### Supporting information

## Automated on-line isolation and fractionation system for nanosized biomacromolecules from human plasma

Evgen Multia, Thanaporn Liangsupree, Matti Jussila, José Ruiz-Jimenez, Marianna Kemell, and Marja-Liisa Riekkola\*

Department of Chemistry, P.O. Box 55, FI-00014 University of Helsinki, Finland.

\* E-mail: marja-liisa.riekkola@helsinki.fi

### CONTENTS

| Chemicals and reagents                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| InstrumentationS3                                                                                                                                                                   |
| Table S1. Optimized multiple reaction monitoring parameters for amino acids and sugarS4                                                                                             |
| Figure S1. Repeated IAC- AsFIFFF analysis cycles                                                                                                                                    |
| Table S2. Process cycles used in the IAC.         S5                                                                                                                                |
| Table S3. Optimal AsFIFFF conditions for fractionation of apoB-100 containing lipoproteins and         EVs                                                                          |
| Figure S3. Zeta potential of the CD9 <sup>+</sup> and CD61 <sup>+</sup> EV subpopulations                                                                                           |
| Figure S4. Extracted ion chromatograms (EICs) based on MRM of a standard mixture containing amino acids, glucose, and internal standards (ISTDs)                                    |
| Figure S5. Extracted ion chromatograms (EICs) based on MRM of a 50-80 nm CD61+ EV subpopulation                                                                                     |
| Figure S6. Total ion chromatograms (TICs) of blank containing mobile phase 1 and 2 (1:1 v/v) (red)<br>and 50-80 nm CD61 <sup>+</sup> EV subpopulation with identified ISTDs (green) |
| Table S4. Information on calibration curves and estimated limit of quantification (LOQ)S11                                                                                          |
| Table S5. Recovery percentage of target amino acids and glucose in EV subpopulations based on         standard addition analyses         S12                                        |

#### **Chemicals and reagents**

Phosphate buffered saline (PBS) tablets, ethanolamine, and acetonitrile (gradient grade, purity ≥99.9%) were purchased from Sigma-Aldrich (St. Louis, USA). Ammonia (25%) was purchased from Riedel-de Haën (Seelze, Germany). NaHCO<sub>3</sub> and Na<sub>2</sub>CO<sub>3</sub> anhydrous were purchased from Merck KGaA (Darmstadt, Germany). NaOH (1 M) and formic acid (99-100%) were purchased from VWR Chemicals (Fontenay-sous-Bois, France). Glycine-2,2-d<sub>2</sub> (Gly-d<sub>2</sub>) (98 atom % D), L-Phenylalanine-3,3-d<sub>2</sub> (Phe- d<sub>2</sub>) (98 atom % D), and L-Lysine-4,4,5,5-d<sub>4</sub> (Lys- d<sub>4</sub>) (98 atom % D, 98% (CP)) were purchased from Sigma Aldrich (St. Louis, USA) and used as internal standards (ISTDs). D-Fructose-13C6 were purchased from Carbosynth Ltd (Berkshire, UK) and was use as ISTD as well. Methanol (LC-MS Chromasolv<sup>™</sup>, ≥ 99.9%) was purchased form Honeywell (Honeywell Riedel-de Haën, Germany). Amino acid standards, L-Alanine (Ala), y-Aminobutyric acid (GABA), L-Arginine (Arg), L-Aspartic acid (Asp), L-Citrulline (Cit), L-Cysteine (Cys) HCl, L-Glutamic acid (Glu), L-Glutamine (Gln), Glycine (Gly), L-Histidine (His) HCl, L-Isoleucine (Ile), L-Leucine (Leu), L-Lysine (Lys) HCl, L-Methionine (Met), L-Phenylalanine (Phe), L-Proline (Pro), L-Threonine (Thr), L-Tryptophan (Trp), L-Valine (Val), and L-Ornithine (Orn) HCl, were purchased from Seikagaku Kogyo Co., Ltd (Tokyo, Japan). L-Serine (ca. 99%) was purchased from Ega-Chemie (Steinheim, Germany), L-Asparagine (Asn), and D(-)-Fructose was purchased from Merck KGaA (Darmstadt, Germany). D-(+)-Glucose (purity ≥99.9%) was purchased from Sigma-Aldrich (St. Louis, USA). MilliQ water was obtained from MilliQ system (Millipore, USA). CD9 Monoclonal Antibody (eBioSN4 (SN4 C3-3A2)), eBioscience<sup>™</sup> was purchased from Thermo Fisher Scientific (USA), and Purified Mouse Anti-Human CD61 (clone VI-PL2) antibody was purchased from BD Biosciences (USA). Anti-apoB-100 monoclonal antibody (code Anti-h ApoB 2101 SPTN-5) was donated by Medix Biochemica Co. Inc (Helsinki, Finland). Human blood plasma was provided by the Finnish Red Cross Blood Service (Helsinki, Finland) with permission (Permission no. 37/2015).

