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S1 Scattering

The scattering problem is typically posed by applying a perturbation V (r) to the free particle

Hamiltonian p2

2m
as:

H =
p2

2m
+ λV (r), (S1)

where λ is the coupling parameter for the subsequent perturbation theory. The un-normalized

solution to Ĥ0ψ0(r) = E0ψ0(r) is

ψ0(r) = eık·r. (S2)

Perturbation theory is then applied through first order in λ to yield:

ψ(r) = ψ0(r) +
−2m

4π~2

∫
d3r′V (r′)ψ0(r′)

eık|r−r
′|

|r − r′|
+O[λ2]. (S3)

See, for example Eq. 7.1.9 of Ref.1

S1.1 Neutron scattering

Consider the atomic nucleus as a point scatterer as its dimensions are much smaller than the

neutron wavelength (Å scale). Mathematically for nucleus a the potential is approximated

as a Dirac delta function (δ) with magnitude va,

Va(r
′) = vaδ(r

′ − ra). (S4)

In analogy with classical scatterers, va can be rewritten as

va = ba
4π~2

2m
, (S5)

where ba functions as the classical scattering length.
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Evaluating Eq. S3 for ψ(r) at the detector position rD a distance rD away, yields:

ψ(r) ≈ eık·rD − ba
eık|rD−ra|

|rD − ra|
eık·ra . (S6)

Breaking down ψ(rD) in Eq. S6 yields a factor of eık·ra due to the phase accumulated by

the incoming neutron beam (this depends on the beam orientation k and the position of the

nucleus ra) and a factor due to the spherically scattered neutron eık|rD−ra|. The sign of the

phase of the scattered neutron may flip depending if the nuclear potential (va) is net repulsive

or attractive. Finally, the wavefunction of the scattered piece attenuates with the distance

from the nucleus to the detector. The eık·rD term represents the signal of the unscattered

neutron beam and dwarfs the scattered signal. The source neutron beam is limited so that

only scattered neutrons reach the detectors.

The point approximation of the potential of a single nucleus yields a spherically symmetric

scatterer; the amplitude is the same in all directions. The unit vector to a point on the

detector is r̂D. Later, this will also be described as the scattering direction, which for elastic

scattering, is

k′ = |k|r̂D = kr̂D. (S7)

Summing the scattering from multiple nuclei interfering at the detector reflects the inter-

nal geometry of the collection of nuclei in the sample. The sum is facilitated by approximating

the distance to the detector by:

|rD − ra| ≈ rD − r̂D · ra, (S8)
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valid for rD � ra. Accounting for a collection of nuclei {ra}, and to first order in r−1
D ,

ψ(rD) = − 1

rD
eıkrD

∑
a

bae
−ıkr̂D·raeık·ra

= − 1

rD
eıkrD

∑
a

bae
ı(k−k′)·ra , (S9)

where the second line follows from Eq. S7.

From Eq. S9, the interference between neutrons scattered from different sites a and b

depends on the difference (k−k′) · (rb−ra), not on the absolute value of k. For convenience

the vector q = k−k′ is defined to quantify this vector. The signal at the detector now only

depends on the nuclei of the sample, {ra} through q:

ψ(rD) = − 1

rD
eıkrD

∑
a

bae
ıq·ra , (S10)

|ψ(rD)|2 = (
1

rD
)2
∑
a,b

babbe
ıq·(ra−rb). (S11)

Only the magnitude, and not the interference pattern itself, depends on rD.

Given that scattering from the nucleus is equally likely in every direction it is worth

considering why the signal typically appears strongest along the beam path. In this case the

scattered wavevector k′ differs only slightly from k. Particles will interfere constructively at

the detector when

eı(k−k
′)·ra ≈ 1, (S12)

for the particles in the sample. This will be true, in general, for k − k′ much less than the

sample dimension. For sufficiently small k − k′, the finite spread of ra will only sample the

central maximum of eı(k−k′)·ra , leading to purely constructive interference. For larger k−k′,

the exponential will oscillate fast enough that the spread in ra can now sample minima

as well as maxima, leading to destructive interference and significantly less signal. Thus

the enhanced scattering at small angles reflects the lengthscale of the sample, and not an
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inherent likelihood of small momentum transfer.

