- 1 FaRAV1 positively regulates anthocyanin accumulation
- 2 Supplemental Data

4 Supplemental Figure S1. Phylogenetic tree analysis of strawberry AP2/ERF proteins and related AP2/ERF TFs from apple and pear. Those ERFs that activated FaMYB10 5 promoter are denoted in red, which repressed FaMYB10 promoter are denoted in 6 green. Arrows indicted that the five ERFs which have been characterized in 7 anthocyanin biosynthesis in apple and pear. NCBI accession numbers of related 8 AP2/ERF TFs in apple and pear are as follows: MdERF1B (XM 008342898.2), 9 MdERF38 (XM 029104540.1), PyERF3 (MF489220), Pp4ERF24 (XM 009335420.2) 10 and Pp12ERF96 (XM 009370895.2). 11

2.0

13

Supplemental Figure S2. Phylogenetic analysis of FaRAV1 and 34 other RAV 14 proteins. All the sequences were obtained from the NCBI database. FaRAV1 is 15 denoted in red. NCBI accession numbers: Fragaria × ananassa FaRAV1 16 17 (XM 011466945.1), FaRAV2 (XM 004309888.2), FaRAV3 (XM 004301388.2), FaRAV4 (XM 004296255.2), FaRAV5 (XM 011469524.1), FaRAV6 18 19 (XM 004297092.2), Arabidopsis thaliana AtRAV1 (At1g13260), AtRAV1-like (At3g25730), AtTEM1 (At1g25560), AtTEM2 (At1g68840), AtRAV3 (At1g50680), 20 21 AtRAV3L (At1g51120), Solanum lycopersicum SlRAV1 (XM 004236951.3), 22 SIRAV2 (XM 001320461.1), SIRAV3 (XM 010319814.1), Malus × domestica MdRAV1 (MDP0000939633), MdRAV2 (MDP0000128924), MDP0000945267, 23 24 MDP0000321569, MDP0000223137, MDP0000153589, MDP0000165802, 25 MDP0000534780, MDP0000526584, MDP0000485280, MDP0000207722, Oryza OsRAV1 (Os01g04800.1), OsRAV2 (Os01g04750.1), OsRAV3 26 sativa

27 (Os05g47650.1), OsRAV4 (Os01g49830.1), *Populus trichocarpa* PtRAV1
28 (XP_002315958.2), PtRAV2 (XP_002304025.1), PtRAV3 (XP_024446356.1),
29 PtRAV4 (XP_024458800.1), PtRAV5 (XP_002311438.2).

Supplemental Figure S3. Subcellular localization of FaRAV1. *FaRAV1* was inserted into the pCAMBIA1300-sGFP vector and transiently expressed in tobacco leaves. The GFP fluorescence indicated the localization of *FaRAV1*. The tobacco was stably transformed with a specific nucleus-localized red fluorescent protein, mCherry and the red fluorescence indicated the nucleus-localized signal (NLS). Bars = 50 μ m.

40 Supplemental Figure S4. The appearance of *FaRAV1* overexpression fruit (right) 9 d

41 after injection, compared to the control (left).

Statistics of pathway enrichment

Figure S5. PEGG analysis of DEGs between *FaRAV1* OE fruit and control fruit.

46

47 **Supplemental Figure S6.** RT-qPCR analysis of *FaRAV1* expression in response to 48 ABA treatment in strawberry fruit. Detached fruit slices at the green stage were 49 treated with different concentrations of ABA for 1 or 6 h and then *FaRAV1* expression 50 was tested. Error bars are the SE of three biological replicates. Asterisks denote 51 significant differences using Student's t test, **P*<0.05, ***P*<0.01.

52

54

55 **Supplemental Figure S7.** Yeast two-hybrid analysis of the interactions between 56 FaRAV1 and FaMYB10. FaRAV1 and FaMYB10 were separately fused into 57 pGADT7 and pGBKT7 vectors. pGBKT7-p53 and pGBKT7-T were used as positive 58 control, while pGBKT7-Lam and pGBKT7-T were used as negative control. 59 Protein-protein interactions were detected on SD medium lacking Leu, Trp, His and 60 Ade, with AbA²⁰⁰ and X- α -Gal.