#### Instrumentation

CIM<sup>®</sup> carbonyldiimidazole (CDI) disks (0.34 mL, pore size 1.3 μm) and housing cartridges were purchased from BIA Separations (Ljubljana, Slovenia). AsFIFFF system (Postnova Analytics, AF2000 system, Landsberg, Germany) consisted of a 350 μm spacer (Postnova AF2000 MF) and a 10 kDa cut off regenerated cellulose membrane (Postnova AF2000 MT series). The AsFIFFF channel was coupled with a UV (SPD-20A Prominence, Shimadzu, Japan), a multi-angle light scattering (Postnova PN3070 MALS detector), a diode array (DAD) (G1315A Agilent Technologies, Waldbronn, Germany), and a dynamic light scattering (DLS) (Zetasizer Nano, Malvern Instruments, UK) detectors. Fractions were collected using CBM-20A modular system controller (Shimadzu, Japan) and a fraction collector (FRC-10A, Shimadzu, Japan). Nanosep<sup>®</sup> centrifugal devices for preconcentration of fractions with a 10K molecular weight cut-off membrane filters were purchased from Pall Corporation (New York, USA). Supor<sup>®</sup>-200 membrane filters (0.2 μm) were purchased from PALL Life Sciences (USA), and MILLEX<sup>®</sup> Low Protein Binding Hydrophilic LCR (PTFE) membrane filters (0.45 μm) were purchased from Millipore (USA).

Zeta potential measurements were done with Zetasizer Nano ZS (Malvern Instruments, UK). An Agilent 1260 Infinity HPLC system furnished with a SeQuant<sup>®</sup> ZIC<sup>®</sup>-cHILIC column (150 mm x 2.1 mm i.d., pore size 100 Å, 3 µm particle size) from Merck KGaA (Germany) coupled with an Agilent 6420 triple quadrupole mass spectrometer equipped with an electrospray ion source, was used for the individual isolation and quantitation of amino acids and sugars. The column was connected to an ultra HPLC in-line filter (2.0 µm KrudKatcher, Phenomenex, Torrance, CA, USA part number AF0-8497) and a SeQuant<sup>®</sup> ZIC<sup>®</sup>-cHILIC guard column (20 mm x 2.1 mm i.d., 200 Å particle size, particle size 5 µm, Merck KGaA, Germany). Scanning electron microscopy (SEM) images were taken with a Hitachi S-4800 field emission SEM (FESEM) (Hitachi, Japan).

| Compound name                                | Precursor<br>ion | Product<br>ion | Fragmentor<br>voltage (V) | Collision<br>energy (V) | Cell<br>accelerator<br>voltage (V) | lonization<br>mode |
|----------------------------------------------|------------------|----------------|---------------------------|-------------------------|------------------------------------|--------------------|
| Alanine (Ala)                                | 90.1             | 44.1           | 61                        | 9                       | 4                                  | Positive           |
| Arginine (Arg)                               | 175.1            | 70.1           | 61                        | 25                      | 4                                  | Positive           |
| Asparagine (Asn)                             | 133              | 74.1           | 61                        | 17                      | 4                                  | Positive           |
| Aspartic acid (Asp)                          | 134              | 74.1           | 61                        | 13                      | 4                                  | Positive           |
| Citrulline (Cit)                             | 176              | 159            | 70                        | 11                      | 2                                  | Positive           |
| γ-aminobutyric acid<br>(GABA)                | 104              | 87             | 75                        | 15                      | 4                                  | Positive           |
| Fructose-13C6                                | 185              | 92             | 75                        | 5                       | 0                                  | Negative           |
| Glucose*                                     | 203              | 203            | 121                       | 0                       | 4                                  | Positive           |
| Glutamic acid (Glu)                          | 148.1            | 84.1           | 61                        | 17                      | 4                                  | Positive           |
| Glutamine (Gln)                              | 147.1            | 84.1           | 61                        | 17                      | 4                                  | Positive           |
| Glycine (Gly)                                | 76               | 30.1           | 61                        | 9                       | 4                                  | Positive           |
| Glycine-d <sub>2</sub> (Gly-d <sub>2</sub> ) | 78.1             | 32.1           | 61                        | 9                       | 4                                  | Positive           |
| Histidine (His)                              | 156              | 110            | 61                        | 17                      | 4                                  | Positive           |
| Isoleucine (Ile)                             | 132.1            | 69.1           | 61                        | 9                       | 4                                  | Positive           |
| Leucine (Leu)                                | 132.1            | 44             | 61                        | 25                      | 4                                  | Positive           |
| Lysine (Lys)                                 | 147.1            | 84.1           | 61                        | 17                      | 4                                  | Positive           |
| Lysine (Lys-d <sub>4</sub> )                 | 151.1            | 88.1           | 61                        | 17                      | 4                                  | Positive           |
| Methionine (Met)                             | 150              | 56             | 61                        | 17                      | 4                                  | Positive           |
| Ornithine (Orn)                              | 133              | 70             | 70                        | 11                      | 2                                  | Positive           |
| Phenylalanine (Phe)                          | 166.1            | 120            | 61                        | 13                      | 4                                  | Positive           |
| Phenylalanine (Phe-d <sub>2</sub> )          | 168.1            | 122            | 61                        | 13                      | 4                                  | Positive           |
| Proline (Pro)                                | 116.1            | 70,1           | 61                        | 17                      | 4                                  | Positive           |
| Serine (Ser)                                 | 106.1            | 60.1           | 61                        | 9                       | 4                                  | Positive           |
| Threonine (Thr)                              | 120.1            | 74.1           | 61                        | 9                       | 4                                  | Positive           |
| Tryptophan (Trp)                             | 205              | 188            | 61                        | 5                       | 4                                  | Positive           |
| Tyrosine (Tyr)                               | 182              | 136            | 61                        | 13                      | 4                                  | Positive           |
| Valine (Val)                                 | 118              | 72             | 61                        | 9                       | 4                                  | Positive           |