λneutron

Sample

rD

q=      sin(   ) 4π      θ  
λneutron

2θ

rD

Interference
pattern
at detector

r1

r2

Figure S1: An idealized schematic of the SANS experiment. Not shown is the possibility of
the sign of the scattered wave reversing due to scattering (e.g., for hydrogen).

Shown in Fig. S1 is an idealization of the SANS experiment. The phase relevant to

interference at the detector can be computed from two paths. First, from the neutron source

to particle r1 the neutron accumulates phase eık·r1 before it scatters (relative to a particle

at the origin). It then undergoes elastic scattering such that |k′| = |k|. The scattered

neutron travels to the detector, accumulating phase factor e−ık′·r1 (also relative to a particle

scattering from the origin).

Whether the wavefunction at the detector is proportional to eıq·r or e−ıq·r is irrelevant.

This paper applies the convention e−ıq.
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S2 Solvent Subtraction

First let us consider a system of finite size in all dimensions and small enough to fit within

a single simulation box, such as a protein or micelle. For this system, the x-, y-, and

z-axes are interchangeable. Furthermore, all six sides of the simulation box (the periodic

boundaries) are located entirely in bulk solvent, which means the discontinuity in the neutron

scattering length density at the edge of the system is the same at every periodic boundary.

The symmetry allows the discontinuity to be removed using an analytical correction to the

scattering intensity expression. An arbitrary value can be subtracted from the neutron

scattering length density for all space without affecting the scattering intensity:

I(q) = lim
L→∞

∫
d3r1

∫
d3r2︸ ︷︷ ︸

from −L to L
in all dimensions

(β(r1) + βw)(β(r2) + βw)e−ıq·(r2−r1) (S13)

= lim
L→∞

1

(8L3)2

(∫
d3r1

∫
d3r2β(r1)β(r2)e−ıq·(r2−r1) + βw

2

∫
d3r1

∫
d3r2e

−ıq·(r2−r1)

+ 2

{
βw

∫
d3r1

∫
d3r2β(r2)e−ıq·(r2−r1)

})
(S14)

Terms with a factor equivalent to
∫ L
−L e

−ıq·r, for example,

βw

∫
d3r1e

−ıq·r1 d3r2e
−ıq·r2β(r2) (S15)

evaluate to be proportional to 2q−1 sin(Lq). That is, these terms oscillate with increasing

frequency around a zero mean as L grows large. This, naturally, is simply the scattering

from a very large shape whose size L, is reflected by the feature ∆q = 1
L
. For very large

samples, this is too small to be resolved and reduces to the average value, zero.

The case of a bilayer, simulated with periodic boundary conditions in z, makes it desirable

to not include the z periodic images, as they would spuriously contribute a feature from the
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perfect lamellar spacing. This results in a solvent discontinuity at the boundary. Since the

problematic discontinuity is caused by the non-physical neutron scattering length density of

“vacuum” outside of the simulation box, it makes sense to change the density in this region

(all space except for the interior of the simulation box) to the density of the bulk solvent.

If we then subtract the density of the bulk solvent (a constant) from all space, we only

affect the scattering intensity at I(0). This is mathematically equivalent to subtracting the

neutron scattering length density of the bulk solvent from just the interior of the simulation

box, while leaving the space outside of the simulation box untouched as vacuum. This

subtraction neatly brings the neutron scattering length density at the faces of the simulation

box to zero, creating a smooth transition from simulated system to vacuum. The subtraction

of this term can be resolved as separate integrals which are evaluated analytically.

