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Transparent Methods

Algorithm of adaptive IL-2 dose calculation

In the following, the steps toward calculation of adaptive doses of IL-2 using iZMPC are explained.
Consider the nonlinear system

dx(t)

dt
= f (x(t)) , (S1)

where x ∈ Rn is the vector of system dynamics (here, x = [T,R, I]). Suppose u ∈ R is the drug dose (here, dIL−2)
which affects the system at the discrete time intervals τi, i = 1, 2, by sudden changes in the state variables

∆x(τi) = x(τ+i )− x(τi) = Bu, (S2)

where τ+i denotes the time instant after τi. B ∈ Rn models the impact of u on the states, and the amplitude of the
sudden pulses at τi is equal to Bu. We assume equidistant pulses, i.e., τi+1 − τi = δ, i = 1, 2, .... Thus the full system
is modeled in the template of nonlinear impulsive systems (Yang, 2001) as an augmentation of equations (S1) and
(S2).

Depending on the considered biological framework, different constraints may arise; e.g., drug doses are constrained
within the physiologically approved limits and also states should be kept within their functional regions. With

U = {u : u 6 u 6 ū},
X = {x : x 6 x 6 x̄},

and an arbitrary target set X Tar ⊂ X (therapeutic target window), the aim is to compute u ∈ U to force x moving
from its initial value x(0) to a point in X Tar. Calculation of u is based on the iZMPC (Sopasakis et al., 2015). In
what follows, we delineate the preliminary steps toward using iZMPC. A detailed description, the mathematical basis
of the steps and some other biological application of iZMPC can be found in (Rivadeneira et al., 2015, 2016; González
et al., 2017; Rivadeneira et al., 2017).

Step 1: finding equilibrium points (xs, ueq)
Augmented system of (S1) and (S2) can be reformulated as ẋ = f(x) + Buδd(t− τi) where δd(t− τi) is the Dirac
delta function

δd(t− τi) =

{
+∞, t = τi
0, t 6= τi

Assume continuous delivery of the drug and calculate u = ueq ∈ U and xs satisfying the steady state condition
f(xs) +Bueq = 0.

Step 2: finding equilibrium levels (xs, us)
Find u = us such that the impulsive system (augmented equations (S1) and (S2)) with ∆x = Bus and impulse
frequency δ reaches almost the same equilibrium level as xs. Note that, different δ result in different us.

Step 3: linearization

Calculate A = ∂f(x)
∂x at x = xs.

Step 4: shift constraints

Calculate shifted sets Uo = U − us, Xo = X − xs and X Taro = X Tar − xs.

Step 5: feasible generalized control equilibrium zone (set)
Compute two new sets X ◦s and X •s such that

X ◦s , {x ∈ Xo : x = G◦u for some u ∈ Uo},
X •s , {x ∈ Xo : x = G•u for some u ∈ Uo},

where
G◦ = (In −Ae)−1B◦, Ae = eδA, B◦ = B,

G• = (In −Ae)−1B•, B• = eδAB,
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and In is the identity matrix of dimension n. X ◦s and X •s implicitly generate the input equilibrium set

Us , {u ∈ Uo : (G◦u,G•u) ∈ (X ◦s ,X •s )}.

Step 6: generalized equilibrium zone (set)

Compute X ◦s
Tar , X ◦s ∩ X Taro and X •s

Tar , X •s ∩ X Taro . Correspondingly, we can obtain UTars , {u ∈ Uo :
(G◦u,G•u) ∈ (X ◦s

Tar,X •s
Tar)}. If X ◦s

Tar or X •s is empty, the control problem is not properly formulated and X Tar
must be increased or δ should be decreased. There is a free set computation toolbox ”mpt3” in MATLAB which can
be downloaded at http://people.ee.ethz.ch/mpt/3/.

Step 7: MPC input
At each t = τi, we use the current state of the system of augmented equations (S1) and (S2) x and provide x− xs as
input to the iZMPC algorithm (see Step 8) which determines u.

Step 8: iZMPC problem
MPC is a finite time-horizon optimization problem which receives the current state of the system and returns
U = {u(0),u(1), ...,u(N − 1)} (with N the control horizon). It predicts the next N states of the system using the
sampled current state and calculates the next N control actions (here, IL-2 doses). Only the first calculated input, i.e.
u(0) is applied to the system and this process is repeated at every sampling time.

iZMPC is an MPC which at each impulse τi, i = 1, 2, ... (i.e., the sampling times) takes x(τi) and calculates U
for the impulsive system. Note that, iZMPC is mainly developed for linear impulsive systems. Using the method of
linearization around equilibrium levels makes it possible to apply iZMPC to linearized impulsive systems which are
originally nonlinear. In the case that errors due to linearization are not acceptable, one may have to stretch out for
nonlinear impulsive MPC (Rivadeneira et al., 2017).

The optimization problem to be solved at each τi by iZMPC is given by

min
U,xa,ua

VN

(
x− xs,Xo,Uo,X •s

Tar,U•s
Tar; U, xa, ua

)
subject to

x•(0) = x− xs,
x•(j + 1) = Aex

•(j) +B•u(j), j = 1, 2, ..., N − 1

x•(j) ∈ Xo, u(j) ∈ Uo, j = 1, 2, ..., N − 1

x•(N) = xa,

xa = Aexa +B•ua, or ((xa, ua) ∈ (X •s ,Us)) ,

(S3)

where
VN

(
x− xs,Xo,Uo,X •s

Tar,U•s
Tar; U, xa, ua

)
=

N−1∑
j=0

(x•(j)− xa)
T Q (x•(j)− xa) + (u(j)− ua)

T R (u(j)− ua)

+P
(

distTarX•
s

(xa) + distUTar
s

(ua)
)
,

and Q, R and P are positive definite matrices and positive numbers respectively. The transit behavior of the system
under iZMPC can be tuned using these weighting matrices and parameters. In addition, distY(x) = miny∈Y‖x− y‖.

Note that, x − xs,Xo,Uo,X •s
Tar,U•s

Tar are given parameters in the optimization problem, whereas U =
{u(0),u(1), ...,u(N − 1)}, xa and ua are the optimization variables. When the iZMPC problem (S3) is solved,
the optimal drug dose u in the system of augmented equations (S1) and (S2) (or dIL−2 in (3)) is obtained by
u = u(0) + us.
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