
NeuralEE: A GPU-Accelerated Elastic Embedding
Dimensionality Reduction Method for Visualizing
Large-Scale scRNA-Seq Data

1 SUPPLEMENTARY NOTES

1.1 Pseudocode of NeuralEE

Algorithm S1 NeuralEE
Input: sample-feature matrix Y , perplexity K, trade-off factor λ, batches Nb, the neural network Netθ

with parameters θ and epochs Ne
Output: optimized neural networks parameter θ and low-dimensional embedding X

1: step 1: randomly partition data and calculate attractive and repulsive weights matrices
2: (Y1, Y2, . . . , YNb

) ← RandomlyPartition(Y,Nb) # Nb can be 1, when not applied with stochastic
optimization

3: for n ∈ [1, Nb] do
4: W−

n ← EuclideanDistance(Yn)
5: W+

n ← Affinity(Yn, K) # Gaussian affinity1 or entropic affinity2

6: W−
n ,W

+
n ← (W−

n +W−T
n )/2, (W+

n +W+T
n )/2 # symmetrization

7: ZeroizeDiagonal(W−
n ,W

+
n )

8: L+
n ← Diagnol(ColumnSum(W+

n ))−W+
n

9: end for
10: step 2: optimize parameters of the neural network
11: initialize θ
12: for epoch ∈ [1, Ne] do
13: for n ∈ [1, Nb] do
14: Xn ← Netθ(Yn)

15: W̃−
n ← W−

n ◦ exp(Xn) # ◦ means Hadamard product

16: L̃−
n ← Diagnol(ColumnSum(W̃−

n ))− W̃−
n

17: GEE ← 4Xn(L
+
n − λL̃−

n ) # gradient of EE
18: Gθ ← BackPropagation(Netθ, Xn, GEE) # gradient from backpropagation3 by chain rule
19: θ ← NonlinearOptimizer(θ,Gθ) # default: Adam4

20: end for
21: end for
22: step 3: complete embedding by directly mapping
23: X = Netθ(Y )

1 (Hinton and Roweis, 2003), 2 (Vladymyrov and Carreira-Perpinan, 2013), 3 (Lecun et al., 1990), 4 (Kingma and Ba, 2015)

1.2 Details of Data

Details of all biological data refer to (Lopez et al., 2018).

HEMATO. This dataset with continuous gene expression variations from hematopoeitic progenitor cells
(Tusi et al., 2018) contains 4,016 cells and 7,397 genes. The library basal-bm1, which was of poor quality
based on authors recommendation, is removed. Their population balance analysis (Weinreb et al., 2017)
result is used as a potential function for differentiation.
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CORTEX. The Mouse Cortex Cells dataset from (Amit et al., 2015) contains 3005 mouse cortex cells
and gold-standard labels for seven distinct cell types. Each cell type corresponds to a cluster to recover.
Top 558 genes are retained, ordered by variance as in (Prabhakaran et al., 2016).

PBMC. scRNA-seq data from two batches of peripheral blood mononuclear cells (PBMCs) from a
healthy donor (4K PBMCs and 8K PBMCs) (Zheng et al., 2017) is considered. Quality control metrics
is derived using the cellrangerRkit R package (v.1.1.0). Quality metrics are extracted from CellRanger
throughout the molecule specific information file. After filtering as in (Cole et al., 2019), 12,039 cells are
extracted with 10,310 sampled genes and get biologically meaningful clusters with the software Seurat
(Macosko et al., 2015). Then genes that we could not match with the bulk data used for differential
expression are filtered to be left with g = 3346.

RETINA. The dataset of bipolar cells from (Shekhar et al., 2016) contains 27,499 cells and 13,166 genes
coming from two batches after their original pipeline for filtering. Cluster annotation from 15 cell-types
from the author is used.

BRAIN-LARGE. This dataset consists of 1.3 million mouse brain cells, spanning the cortex,
hippocampus and subventricular zone, and is profiled with 10x chromium (10x Genomics, 2017). The raw
gene expression count matrix includes 1,306,127 cells and 27,998 genes.

The artificial tree data shown in Figure 2A is constructed as (Moon et al., 2019).

ArtificialTree. The first branch consists of 100 linearly spaced points that progress in the first four
dimensions. All other dimensions were set to zero. The 100 points in the second branch are constant in
the first four dimensions with a constant value equal to the end point of the first branch. The next four
dimensions then progress linearly in this branch while all other dimensions were set to zero. The third
branch is constructed similarly except the progression occurs in dimensions 9–12 instead of dimensions
5–8. All remaining branches are constructed similarly with some variation in the length of the branches.
At each end point and branch point, 40 points are added 40 and zero mean Gaussian noise with a s.d.
of 7 is added. This construction models a system where progression along a branch corresponds to an
increase in gene expression in several genes. Additional noise dimensions are also added, bringing the total
dimensionality of the data to 60.