 Table S1. Optimized multiple reaction monitoring parameters for amino acids and sugar.

\*Product ion



**Figure S1.** Repeated IAC- AsFIFFF analysis cycles. Short cycle was used for isolation and fractionation of apoB-100 containing lipoproteins and long cycle for extracellular vesicles (including exosomes and exomeres). An automated injection to the AsFIFFF was done when eluate from IAC was fully transferred to the sample loop of six port valve.

| Isolation program for apo<br>100 containing lipoproteir | B-<br>1s |        |       | EV isolation                           | program |        |       |
|---------------------------------------------------------|----------|--------|-------|----------------------------------------|---------|--------|-------|
|                                                         | mL       | mL/min | min   |                                        | mL      | mL/min | min   |
| Sample loading                                          | 1        | 6      | 0.167 | Sample loading                         | 5       | 6      | 0.833 |
| Sample injection                                        | 1        | 0.5    | 2     | Sample injection                       | 5       | 0.25   | 20    |
| PBS loading                                             | 3        | 6      | 0.5   | PBS loading                            | 3       | 6      | 0.5   |
| PBS injection                                           | 3        | 0.5    | 6     | PBS injection                          | 3       | 0.25   | 12    |
| Ammonium<br>hydroxide loading                           | 2        | 6      | 0.333 | Carbonate-<br>bicarbonate<br>loading   | 2       | 6      | 0.333 |
| Ammonium<br>hydroxide<br>injection                      | 2        | 0.5    | 4     | Carbonate-<br>bicarbonate<br>injection | 2       | 0.25   | 8     |
| PBS loading                                             | 3        | 6      | 0.5   | PBS loading                            | 3       | 6      | 0.5   |
| PBS injection                                           | 3        | 1      | 3     | PBS injection                          | 3       | 1      | 3     |
| total                                                   |          |        | 16.5  | Ammonium<br>hydroxide loading          | 2       | 6      | 0.333 |
|                                                         |          |        |       | Ammonium<br>hydroxide injection        | 2       | 1      | 2     |
|                                                         |          |        |       | PBS final loading                      | 3       | 6      | 0.5   |
|                                                         |          |        |       | PBS final injection                    | 3       | 1      | 3     |
|                                                         |          |        |       | total                                  |         |        | 51    |

Table S2. Process cycles used in the IAC.

