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Knowledge Graph Edge description

Summary of graph relationships shown below:

Gene Disease GOProcess
Gene Protein-Protein Interaction

(PPI) from Biogrid, SigNOR,
KEGG and Reactome

Disease 1. Biological Association
from the GWAS CATALOG,
ChEMBL, DisGeNET and
from EAT. 2. Therapeu-
tic Relationship (benchmark)
from CTD, KEGG, OMIM,
and LTE

Pathway Biological Association from
KEGG and Reactome

Mechanistic Connection in-
ferred from gene sets ex-
tracted from KEGG and Re-
actome combined with EAT
Disease-Gene edges

Compound Experimental Evidence from
ChEMBL (binding relations
with PChEMBL value >= 7)

Therapeutic Link from In-
tegrity (compounds tested in
preclinical phases or above)

GOProcess 1. Biological Association
constructed from unstruc-
tured data, SVOs, and expert
annotations. 2. Therapeutic
Link constructed from expert
annotations

Mechanistic Connection
association extracted from
gene set enrichment analyses
from eDGAR and CTD.

Biological Association ex-
tracted from GO (is a, regu-
lates, part of, negatively reg-
ulates, positively regulates)

Table 1. Summary of graph edges
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Relationship type EdgeCount
GO process_GO process Biological Association 143,490

Gene protein-disease Biological Association 443,330

Gene protein-GO process Biological Association 255,265

Disease-compound Therapeutic Link 13,919

Disease-pathway Mechanistic Connection 348,001

Disease-GO process Biological Association 76,587

Gene protein-pathway Biological Association 133,872

Gene protein-gene protein Interaction (PPI) 629,357

Gene protein-disease Therapeutic Relationship 128,018

Gene protein-GO process Therapeutic Link 129,382

Gene protein-compound Experimental Evidence 331,852

Table 2. Summary of Edge count by Relationship type

Entity type Count
Compound 261,812

Disease 9,972

GOProcess 29,699

GeneProtein 18,582

Pathway 2,526

Table 3. Knowlege Graph Entity Count
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Test datasets for various analyses

Below are the details of the relations, number of test edges and number of test diseases used for the analyses

presented here.

Analysis Fig/Subplot Data splits Test relation Test Edge# Test Disease#
Full Rosalind N/A Disease-Gene Therapeutic

Relationship
24755 3722

State-of-the-art: De-
coders and Dropout

Fig 3 A&B Train-60%
Valid-20%
Test-20%

Disease-Gene Therapeutic
Relationship

4613 198

State-of-the-art:
Comparison

Fig 3 C&D Train-60%
Valid-20%
Test-20%

Disease-Gene Therapeutic
Relationship

1390 198

Time-slicing: Time-
band

Fig 4C & 4D Train-60%
Test-40%

Disease-Gene Therapeutic
Relationship

1990 13183 1830
1995 26638 2617
2000 28407 3116
2005 20079 3082
2010 11597 2776
2015 2974 1261

Time-slicing: For-
ward Prediction

4E Train-60%
Valid-20%
Test-20%

Disease-Gene Therapeutic
Relationship

3058 184

Clinical Outcome
Prediction: Failure

5A/5D Train-60%
Valid-20%
Test-20%

Clinical Trial Failure 265 155

Clinical Outcome
Prediction: Success

5B/5E Train-60%
Valid-20%
Test-20%

Clinical Trial Success 542 338

Table 4. Details of test datasets for various analyses
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Rosalind comparison with Jones et al. results

A TNFα B TNFα C Poly (I:C) D Poly (I:C)

Figure 1. Performance of Rosalind Assay hits compared to the efficacy of targets in Jones et al. A Percent reduction by
cytokine across our assay hits (colored circles) under TNFα stimulation. Black bars indicate the average percent reduction
across the four target-compound pairs provided in the Supplementary Information of Jones et al.: JNKi-JNK-IN-8,
p38i-PH797804, IKKi-IKK16, JAKi-tofacitinib. B Distribution of efficacy across cytokines for Rosalind hits versus Jones et al.
targets. Plots C-D show the same comparison for Poly(I:C) stimulation.
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State-of-the-art Algorithm Comparison, Additional Metrics
Reported below are the mean average precision at rank 500 (mAP@500) and recall at rank 200 (recall@200)

performance numbers. Note that in the state-of-the-art comparison, we focus only on recall. We have included mAP

here to provide additional information about Rosalind’s relative performance, but, as we have mentioned in the

manuscript, we do not believe mAP to be a reliable performance metric for these analyses.

Algorithm mAP@500 Recall@200 Full Recall@200 RA
Rosalind* 5.19 61.52 57.12
Open Targets 2.79 42.96 41.67

SCUBA 0.72 21.66 18.42

MACAU 2.89 21.87 26.38

CATAPULT 1.32 14.56 19.30

PGCN 1.21 10.55 10.01

Table 5. State-of-the-art comparison. mAP@500 and recall@200 is calculated across the full set of 198 diseases, and reported
as a value between 0 and 100. Recall@200 is also compared across all algorithms for the full set of diseases (Full) and for RA
alone (RA). Recall numbers correspond to the markers shown in Figure 3C and 3D.