1.3 The specific structure of Neural Network

The default NN structure of our NeuralEE is designed as follows: It has two hidden layers with 50 nodes,
and both of them are equipped with Batch Normalization (Ioffe and Szegedy, 2015) and ReLU activation
function. The final output layer, which is the embedding layer in our context, is without any activation
function. We apply this structure to CORTEX, HEMATO, PBMC, RETINA and BRAIN-LARGE. As
for ArtificialTree, since the data size is relatively small and the architecture is rather distinct, we instead
two hidden layers with 32 nodes and 8 nodes of default setting.
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2 SUPPLEMENTARY TABLES AND FIGURES

2.1 Tables

Table S1. Generalization error of different dimensionality reduction methods on the ArtificialTree data. Based on the optimal K-nearest neighbor classifier on
the low-dimensional space, the minimum cross validation errors of each methods are chosen as the corresponding generalization errors.

Methods NeuralEE NeuralEE-SO EE tSNE UMAP PHATE PCA
Generalization error 0.0792 0.0848 0.0792 0.0917 0.0979 0.0993 0.3028

Optimal K 9 4 4 15/16 9 9 29
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Table S2. Hyperparameters selection. In most cases, default hyperparameters of corresponding algorithms are selected, while in the case of Fit-SNE on

BRAIN-LARGE, the selected hyperparameters follow the code of original paper, and in the case of net-SNE, the number of layers is set as 3, since if the

number of layers is set as default (2), it would be poor to approximate the mapping function in some cases (not show). In the case of NeuralEE-SO on large-scale

BRAIN-LARGE, batch size is set as 5000.

Algorithms Hyperparameters
ArtificialTree HEMATO CORTEX PBMC RETINA BRAIN-LARGE

NeuralEE
size = 1.0

lambda = 1
perplexity = 30

size = 1.0
lambda = 1

perplexity = 30

NeuralEE-SO
size = 0.25
lambda = 1

perplexity = 30

size = 0.25
lambda = 1

perplexity = 30

size = 5000
lambda = 1

perplexity = 30

EE
lambda = 1

perplexity = 30
lambda = 1

perplexity = 30
t-SNE perplexity = 30 perplexity = 30

FIt-SNE
perplexity = 30
max iter = 4000

stop early exag iter = 2000

net-SNE
perplexity = 30
num-layers = 3

perplexity = 30
num-layers = 3

UMAP
n neighbors = 15

min dist = 0.5
n neighbors = 15

min dist = 0.5
n neighbors = 15

min dist = 0.5

PHATE
a = 40
k = 5

a = 40
k = 5
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Table S3. Approximated memory consumption for some cases. It’s mainly allocated for the multiple batches of attractive and repulsive matrices, approximated
by DataSize×BatchSize× 4× 2/10243(GBytes). Lower batch size of stochastic optimization will enable applications on computers with limited memory.

DataSize BatchSize Memory consumption
10,000 10,000 0.745GB(PC)

100,000 10,000 7.45GB(PC)
1,000,000 10,000 74.5GB(WorkStation)
1,000,000 1,000 7.45GB(PC)
1,300,000 5,000 48.4GB(WorkStation)

2.2 Figures

Figure S1. Comparison of NeuralEE to other visualization methods, EE, t-SNE, UMAP, PHATE, scVI
and PCA, on (A) HEMATO data, (B) CORTEX data, (C) PBMC data and (D) RETINA data.
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Figure S2. Influence of different trade-off coefficient parameters (λ = 1, 10) on embedding. On (A)
ArtificialTree data, there is not significant difference between the two cases. And on (B) HEMATO data,
(C) CORTEX data, (D) PBMC data, (E) RETINA data, there is a little difference between the local
structure of two layouts, however the global structure maintains as the same. Furthermore, the layout of
λ = 10 presents more distributed than that of λ = 1 on the local structure.
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Figure S3. NeuralEE with the setting of different numbers of top gene retained. Exclude genes with low
expression variance, and retain the top genes. (A) CORTEX data. (B) HEMATO data. (C) PBMC data.
(D) RETINA data. To achieve more details on local structure of embedding for comparison, we set λ =
10, making layout more distributed. The structure maintains as the same among the setting of different
numbers of top gene retained.
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Figure S4. Embedding results based on 50 PCs or latent variables learned by scVI. (A) CORTEX data.
(B) HEMATO data. (C) PBMC data. (D) RETINA data.

8



Supplementary Material

Figure S5. (A) From left to right is, NeuralEE on the entire HEMATO data, NeuralEE based on the
sub-samples with sub-sampling scale as 25% and the mapping of all samples to the embedded space based
on the NN trained on sub-samples. (B) net-SNE under the similar experiments as (A). (C) NeuralEE and
(D) net-SNE under the similar experiments as (A) on PBMC data. (E) NeuralEE and (F) net-SNE under
the similar experiments as (A) on RETINA data.

Figure S6. (A) From left to right is, NeuralEE-SO on ArtificialTree data with batch scale as 100%, 50%,
25% and 10% respectively. NeuralEE-SO with batch scale as 100% actually is NeuralEE without stochastic
optimization. (B) net-SNE under the similar experiments as (A).
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Figure S7. The entire NeuralEE embedding on BRIAN-LARGE. Blue and enlarged dots are which we
manually delete to make layout tighter.
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