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ADDITIONAL INFORMATION

Prior Work

Although numerous automated approaches for the registration of radiology and histopathology
images have been developed, manual approaches are still employed, even in recent publications [TH5].
Some manual or semi-automatic approaches utilize landmark-based registration approaches, either
alone [I}, 2 5] or in combination with automated registration steps [2,[6]. These approaches are labor-
intensive and require the human operator to possess expertise in both MRI and histopathology, and
necessitate identification of corresponding landmarks on both modalities. Other approaches [3] [7]
employ cognitive alignment in which a radiologist with the help of a pathologist directly outlines
the cancer region on MRI considering the histopathology images as reference. Such methods are
tedious to apply and may be prone to underestimating the dimensions of the lesion [8], while MRI
invisible lesions are hard if not impossible to outline and thereby they are often omitted from follow-
up analysis. A few approaches use interactive image transformations [9], in which a user indicates
scaling, rotations, and translations to be applied to the images. Such approaches are also tedious
to utilize and require extensive knowledge in both radiology and pathology of the prostate.

The automated registration of histopathology images with pre-surgical prostate MRI has been
performed in proof-of-concept studies, which usually only include a small number of subjects, often
<20 (TABLE. Most approaches assume a slice-to-slice correspondence between the histopathol-
ogy images and T2 weighted (T2w) MRI slices. Some partial correspondence commonly results from
the gross sectioning of the prostate in histologic preparation, which is done perpendicular to the
urethra in the apical part of the prostate. In some studies, more advanced methods have been
introduced to enforce such correspondences. For example, three dimensional (3D) printed patient-
specific molds [7] have been used [0, [10, [II] to help preserve the correspondences during tissue
sectioning. Some studies additionally included blockface picture [12], ex vivo MRI [6, TIHI3] or
external fiducials [13] to help improve the accuracy of the registration. These approaches required
modifications of the clinical protocols, usually resulting in only a small number of subjects recruited
for such research studies.

Once correspondences between the histopathology images and T2w MRI are identified, their
registration can still be challenging, partially due to the artifacts induced by the tissue preparation.
Textural features [14] [I5] have been proposed, yet they may be cumbersome to use due to the high-
dimensional scoring function optimization and the choice of textural features. Other approaches
rely solely on image intensity to drive the deformable alignment [I6], [I7], but require accurate affine
alignment prior to the deformable registration.

Previous work in the lung [I8| [19], breast [20] or prostate [I6] 7], has relied on approaches
that reconstruct the sequential histopathology slices and created a 3D volume representing the
histopathology specimen prior to sectioning, which facilitates the spatial registration with the 3D
volumetric MRI and alleviates the need for slice correspondences. However, these methods are
prone to overfitting the histopathology reconstruction due to a large number of degrees of freedom
and may suffer from partial volume effects due to thick MRI slices and the histopathology slice
spacing.



SUPPLEMENTARY TABLES

TABLE S1: Summary of previous approaches (not exhaustive). We excluded publications with
<2 subjects [21], only synthetic data [22], or manually intensive approaches [9]. All summarized
methods require as input the in vivo pre-surgical T2 weighted MRI, digitized serial histopathology
images, and the segmentation of the prostate on MRI and histopathology images; Additional
input requirements are listed here; Abbreviations: TPS - Thin Plate Spline; NA - Not available

Subject Landmark
Publication |# Approach Additional Input Dice Coef. |Error (mm)
Park 2008 3D reconstruction + affine|block face picture, ex
12 2 and TPS registration vivo MRI NA 3-3.74
Chappelow Feature Based Mutual In-
2011[14] 25 formation + BSpline - NA NA
Ward 2012 2D Affine + TPS|Strand-shaped fiducials,
[13] 13 Registration Ex vivo MRI NA 1.1
Kalavagunta Internal landmarks, 3D
2014 [10] 35 Local affine registration |Printed Molds 0.99 1.54+0.64
Reynolds 2D TPS registration + de-|Control Points, ex vivo
2015 [6] 6 formable registration MRI, sectioning box 0.93 3.3
Multi-Scale Represen-
tation + deformable
Li 2017 [15] |19 registration - 0.96+0.01 [2.96+0.76
3D histopathology recon-
Losnegard struction, 3D affine and de-
2018 [16] 12 formable registration - 0.94 5.4
2D Rigid, TPS Reg-
Wu 2019 istration (automatic |ex vivo MRI, 3D printed
[11] 17 landmarks) molds 0.87+£0.04 [2.0+0.5
3D histopathology
Rusu 2019 reconstruction, 2D
17 15 Affine+Deformable 3D printed Molds 0.94+0.02 |1.114+0.34

TABLE S2: Quantitative results for the three cohorts and aggregated for all subjects in our study.

