Supplementary information

Ionic mechanisms of disopyramide prolonging action potential duration in human-induced pluripotent stem cell-derived cardiomyocytes from a patient with short QT syndrome type 1 Running title: Lan et al, disopyramide effects in SQTS1-hiPSC-CMs Huan Lan^{1*}, Qiang Xu^{2,5*}, Ibrahim El-Battrawy^{2,3}, Rujia Zhong², Xin Li², Siegfried Lang^{2,3}, Lukas

Cyganek^{4,3}, Martin Borggrefe^{2,3}, Xiaobo Zhou^{2,3,1}, Ibrahim Akin^{2,3}

¹Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China. ²First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany; ³DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen, Germany; ⁴Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; ⁵Department of Histology and Embryology, Southwest Medical University, Luzhou, China.

*equally contributed.

Address for correspondence:

Xiaobo Zhou, MD

First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany. **E-mail**: <u>Xiaobo.zhou@medma.uni-heidelberg.de</u>

Funding:

This study was supported by the German Center for Cardiovascular Research (DZHK) (81Z0500204) and National Natural Science Foundation of China (No. 31300947).

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Supplemental Table 1. Comparison of effects of disopyramide in healthy and SQTS-cells

	Healthy cells	SQTS cells
APD	prolonged	prolonged
Vmax	reduced	reduced
Peak INa	reduced	reduced
Late INa	Reduced ¹⁻² , increased	increased
ICa-L	reduced	increased
Ito	Reduced ³	NA
lKr	reduced	No effect
IKs	Reduced ⁴	No effect
IK1	Increased ⁵	NA
IKATP	Reduced ⁶⁻⁷	No effect
ISK	No effect ⁸ , reduced	reduced
INCX	increased	increased

NA: not analyzed

- Wang et al. Persistent human cardiac Na⁺ currents in stably transfected mammalian cells. Channels (Austin). Jul-Aug 2013;7(4):263-74. doi: 10.4161/chan.25056
- S Koumi, R Sato, I Hisatome, H Hayakawa, H Okumura, R Katori. Disopyramide Block of Cardiac Sodium Current After Removal of the Fast Inactivation Process in Guinea Pig Ventricular Myocytes. J Pharmacol Exp Ther. 1992 Jun;261(3):1167-74.
- 3. Virag, L., Varro, A., and Papp, J.G., Effect of disopyramide on potassium currents in rabbit ventricular myocytes. Naunyn-Schmiedeberg's archives of pharmacology 357 (1998) 268-75.
- Satoh H. Comparative Actions of Cibenzoline and Disopyramide on I(Kr) and I(Ks) Currents in Rat Sino-Atrial Nodal Cells. Eur J Pharmacol . 2000 Oct 27;407(1-2):123-9. doi: 10.1016/s0014-2999(00)00734-2.
 - Martin et al. Effects of Disopyramide and Flecainide on the Kinetics of Inward Rectifier Potassium Channels in Rabbit Heart Muscle. Br J Pharmacol 1994 Mar;111(3):873-9. doi: 10.1111/j.1476-5381.1994.tb14819.x.
 - Horie, M., Hayashi, S., Yuzuki, Y., and Sasayama, S., Comparative studies of ATP sensitive potassium channels in heart and pancreatic beta cells using Vaughan-Williams class la antiarrhythmics. Cardiovascular research 26 (1992) 1087-94.

- de Lorenzi, F.G., Bridal, T.R., and Spinelli, W., Voltage-dependent inhibition of the ATP-sensitive K+ current by the class la agent disopyramide in cat ventricular myocytes. The Journal of pharmacology and experimental therapeutics 272 (1995) 714-23.
- Rafel Simó-Vicens ¹, Daniel R P Sauter ¹, Morten Grunnet ², Jonas G Diness ², Bo H Bentzen. Effect of Antiarrhythmic Drugs on Small Conductance Calcium - Activated Potassium Channels. Eur J Pharmacol . 2017 May 15;803:118-123. doi: 10.1016/j.ejphar.2017.03.039. Epub 2017 Mar 18.