# **Table S3.** Optimal AsFIFFF conditions for fractionation of apoB-100 containing lipoproteinsand EVs.

| Mobile phase      | PBS, pH 7.4                                   | Sigma-Aldrich                               |                                           |  |  |
|-------------------|-----------------------------------------------|---------------------------------------------|-------------------------------------------|--|--|
| Channel thickness | 350 μm                                        | Postnova AF2000 MT spacer                   |                                           |  |  |
| Membrane          | Regenerated cellulose,<br>10 kDa mass cut-off | Postnova AF2000 MT series Membrane          |                                           |  |  |
| Injection loop    | 500 μL                                        | ApoB-100<br>containing<br>lipoproteins      | Extracellular<br>vesicles                 |  |  |
| Injection step    | Time<br>Flow                                  | 5 min<br>0.1 mL/min                         | 5 min<br>0.1 mL/min                       |  |  |
| Detector          | Flow                                          | 0.5 mL/min                                  | 0.5 mL/min                                |  |  |
| Transition time   | nsition time Time<br>Cross flow               |                                             | 1 min<br>3 mL/min                         |  |  |
| Separation        | Time                                          | 2 min                                       | 5 min                                     |  |  |
|                   | Cross-flow                                    | Linear decay 3.0<br>mL/min to 0.5<br>mL/min | Linear decay 3.0<br>mL/min to 1<br>mL/min |  |  |
|                   | Time                                          | 1 min                                       | 15 min                                    |  |  |
|                   | Cross-flow                                    | Linear decay 0.5<br>mL/min to 0<br>mL/min   | Linear decay 0.5<br>mL/min to 0<br>mL/min |  |  |
|                   | Time                                          | 15 min                                      | 14 min                                    |  |  |
|                   | Cross-flow                                    | 0 mL/min                                    | 0 mL/min                                  |  |  |



**Figure S2.** Optimal time (125 s) for six port valve timer of IAC isolated 100  $\mu$ g/mL LDL eluted in AsFIFFF based on UV 280 nm peak areas (n=25).



Figure S3. Zeta potential of the CD9<sup>+</sup> and CD61<sup>+</sup> EV subpopulations.



**Figure S4.** Extracted ion chromatograms (EICs) based on MRM of a standard mixture containing amino acids, glucose, and internal standards (ISTDs) (Gly-d<sub>2</sub>, Lys-d<sub>4</sub>, Phe-d<sub>2</sub>, and Fructose-13C6) listed in Table S3. The concentration was 1  $\mu$ g/mL for all standards and amino acid ISTDs and 5  $\mu$ g/mL for Fructose-13C6. Peak identification: 1. Leu, 2. IIe, 3. Phe-d<sub>2</sub>, 4. Phe, 5. GABA, 6. Trp, 7. Val, 8. Met, 9. Pro, 10. Tyr, 11. Ala, 12. Fructose-13C6, 13. Glucose, 14. Thr, 15. Gly-d<sub>2</sub>, 16. Gly, 17. Gln, 18. Glu, 19. Cit, 20. Ser, 21. Asp, 22. Lys, 23. Lys-d<sub>4</sub>, 24. Arg, 25. His, 26. Orn, and 27. Asn



9. Gln, 10. Glu, 11. Cit, 12. Ser, 13. Arg, 14. Lys, 15. His, and 16. Orn



**Figure S6.** Total ion chromatograms (TICs) of blank containing mobile phase 1 and 2 (1:1 v/v) (red) and 50-80 nm CD61<sup>+</sup> EV subpopulation with identified ISTDs (green).

| Compound  | ISTD               | Calibration curve slope | Calibration curve range (ng/mL) | R <sup>2</sup> | LOQ (pg/mL)* |
|-----------|--------------------|-------------------------|---------------------------------|----------------|--------------|
| Ala       | Gly-d <sub>2</sub> | 6.2                     | 5-750                           | 1.000          | 3.3          |
| Arg       | Lys-d <sub>4</sub> | 4.2                     | 5-1000                          | 0.996          | 3.7          |
| Asn       | Gly-d <sub>2</sub> | 1.1                     | 5-750                           | 1.000          | 7.1          |
| Asp       | Gly-d <sub>2</sub> | 1.0                     | 25-1000                         | 0.998          | 27.7         |
| Cit       | Gly-d <sub>2</sub> | 2.2                     | 5-750                           | 0.998          | 8.4          |
| GABA      | Phe-d <sub>2</sub> | 0.5                     | 5-750                           | 1.000          | 1.1          |
| Gln       | Gly-d <sub>2</sub> | 2.4                     | 5-750                           | 0.998          | 5.7          |
| Glu       | Gly-d <sub>2</sub> | 2.3                     | 5-750                           | 1.000          | 0.7          |
| Glucose** | Fructose 13C6      | 100.7                   | 5-250                           | 0.995          | 9.1          |
| Gly       | Gly-d <sub>2</sub> | 0.8                     | 5-750                           | 1.000          | 13.3         |
| His       | Lys-d <sub>4</sub> | 5.4                     | 5-750                           | 0.999          | 20.4         |
| lle       | Phe-d <sub>2</sub> | 0.1                     | 5-750                           | 0.999          | 8.1          |
| Leu       | Phe-d <sub>2</sub> | 0.7                     | 5-750                           | 1.000          | 0.9          |
| Lys       | Gly-d <sub>2</sub> | 1.2                     | 5-750                           | 0.998          | 29.6         |
| Met       | Phe-d <sub>2</sub> | 0.1                     | 5-750                           | 0.999          | 7.6          |
| Orn       | Lys-d <sub>4</sub> | 3.4                     | 5-1000                          | 1.000          | 16.3         |
| Phe       | Phe-d <sub>2</sub> | 1.1                     | 5-750                           | 1.000          | 1.0          |
| Pro       | Phe-d <sub>2</sub> | 1.9                     | 5-1000                          | 1.000          | 2.7          |
| Ser       | Gly-d <sub>2</sub> | 2.1                     | 5-750                           | 1.000          | 7.9          |
| Thr       | Gly-d <sub>2</sub> | 2.4                     | 5-750                           | 1.000          | 2.5          |
| Trp       | Phe-d <sub>2</sub> | 0.5                     | 5-750                           | 1.000          | 2.4          |
| Tyr       | Phe-d <sub>2</sub> | 0.2                     | 5-750                           | 0.999          | 0.3          |
| Val       | Phe-d <sub>2</sub> | 1.6                     | 5-750                           | 0.999          | 1.5          |

