	1:300	1:2000	Abcam, ab60721	
CXCR4	1:200	-	Abcam, ab124824	

S3 Table. Set of antibodies used for iPSC, IPSC-derived -cardiomyocytes and - keratinocytes.

S4 Table. Cell confluence data by previous software

Cell plate	Image	Visual confluence %	Confluence by IJ previous version %
	640111	100	82.622
	640112	100	79.351
1	640113	100	81.033
	640114	100	80.051
	640115	100	82.272
	640211	100	81.495
	640212	100	80.613
2	640213	100	80.46
	640214	100	81.035
	640215	100	81.612
	640311	100	82.874
	640312	100	84.269
3	640313	100	82.688
	640314	100	81.394
	640315	100	83.833

S5 Table. Cell confluence data after modifications in the algorithm

Pre. Frab. Confluence	Confluence by IJ previous version	CellCountAnalys
%	%	er
0	1.503	-0.89
5	6.346	4.90
10	10.457	9.81
15	14.674	14.84
20	18.968	19.97
25	23.234	25.07
30	27.561	30.24
35	31.772	35.27
40	36.11	40.45
45	40.243	45.38
50	44.24	50.16
55	48.481	55.22
60	52.623	60.17
65	56.905	65.29
70	61.082	70.28
75	65.145	75.13
80	69.25	80.03
85	73.476	85.08
90	77.437	89.81
95	81.366	94.50
100	85.348	99.26

REFERENCES

- 1. Chou BK, Mali P, Huang X, Ye Z, Dowey SN, Resar LMS, et al. Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res. 2011;21(3):518–29.
- Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc. 2013;8(1):162–75.
- 3. Wang X, Yang P. In vitro differentiation of mouse embryonic stem (mES) cells using the hanging drop method. J Vis Exp. 2008;(17):825.
- 4. Itoh M, Kiuru M, Cairo MS, Christiano AM. Generation of keratinocytes from normal and recessive dystrophic epidermolysis bullosa-induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2011;108(21):8797–802.
- 5. Jaccard N, Griffin LD, Keser A, Macown RJ, Super A, Veraitch FS, et al. Automated method for the rapid and precise estimation of adherent cell culture characteristics from phase contrast microscopy images. Biotechnol Bioeng. 2014;111(3):504–17.
- 6. Venter C, Niesler CU. Rapid quantification of cellular proliferation and migration using ImageJ. BioTechniques. 2019;66(2):99–102.
- Georg M, Fernández-Cabada T, Bourguignon N, Karp P, Peñaherrera AB, Helguera G, et al. Development of image analysis software for quantification of viable cells in microchips. PLoS ONE. 2018;13(3):e0193605.
- 8. Busschots S, O'Toole S, O'Leary JJ, Stordal B. Non-invasive and non-destructive measurements of confluence in cultured adherent cell lines. MethodsX. 2015;2:8–13.