Figure legends

Figure S1. Effects of disopyramide on action potentials in hiPSC-CMs from a healthy donor. Action potentials were recorded at 1 Hz. Disopyramide (10 μ M) was applied to cells. (A) Representative action potential traces in absence (Ctr) and presence of 10 μ M disopyramide. (B) Averaged values of action potential duration at 50% repolarization (APD50). (C) Averaged values of action potential duration at 90% repolarization (APD90). (D) Averaged values of resting potential (RP). (E) Averaged values of action potential amplitude (APA). (F) Averaged values of maximal depolarization velocity (Vmax). Shown are mean ± SEM, n represents number of cells. The statistical significance was examined by paired t-test.

Figure S2. Effects of disopyramide on I_{Kr} hiPSC-CMs from the healthy donor. I_{Kr} was measured as Cs⁺ currents. (A) Representative traces of I_{Kr} at +40 mV evoked by the indicated protocol (inset) in absence (Ctr) and presence of disopyramide (10 μ M). (B) Mean values of IKr at +40 mV in absence (Ctr) and presence of disopyramide (10 μ M). n, number of cells. The statistical significance was examined by paired t-test.

Figure S3. Effects of disopyramide on I_{SK} in hiPSC-CMs from the healthy donor. The currents (I_{SK}) were evoked by the protocol indicated in A (inset). I_{SK} was analyzed as apamin (100 nM) sensitive currents. (A) Representative traces of I_{SK} at +40 mV in absence (Ctr) and presence of disopyramide (10 µM). (B) I-V curves of I_{SK} in absence (Ctr) and presence of disopyramide. (C) Mean values of I_{SK} at +40 mV in absence (Ctr) and presence of disopyramide (10 μ M). n, number of cells. The statistical significance was examined by paired t-test.

Figure S4. Effects of disopyramide on L-type calcium channel currents in hiPSC-CMs from the healthy donor. The L-type Ca channel currents (I_{Ca-L}) were evoked by the protocol indicated in A. (A) The representative traces of I_{Ca-L} at 0 mV in absence (Ctr) and presence of disopyramide (10 µM). (B) Current-voltage relationship (I-V) curves of I_{Ca-L} in absence (Ctr) and presence of disopyramide (10 µM). (C) Mean values of I_{Ca-L} at 0 mV in absence (Ctr) and presence of disopyramide (10 µM). shown are mean ± SEM, n represents number of cells. The statistical significance was examined by paired t-test.

Figure S5. Effects disopyramide on Na/Ca exchanger currents in hiPSC-CMs from the healthy donor. The Na/Ca exchanger currents (I_{NCX}) were evoked by the protocol indicated in A (inset). I_{NCX} was analyzed as NiCL2 (5mM) sensitive currents. (A) Representative traces of I_{NCX} in absence (Ctr) and presence of disopyramide (10 μ M). (B) Mean values of I_{NXC} at +60 mV in absence (Ctr) and presence of disopyramide. (C) Mean values of I_{NXC} at -100 mV in absence (Ctr) and presence of disopyramide. n, number of cells. The statistical significance was examined by paired t-test.

Figure S6. Effects disopyramide on peak and late Na channel currents in hiPSC-CMs from the healthy donor. Peak and late Na channel currents (I_{Na}) were evoked by the protocol indicated in A (inset). Late I_{Na} was measured at 300 ms after initiation of the depolarization pulse. TTX (30µM) sensitive currents were analyzed as late I_{Na} . (A) Representative traces of I_{Na} in absence (Ctr) and presence of disopyramide (10 µM). (B) I-V curves of peak I_{Na} in absence (Ctr) and presence of disopyramide (10 µM).

- (C) Mean values of peal I_{Na} at -40 mV in absence (Ctr) and presence of disopyramide.
- (D) Mean values of late I_{Na} at -40 mV in absence (Ctr) and presence of disopyramide.
- n, number of cells. The statistical significance was examined by paired t-test.

Figures

Figure S1

Figure S2

Figure S3

Figure S4

Figure S5