61

Supplemental Figure S8. *Cis* regulatory elements in promoters of anthocyanin
biosynthetic genes. Putative AP2/ERF binding sites: CAACA motif, GCC box
(A/GCCGCC), CACCTG motif are indicated in the promoter regions of genes
encoding the anthocyanidin synthase.

Supplemental Figure S9. Relative expression of *RAP* in *FaRAV1* OE and RNAi fruit compared with the control fruit. Asterisks denote significant differences using Student's t test, **P < 0.01.

Supplemental Figure S10. Regulatory effect of FaRAV1 on the promoter of *RAP*.

Gene	Forward (5'-3')	Reverse (5'-3')
FaRIB413	ACCGTTGATTCGCACAATTGGTCATCG	TACTGCGGGTCGGCAATCGGACG
FaRAVI	AGAGCGCATTCCAAAGTCAG	CACAATCCCCTGTTCCTTCA
FaMYB10	AGACGGCTTCATACGCAAAGA	ATGAAGGTTCGTGGTCGAGG
CHS	GGCTCACCGTCGAGACCG	GGAGAAGATCACTCGAATCA
CHI	GCCGGAAATGGGAAAGTG	GCTCAGTTTCATGCCTTGAC
F3H	CCCTAAGGTGGCCTACAACCAAT	CTTCTTGCAAATCTCAGCGC
DFR	CACGATTCACGACATTGCGAAATT	GAACTCAAACCCCATCTCTTTCAGCTT
ANS	GAAGTGCGTACCCAACTCCATCGT	ACCTTCTCCTTGTTGACGAGCCC
GTI	CCTGGCGCATGGTTCAGT	CGAGTTCCAACCGCAATGT
RAP	GCTACTACTGCTCGATCACC	TGAAGAGACTCGCAAAAGACA
FaRAVI-RNAi	TGGGAGCGGAGATTACATTC	TGGTGAAATACGAAAGGCTGT

Supplemental Table S1. Primers used for reverse transcription quantitative PCR.