I(q) =

∣∣∣∣∫ d3r(β(r)− βw)e−ıq·r
∣∣∣∣2 =

∣∣∣∣∫ d3rβ(r)e−ıq·r − βw

∫
d3re−ıq·r

∣∣∣∣2 , (S16)

I(q) =

∣∣∣∣∣∑
i

bie
−ıq·ri − βwV sinc

(
Lxqx

2

)
sinc

(
Lyqy

2

)
sinc

(
Lzqz

2

)∣∣∣∣∣
2

, (S17)

where Lx, Ly, and Lz are the x-, y-, and z-dimensions of the simulation box, and V = LxLyLz

is the volume of the simulation box.

S3 Mathematical supplement and justifications

S3.1 Auto-correlation function

The expression ∫ ∞
−∞

dzβ(z)β(z + ∆z) (S18)
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is equivalent to an auto-correlation function in space. Writing β(z) in terms of its Fourier

transform with the split (2π)−1 convention:

β(z) = (2π)−
1
2

∫ ∞
−∞

dqβ̃(q)eıqz (S19)

yields

∫ ∞
−∞

dzβ(z)β(z + ∆z) = (2π)−1

∫ ∞
−∞

dz

∫ ∞
−∞

dq′
∫ ∞
−∞

dq′′β̃(q′)β̃(q′′)eıq
′zeıq

′′zeıq
′′∆z,

= (2π)−1

∫ ∞
−∞

dq′
∫ ∞
−∞

dq′′β̃(q′′)β̃(q′)eıq
′′∆z

∫ ∞
−∞

dzeıq
′zeıq

′′z,

=

∫ ∞
−∞

dq′
∫ ∞
−∞

dq′′β̃(q′′)β̃(q′)eıq
′′∆zδ(q′ + q′′),

=

∫ ∞
−∞

dq′|β̃(q′)|2e−ıq′∆z. (S20)

where ∫ ∞
−∞

dzeıq
′zeıq

′′z = 2πδ(q′ + q′′), (S21)

and, since β̃ is a Fourier transform of a real function,

β̃(−q′) = β̃∗(q′). (S22)

S3.2 Derivation of orientational averaging of Dirac brush

The orientational average of the periodically replicated simulation cell is computed as:

1

4πq2

∫ q

−q
dq′x

∫ √q2−q′x2

−
√
q2−q′x2

dq′y

∫ √q2−q′x2−q′y2

−
√
q2−q′x2−q′y2

dq′zδ(q −
√
q′x

2 + q′y
2 + q′z

2)×

2π

Lx
III 2π

Lx
(q′x)

2π

Ly
III 2π

Ly
(q′y)|I0(q′x, q

′
y, q
′
z)|2,

(S23)

where |I0(q′x, q
′
y, q
′
z)|2 is the single unit cell amplitude squared. The leading normalization

1
4πq2 accounts for the q-dependence of transforming from an integral over angles to q vectors.
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The initial integral over qz is performed by using:

δ(g(q′z)) =
∑

q′z,0|g(q′z,0)=0

δ(q′z − q′z,0)

|g′(q′z,0)|
, (S24)

where g′ is the derivative of g and qz,0 is a root of g(qz). In this case g(q′z) = q −√
q′x

2 + q′y
2 + q′z

2 and g′(q′z) = − q′z√
q′x

2+q′y
2+q′z

2
. The Dirac delta function becomes

δ
(
q −

√
q′x

2 + q′y
2 + q′z

2
)

= q
δ(q′z −

√
q2 − q′x2 − q′y2) + δ(q′z +

√
q2 − q′x2 − q′y2)√

q2 − q′x2 − q′y2
. (S25)

For brevity, we rewrite this in terms of just the positive root, and label that root using the

unprimed qz =
√
q2 − q′x2 − q′y2:

δ
(
q −

√
q′x

2 + q′y
2 + q′z

2
)

= q
δ(q′z − qz) + δ(q′z + qz)

qz
. (S26)