Table S4. Information on calibration curves and estimated limit of quantification (LOQ).

\*Calculated from LOQ = 10\*standard deviation of the lowest calibration point/slope of the calibration curve

\*\*Product ion

**Table S5.** Recovery percentage of target amino acids and glucose in EV subpopulations

 based on standard addition analyses.

| Compound | CD61⁺    | CD61⁺    | CD61+     | CD9+     | CD9⁺     | CD9⁺      |
|----------|----------|----------|-----------|----------|----------|-----------|
|          | < 50 nm  | 50-80 nm | 80-120 nm | < 50 nm  | 50-80 nm | 80-120 nm |
| Ala      | 72-104%  | 93-101%  | 99-100%   | 40-96%   | 81-103%  | 72-104%   |
| Arg      | 101 %    | 99 %     | 98-120%   | 83-104%  | 96-101%  | 99 %      |
| Asn      | 93-98%   | 70 %     | 95-99%    | 87-117%  | 82-101%  | -         |
| Asp      | 104-105% | 89-131%  | 55-105%   | 136-140% | 63-98%   | -         |
| Cit      | 96-102%  | 78-115%  | 97-125%   | -        | 97-99%   | 90-110%   |
| GABA     | 95 %     | 101 %    | 99 %      | 90-92%   | 93-97%   | 91 %      |
| Glucose* | 42-52%   | 18-68%   | 54-72%    | 92-107%  | -        | 56-88%    |
| Glu      | 82-94%   | 83-113%  | 68-92%    | -        | 92-102%  | -         |
| Gln      | 90-95%   | 80-121%  | 90-108%   | 53-65%   | 95-98%   | 85 %      |
| Gly      | 88-98%   | 89-91%   | 85-86%    | 86-103%  | 93-94%   | 83-84%    |
| His      | 87-101%  | 97-100%  | 87-111%   | 89-102%  | 98-101%  | 99 %      |
| lle      | 102-104% | 86-87%   | 98-99%    | 103-104% | 93-97%   | 87-107%   |
| Leu      | 100-101% | 102 %    | 77-90%    | 92-93%   | 94-101%  | 84-102%   |
| Lys      | 97-99%   | 97-98%   | 89-93%    | 86-99%   | 95-101%  | 69-105%   |
| Met      | 128-149% | 72-80%   | 96-101%   | 77-79%   | 82-88%   | 80-92%    |
| Orn      | 96-101%  | 93-102%  | 80-85%    | 78-95%   | 98-100%  | -         |
| Phe      | 102 %    | 96-97%   | 95-99%    | 95-99%   | 80-93%   | 94-96%    |
| Pro      | 93-99%   | 95-98%   | 92-96%    | 86-95%   | 85-102%  | 100 %     |
| Ser      | 84-102%  | 100-110% | 97-101%   | -        | 94-100%  | -         |
| Thr      | 90-100%  | 99-101%  | 98-99%    | 97-99%   | 92-100%  | 94-95%    |
| Trp      | 84-93%   | 109-110% | 89-92%    | 89-94%   | 95-108%  | 89-97%    |
| Tyr      | 99%      | 99 %     | 95-101%   | 74-77%   | 83-86%   | 97 %      |
| Val      | 92-100%  | 99%      | 100%      | 96-98%   | 93-100%  | 108%      |

\*Product ion