Primer name	Sequence (5'-3')		
LUC:`			
FaMYB10pro-LUC-FP-BamHI	CAGCCCGGG <u>GGATCC</u> AAAAAATGGTACAATTAAG		
FaMYB10pro-LUC-RP-NcoI	TGGCGTCTT <u>CCATGG</u> GAAAATTAAGCAGATTTC		
CHSpro-LUC-FP-BamHI	CAGCCCGGG <u>GGATCC</u> GAAAATTAAAATGGTGGGGGG		
CHSpro-LUC-RP-NcoI	TGGCGTCTT <u>CCATGG</u> TTTGATTTCTCAGAGAAGTG		
CHIpro-LUC-FP-BamHI	CAGCCCGGG <u>GGATCC</u> CATTTTCCCGGAGAGATG		
CHIpro-LUC-RP-NcoI	TGGCGTCTT <u>CCATGG</u> TTGATTTTCTTGGTTTTG		
F3Hpro-LUC-FP-BamHI	CAGCCCGGG <u>GGATCC</u> GCAATGATTGCCTATAATTA		
F3Hpro-LUC-RP-NcoI	TGGCGTCTT <u>CCATGG</u> TCTGATATATGCTCTCTAGC		
DFRpro-LUC-FP-BamHI	CAGCCCGGG <u>GGATCC</u> TTGCCCCCAACAAAGGAATT		
DFRpro-LUC-RP-NcoI	TGGCGTCTT <u>CCATGG</u> GCCTAGCTAGTTAGTGCCGT		
ANSpro-LUC-FP-BamHI	CAGCCCGGG <u>GGATCC</u> AACTCCGATCCCGAACAAGT		
ANSpro-LUC-RP-NcoI	TGGCGTCTT <u>CCATGG</u> TGTCGCTTCTAGCTATAGCT		
GT1pro-LUC-FP-BamHI	CAGCCCGGG <u>GGATCC</u> CACATTCTTGTACTGAACTT		
GT1pro-LUC-RP-NcoI	TGGCGTCTT <u>CCATGG</u> TTCTAGCTAGTCAAGCTACT		
RAPpro-LUC-FP-BamHI	CAGCCCGGG <u>GGATCC</u> CAGGAGACTTCGTCGTCGGA		
RAPpro-LUC-RP-NcoI	TGGCGTCTT <u>CCATGG</u> TATAGCCACCTGAAAACCTC		
pAbAi:			
FaMYB10pro-pAbAi-FP-SacI	AAGCTTGAATTC <u>GAGCTC</u> AAAAAAATGGTACAATTAAG		
FaMYB10pro-pAbAi-RP-XhoI	AGCACATGC <u>CTCGAG</u> GAAAATTAAGCAGATTTC		
CHSpro-pAbAi-FP-SacI	AAGCTTGAATTC <u>GAGCTC</u> GAAAATTAAAATGGTGGGGG		
CHSpro-pAbAi-RP-XhoI	AGCACATGC <u>CTCGAG</u> TTTGATTTCTCAGAGAAGTG		
CHIpro-pAbAi-FP-SacI	AAGCTTGAATTC <u>GAGCTC</u> CATTTTCCCGGAGAGATG		
CHIpro-pAbAi-RP-XhoI	AGCACATGC <u>CTCGAG</u> TTGATTTTCTTGGTTTTG		
F3Hpro-pAbAi-FP-SacI	AAGCTTGAATTC <u>GAGCTC</u> GCAATGATTGCCTATAATTA		
F3Hpro-pAbAi-RP-XhoI	AGCACATGC <u>CTCGAG</u> TCTGATATATGCTCTCTAGC		
DFRpro-pAbAi-FP-SacI	AAGCTTGAATTC <u>GAGCTC</u> TTGCCCCCAACAAAGGAATT		

78 Supplemental Table S2. Primers used for vector construction.

DFRpro-pAbAi-RP-XhoI	AGCACATGC <u>CTCGAG</u> GCCTAGCTAGTTAGTGCCGT
ANSpro-pAbAi-FP-SacI	AAGCTTGAATTC <u>GAGCTC</u> AACTCCGATCCCGAACAAGT
ANSpro-pAbAi-RP-XhoI	AGCACATGC <u>CTCGAG</u> TGTCGCTTCTAGCTATAGCT
GT1pro-pAbAi-FP-SacI	AAGCTTGAATTC <u>GAGCTC</u> CACATTCTTGTACTGAACTT
GT1pro-pAbAi-RP-XhoI	AGCACATGC <u>CTCGAG</u> TTCTAGCTAGTCAAGCTACT
GFP:	
FaRAV1-GFP-FP-KpnI	GACGAGCTC <u>GGTACC</u> ATGTCGATAGATCTCAGTTC
FaRAV1-GFP-RP-Sall	GCTCACCATGTCGACACCACTAATCTGAACACCAA
pGADT7:	
FaRAV1-AD-FP-EcoRI	GAGGCCAGT <u>GAATTC</u> ATGTCGATAGATCTCAGTT
FaRAV1-AD-RP-BamHI	GAGCTCGAT <u>GGATCC</u> TTAACCACTAATCTGAACAC
FaMYB10-AD-FP-EcoRI	GAGGCCAGT <u>GAATTC</u> ATGGAGGGTTATTTCGGT
FaMYB10-AD-RP-BamHI	GAGCTCGAT <u>GGATCC</u> TCATACGTAGGAGATGTTGA
pGBKT7:	
FaRAV1-BD-FP-EcoRI	ATGGAGGCC <u>GAATTC</u> ATGTCGATAGATCTCAGTT
FaRAV1-BD-RP-BamHI	CAGGTCGAC <u>GGATCC</u> TTAACCACTAATCTGAACAC
FaMYB10-BD-FP-EcoRI	ATGGAGGCC <u>GAATTC</u> ATGGAGGGTTATTTCGGT
FaMYB10-BD-RP-BamHI	CAGGTCGAC <u>GGATCC</u> TCATACGTAGGAGATGTTGA
SK:	
FaRAV1-SK-FP-BamHI	TAGAACTAGT <u>GGATCC</u> ATGTCGATAGATCTCAGTT
FaRAV1-SK-RP-EcoRI	GCTTGATATC <u>GAATTC</u> TTAACCACTAATCTGAACAC
PET:	
FaRAV1-PET-FP-BamHI	GCTGATATCGGATCCATGTCGATAGATCTCAG
FaRAV1-PET-RP-NotI	TTGTCGACG <u>GCGGCCGC</u> ACCACTAATCTGAACAC
RNAi:	
FaRAV1-FP1-pSK	GCT <u>CTCGAGTCTAGA</u> ATGTCGATAGATCTCAGTTC
FaRAV1-RP1-pSK	CAC <u>AAGCTT</u> GACACATTCATACACAATCC
FaRAV1-FP2-pSK	GGT <u>GGATCC</u> ATGTCGATAGATCTCAGTTC
FaRAV1-RP2-pSK	CACGAATTCGACACATTCATACACAATCC