The integral becomes:

π

LxLy

∫ q

−q
dq′x

∫ √q2−q′x2

−
√
q2−q′x2

dq′y III 2π
Lx

(q′x) III 2π
Ly

(q′y)
|I0(q′x, q

′
y, qz)|2 + |I0(q′x, q

′
y,−qz)|2

qqz
, (S27)

where qz retains its implicit dependence on q′x and q′y. The remaining comb functions now

select q′x and q′y such that they fall on a 2π
Lx
-by- 2π

Ly
-spaced grid, while the bounds of integration

constrain
√
q′x

2 + q′y
2 + q2

z ≤ q:

IΩ(q) =
π

LxLy

bqLx/2πc∑
m=d−qLx/2πe

⌊√
(Lyq/2π)2−(

Ly
Lx
m)2

⌋∑
n=

⌈
−
√

(Lyq/2π)2−(
Ly
Lx
m)2

⌉
I1(qx, qy, qz) + I1(qx, qy,−qz)

q qz
, (S28)

with unprimed qx = 2πm
Lx

and qy = 2πn
Ly

. Figure S2 illustrates the particular values of the

vector q = {qx, qy, qz} satisfying the constraints of the comb. In the limit q → 0, qz is equal
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Figure S2: An illustration of the {qx, qy, qz} vectors, with magnitude |q|, that satisfy the
constraints of the qx and qy comb functions. The grid lines cutting through the middle of
the sphere at qz = 0 show the values of qx and qy for which the comb is equivalent to the
Dirac delta function. The intersection of qx and qy grid lines are the points for which both
comb functions are valid. Tracking up or down in qz to the sphere of radius q provides the
value of qz.

to q, and 2πI1(0)
LxLy

reduces to 2π A
(2+1)N(2+1)M

b̄2. Removing the “per-unit-cell” normalization by

multiplying by (2 + 1)N(2 + 1)M yields the asymptotic expression, 2πAq−2b̄2, consistent

with lateral averaging.

S4 Explicit calculation of PFFT terms

The asymmetry in the integration domains imparts a conceptual asymmetry to the product of

binomials in the integrand. By expanding the product, we can consider each term separately.

IΩ(q) =

∫
cell

d3r1

∫
z2∈cell

d3r2

(
βsys(r1)βsys(r2)︸ ︷︷ ︸

I

− βwβsys(r1)︸ ︷︷ ︸
II

− βwβsys(r2)︸ ︷︷ ︸
III

+ βw
2︸︷︷︸

IV

)
sinc(q|r1−r2|).

(S29)

Each term corresponds to a specific correlation between two regions.

• I Correlations between a single cell of the simulation and the infinite bilayer model

(both particulate and continuum models contribute to this term).
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• II Correlations between a single cell of the simulation and the infinite solvent back-

ground.

• III Correlations between a single cell of solvent background and the infinite bilayer

model.

• IV Correlations between a single cell of solvent background and the infinite solvent

background.

The first step in evaluating any of the terms is to define r∆ = r2−r1 and use this to rewrite

the r2 integration in terms of r∆.

IΩ(q) =

∫
cell

d3r1

∫
z∆+z1∈cell

d3r∆

(
βsys(r1)βsys(r∆ + r1)︸ ︷︷ ︸

I

− βwβsys(r1)︸ ︷︷ ︸
II

− βwβsys(r∆ + r1)︸ ︷︷ ︸
III

+ βw
2︸︷︷︸

IV

)
sinc(qr∆).

(S30)

In term I, the system will be decomposed into the near-field and far-field models to

exclude unphysical long-range correlations. The PFFT cutoff defines a cylindrical region

around each scattering element. This region needs to be recentered on each scatterer exactly

once, so βsys(r1) is used for the reference elements to limit that integration domain to one

instance of the simulation cell. Since the reference element is trivially always within the

PFFT cutoff, the particulate form is substituted.