Dice Haussdorff Distance|Urethra  Devia- | Landmarks Deviation
Cohort |Prostate (mm) tion (mm) (mm) Dice Cancer
C1 0.98+0.01 1.8440.54 2.74+0.85 2.80+0.59 -
C2 0.96+0.01 2.57+1.05 3.13£1.25 - 0.55+0.14
C3 0.97+0.01 2.354+0.85 3.52+2.04 - -
All 0.97+0.01 1.9940.71 3.09+1.45 2.80+0.59 0.55+0.14

SUPPLEMENTARY FIGURES



TABLE S3: Data Summary: Abbreviations: T2-weighted MRI (T2w), Hematoxylin & Eosin
(H&E), Relaxation Time (TR), Echo Time (TE) ; MRI Matrix Size: K x L x M, Histology
Matrix Size: WxH, * estimated, pseudo-whole mount: stitched adjacent quadrants; # : number;
Pr: Prostate, Lm: Landmarks, Ure: Urethra, Ca: Cancer

[ [ Cohort C1 [ Cohort C2 Cohort C3
Data Source Internal Public [23] Public [24]
Cohort Subject Number 116 16 25
Number of slice 759 65 83
Manufacturer GE Siemens Philips
Coil type Surface Endorectal Endorectal
Sequence T2w T2w T2w
TR (s) 3.9-6.3 3.7-7.0 8.9
MRI TE (ms) 122-130 107 120
Matrix Size: K,L 256-512 320 512
Matrix Size: M 20-44 21-31 26
Pixel Spacing (mm) 0.27-0.94 0.41-0.43 0.27
Distance Between Slices (mm) 3.0-5.2 4 3
Annotations Pr, Ure, Lm Pr, Ca, Ure Pr, Ure
Stain H&E H&E H&E
Type whole-mount |pseudo-whole mount |whole-mount; Low-res
Matrix Size: W,L 1572-7556 2368-6324 360-2401
Histopathology|Pixel Spacing (mm) 0.008,0.016 0.007% 0.021%
Use 3D printed Molds Yes No Yes
Distance Between Slices (mm)| Same as MRI Same as MRI Same as MRI
Annotations Pr, Lm, Ure, Ca Pr, Ure, Ca Pr, Ure, Ca
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FIG. S1: RAPSODI results for the registration of histopathology and T2w MRI slices in the
digital phantom where an imperfect correspondence between the histopathology and T2w MRI
slices exist (they are 2 mm apart from each other in the Sagittal and coronal planes, e.g., Figures
2d,2f): (a-b) Dice Coefficient; (c-d) Hausdorff Distance; (e-f) Urethra Deviation. (a,c,e)
Experiment where only the rotation angle was varied between 0-40°; (b,d,f) The histopathology
images were shrunk by 0-30% of the original size.



(a)

FIG. S2: Overlay of registered histopathology and T2w images (same as slice as shown in FIG. 4
Raw 2). Histopathology shown with a progressive transparency from (a) right-left, and (b)
left-right with cancer outlines (green — Gleason Group 3, yellow-Gleason group 1 [25]).



FIG. S3: Qualitative results showing the registration for all the histopathology slices from apex to
base in subject aaa0059 from Cohort C2. (Column 1) Input histopathology slices with cancer
outlines (red); (Column 2) Histopathology slices registered to MRI; (Column 3) Overlay of the
registered histopathology and corresponding T2w MRI with histopathology images shown
transparent. (Column 4) Corresponding T2w MRI with cancer outlines obtained via RAPSODI
(red) or provided by dataset authors (blue); (Column 5) Closeup into the cancer region with
outlines shown at the same resolution as the T2w MRI. Asterisk (*) in row 4 indicates
predominant features seen on both histopathology images and MRI that could be used as
landmark to assess the registration.
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