EMSA:	
Probe-FP-biotin	AGGGTGGGGACTCGACAGCAACAAGCTAACTTCCACATGCAATGGATCGAAAT
Probe-RP-biotin	ATTTCGATCCATTGCATGTGGAAGTTAGCTTGTTGCTGTCGAGTCCCCACCCT
Probe-FP	AGGGTGGGGACTCGACAGCAACAAGCTAACTTCCACATGCAATGGATCGAAAT
Probe-RP	ATTTCGATCCATTGCATGTGGAAGTTAGCTTGTTGCTGTCGAGTCCCCACCCT
Mutant-Probe-FP-biotin	AGGGTGGGGACTCGACAGTTTTTAGCTAACTTCCACATGCAATGGATCGAAAT
Mutant-Probe-RP-biotin	ATTTCGATCCATTGCATGTGGAAGTTAGCTAAAAACTGTCGAGTCCCCACCCT

- 79 Note: Added restriction enzyme sites are underlined.
- 80

81 Supplemental Table S3. Motifs in the FaRAV1 promoter identified in silico by

62 FIAIIICARE.

Elements	Sequences	Sites (+) = current strand;	Putative functions
		(-) = opposite strand	
ABRE	ACGTG	1412 (-), 1243 (-)	Cis-acting element involved in the abscisic acid
			responsiveness
AE-box	AGAAACAA	1504 (+)	Part of a module for light response
ARE	AAACCA	1470 (+)	Cis-acting regulatory element essential for the anaerobic
			induction
AT-rich element	ATAGAAATCAA	589 (+)	Binding site of AT-rich DNA binding protein (ATBP-1)
AuxRR-core	GGTCCAT	425 (+)	Cis-acting regulatory element involved in auxin
			responsiveness
Box 4	ATTAAT	1216 (-)	Part of a conserved DNA module involved in light
			responsiveness
CAAT-box	CAAAT, CCAAT	949 (-), 1743 (+), 247 (+),	Common cis-acting element in promoter and enhancer
		504 (+)	regions
CAT-box	GCCACT	368 (-)	Cis-acting regulatory element related to meristem
			expression
CGTCA-motif	CGTCA	1007 (+)	Cis-acting regulatory element involved in the
			MeJA-responsiveness
G-box	CACGTC	1243 (+), 1412 (+)	Cis-acting regulatory element involved in light
			responsiveness
I-box	AAGATAAGGCT	1098 (-)	Part of a light responsive element
MRE	AACCTAA	1482 (-)	MYB binding site involved in light responsiveness
P-box	CCTTTTG	782 (+), 1519 (+)	Gibberellin-responsive element
TGACG-motif	TGACG	1007 (-)	Cis-acting regulatory element involved in the
			MeJA-responsiveness