II(q) =

∫
cell

d3r1

∫
z∆+z1∈cell

d3r∆βpart(r1)βsys(r∆ + r1) sinc(qr∆). (S31)

The domain of the r∆ integral can be divided into two regions by the PFFT cylinder around

r1. The cylinder has radius rc and extends from the lower boundary of the simulation cell to

the upper boundary. When integrating over these two regions separately, the term integrating

inside the cylinder will be labeled Ia, and the term integrating outside the cylinder will be

labeled Ib. In the interior region, βsys(r∆ + r1) will take the particulate form, and in the
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exterior region it will take the continuum (LA) form.

II(q) =

∫
cell

d3r1βpart(r1)

(∫
r∆∈cyl

d3r∆βpart(r∆ + r1) sinc(qr∆)︸ ︷︷ ︸
Ia

+

∫
r∆ /∈cyl

z∆+z1∈cell

d3r∆βLA(z∆ + z1) sinc(qr∆)︸ ︷︷ ︸
Ib

)
.

(S32)

For term Ia, the explicit form for βpart from is used to evaluate the integral.

IIa(q) =

∫
cell

d3r1

(∑
i

biδ(r1 − ri)

)∫
r∆∈cyl

d3r∆

(∑
j

bjδ(r∆ + r1 − rj)

)
sinc(qr∆),

(S33)

IIa(q) =
∑
i∈cell
j∈cyl

bibj sinc(q|rj − ri|). (S34)

Alternatively, the r∆ integration may be delayed and reduced to a one-dimensional integral

(the motivation will become clear after the other terms are discussed):

IIa(q) =
∑
i∈cell
j∈cyl

bibj

∫ ∞
0

dr∆δ(r∆ − |rj − ri|) sinc(qr∆). (S35)

For term Ib, the explicit form for βpart(r1) will again be substituted into the expression

IIb(q) =
∑
i∈cell

bi

∫
r∆ /∈cyl

z∆+zi∈cell

d3r∆βLA(z∆ + zi) sinc(qr∆). (S36)

The integrand can be partially evaluated by expressing r∆ in spherical polar coordinates,

such that z∆ = r∆ cos(φ). The integration over the azimuth angle trivially yields a factor of

2π.

IIb(q) = 2π
∑
i∈cell

bi

∫ ∞
rc

dr∆

∫ min[φ+,π−φc]

max[φ−,φc]

dφβLA(r∆ cos(φ) + zi)r∆
2 sin(φ) sinc(qr∆), (S37)
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where the φ integration bounds have been chosen to observe both constraints on the inte-

gration domain, all points outside the rc cylindrical cutoff (r∆ sin(φ) > rc, which implies

φc < φ < π − φc) but still inside the upper and lower boundaries of the simulation cell

(φ− < φ < φ+), where φc corresponds to the minimum angle to exceed the rc cutoff and φ−

and φ+ correspond to the the upper and lower boundaries of the simulation cell, z+ and z−:

φc = arcsin(rc/r∆), (S38)

φ∓ = arccos((z± − zi)/r∆). (S39)

Optionally, another change-of-variables may make this expression more intuitive. With z2 =

r∆ cos(φ) + zi, we can change the φ integral back into a z integral:

IIb(q) = 2π
∑
i∈cell

bi

∫ ∞
rc

dr∆

∫ min[z+,zi+
√
r∆2−rc2]

max[z−,zi−
√
r∆2−rc2]

dz2βLA(z2)r∆ sinc(qr∆). (S40)

With term II, the particulate form will no longer be used. In isolation, the term is

expressed:

III(q) = −βw

∫
cell

d3r1

∫
z∆+z1∈cell

d3r∆βsys(r1) sinc(qr∆). (S41)

The r∆ integration is performed in spherical polar coordinates with the same definitions

used above in term Ib:

III(q) = −2πβw

∫
cell

d3r1

∫ ∞
0

dr∆

∫ φ+

φ−

dφr∆
2 sin(φ)βsys(r1) sinc(qr∆). (S42)

The integrand has no dependence on x1 and y1 outside of βsys(r1), which allows us to use

the definition of βLA(z) from to resolve the integration over those variables.