Aligning State-of-the-art Gene prioritization with Rosalind Data

To map diseases and gene predictions from Open Targets1, the v3 API was used to match the disease name in the

198 disease test set to the closest match in the Open Targets database, collecting an Orphanet ID for each disease.

Next, all associated genes and scores sorted according to the Open Targets composite score were collected for each

disease using the API, producing a ranked list of genes for each disease in the test set. Of the 198 test diseases, 184

diseases were mapped successfully for Open Targets.

For SCUBA2, the training genes for each of the 198 disease were provided as the seed genes for the algorithm. The

algorithm learns a weighting on a matrix of gene-gene similarities, and this multiple kernel learning strategy is

used to associate seed (training) genes to new genes. Five matrices were used here, as provided in their work: a

Markov Diffusion Kernel inspired by heat diffusion with iteration parameters 2 and 6; and a regularized Laplacian

Kernel (RLK) similar to random walks with scaling factors 1, 10, and 100. Therapeutic genes in the Rosalind

training dataset were mapped to ENSEMBL3 IDs, resulting in an 8% loss of genes which could not be mapped

successfully, and used as seed genes for learning kernel weightings. After learning, these weightings were used

to rank the genome. The diversity of information sources and access to the training data used in Rosalind aids the

SCUBA algorithm to successfully rank genes. Of the 198 test diseases, 187 were mapped successfully for SCUBA.

For the Bayesian matrix factorization algorithm MACAU4, the conditioning information was used from that work,

using Interpro5, Gene Ontology6, and Uniprot7 additional context for the genes; similarly, for diseases, literature-

based disease features derived from textual term-frequency inverse-document frequency (TF-IDF) occurrences in

PubMed were used in8. The provided textual terms were not used for the gene targets as the article material does
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not provide the means to successfully map them. The disease-gene matrix was defined using the training data from

the benchmark described above (using training data from Rosalind), with 10x as many randomly-sampled negative

associations (zero-entries) in the matrix for every one positive entry (1-entry). This negative sampling matches the

10:1 negative-to-positive ratio used in negative sampling for ComplEx to ensure consistent positive / negative label

balance across the algorithms. Of the 198 test diseases, 160 map successfully for MACAU.

Catapult9, which relies on supervised SVMs combined with a random walk on the network, the published trained

model is used to generate a matrix of 3210 diseases by 12331 genes. The OMIM IDs are mapped to internal Rosalind

identifiers, and 172 of the 198 test set diseases appear in the prediction matrix.

For PGCN10, using a graph convolutional network trained on OMIM11 the full set of predictions were generated

from the authors’ shared data. This prediction matrix is 3215 diseases by 12331 genes; 66 of the 198 diseases in the

test set appear in the 3215 diseases, mapping from OMIM IDs to Rosalind internal disease identifiers; 11,976 genes

of the 12331 are mapped successfully. Although this algorithm has high performance for small k (approximately be-

low 20 targets), as the authors show in their work, it suffers in ranking as k is increased and more targets are examined.
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The performance across algorithms for the minimal set of diseases present in all methodologies can be found in

Fig. 2, with the diseases themselves listed in Table 6.
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Figure 2. Performance across the minimal set of diseases present for all algorithms. All algorithms are capable of producing
predictions for the 40 diseases listed in Table 6, and shown here with recall at k averaged across diseases. Note that this
qualitatively matches Figure 3C.

7/9



Disease Name

Alcoholism
Alzheimer Disease

Angelman Syndrome
Anodontia

Arthritis, Rheumatoid
Attention Deficit Disorder with Hyperactivity
Autoimmune Lymphoproliferative Syndrome

Beckwith-Wiedemann Syndrome
Colorectal Neoplasms

Dyskeratosis Congenita
Ehlers-Danlos Syndrome
Esophageal Neoplasms

Gastrointestinal Stromal Tumors
Hemochromatosis

Hirschsprung Disease
Homocystinuria

Keratoderma, Palmoplantar
Leigh Disease

Leukoencephalopathies
Medulloblastoma

Migraine Disorders
Multiple Sclerosis

Nephrotic Syndrome
Obesity

Obsessive-Compulsive Disorder
Osteogenesis Imperfecta

Osteopetrosis
Pancreatic Neoplasms
Pheochromocytoma

Primary Myelofibrosis
Pseudoxanthoma Elasticum

Sarcoidosis
Severe Combined Immunodeficiency

Stomach Neoplasms
Stroke

Tetralogy of Fallot
Turcot syndrome

Urinary Bladder Neoplasms
Wilms Tumor

Zellweger Syndrome

Table 6. Minimal set of 40 diseases present for all comparison models.
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