III(q) = −2πLxLyβw

∫ z+

z−

dz1

∫ ∞
0

dr∆

∫ φ+

φ−

dφr∆
2 sin(φ)βLA(z1) sinc(qr∆). (S43)
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The φ integration is straightforward, yielding a factor of z+ − z− = Lz.

III(q) = −2πLxLyLzβw

∫ z+

z−

dz1

∫ ∞
0

dr∆r∆βLA(z1) sinc(qr∆). (S44)

Term III is conceptually different from term II because term II represented finite system

and infinite solvent while term III represents finite solvent and infinite system. However,

recall that the scattering intensity per simulation cell was derived from the total scattering

by limiting one of the integration domains to a single simulation cell. For a finite number of

cells (N), consider the relation

IΩ(q) =

∫
1cell

d3r1

∫
Ncells

d3r2f(r1, r2) =
1

N

∫
Ncells

d3r1

∫
Ncells

d3r2f(r1, r2)

=

∫
Ncells

d3r1

∫
1cell

d3r2f(r1, r2) =

∫
Ncells

d3r2

∫
1cell

d3r1f(r2, r1),

where the 1/N division is applied to the r2 integration instead of r1, and the labels are

swapped at the end. Since terms II and III differ only in having swapped variables in the

integrand, the above relation shows that they are equivalent:

IIII(q) = III(q). (S45)

Term IV has the simplest evaluation, since both density factors are constant.

IIV(q) = βw
2

∫
cell

d3r1

∫
z∆+z1∈cell

d3r∆ sinc(qr∆). (S46)

The r∆ integration is again expressed in spherical polar coordinates, and the φ integral is

S15



again resolved to a factor of Lz.

IIV(q) = 2πβw
2

∫
cell

d3r1

∫ φ+

φ−

dφ
∫ ∞

0

dr∆r∆
2 sin(φ) sinc(qr∆) (S47)

= 2πLzβw
2

∫
cell

d3r1

∫ ∞
0

dr∆r∆ sinc(qr∆). (S48)

The integrand has no dependence on r1, so that integral contributes a factor of LxLyLz:

IIV(q) = 2πLxLyLz
2βw

2

∫ ∞
0

dr∆r∆ sinc(qr∆). (S49)

To summarize, the full set of terms is expressed below.

IIa(q) =
∑
i∈cell
j∈cyl

bibj sinc(qr∆) =
∑
i∈cell
j∈cyl

bibj

∫ ∞
0

dr∆δ(r∆ − |rj − ri|) sinc(qr∆), (S50)

IIb(q) = 2π
∑
i∈cell

bi

∫ ∞
rc

dr∆

∫ min[φ+,π−φc]

max[φ−,φc]

dφβLA(r∆ cos(φ) + zi)r∆
2 sin(φ) sinc(qr∆), (S51)

III(q) = IIII(q) = −2πLxLyLzβw

∫ z+

z−

dz1

∫ ∞
0

dr∆r∆βLA(z1) sinc(qr∆), (S52)

IIV(q) = 2πLxLyLz
2βw

2

∫ ∞
0

dr∆r∆ sinc(qr∆). (S53)

All of these terms involve an integration over r∆ (using the alternative form of term Ia).

S5 Scattering lengths used for Martini beads
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Table S1: Scattering lengths used to model Martini lipids. For the matrix lipids, the middle
two acyl beads (e.g., C2, D3) use the scattering of ’D’ beads, regardless of identity.

Martini atom Scattering length (10−12cm)
NC3 -0.5158
PO4 2.672
GL 1.88805
C -0.3332
D 0.4152
W -0.672
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