# Chemistry–A European Journal

## Supporting Information

### Synthesis of Highly Enantioenriched Sulfonimidoyl Fluorides and Sulfonimidamides by Stereospecific Sulfur–Fluorine Exchange (SuFEx) Reaction\*\*

Stephanie Greed,<sup>[a]</sup> Edward L. Briggs,<sup>[a]</sup> Fahima I. M. Idiris,<sup>[a]</sup> Andrew J. P. White,<sup>[a]</sup> Ulrich Lücking,<sup>[b]</sup> and James A. Bull<sup>\*[a]</sup>

### **Table of Contents**

| Extended References from Manuscript3                                          |
|-------------------------------------------------------------------------------|
| General Experimental Conditions4                                              |
| Structures of Additional Compounds in SI5                                     |
| General Procedures                                                            |
| General Procedure A: Synthesis of racemic sulfonimidoyl fluorides6            |
| General Procedure B: Synthesis of racemic sulfonimidamides6                   |
| General Procedure C: Synthesis of enantioenriched sulfonimidoyl fluorides     |
| General Procedure D: Synthesis of enantioenriched sulfonimidamides            |
| Initial route to racemic sulfonimidamides using Procedures A and B7           |
| Synthesis of enantioenriched sulfinamide salt ((S)-1a)8                       |
| Applying the racemic conditions to enantioenriched starting materials         |
| Determination of <i>ee</i> and conversion along the timescale of the reaction |
| Sulfonimidoyl Fluoride Racemisation in the Presence of Fluoride Ions          |
| Optimisation of Synthesis of Enantioenriched Sulfonimidoyl Fluoride (R)-2a12  |
| Optimisation of Synthesis of Enantioenriched Sulfonimidamide (R)-3a           |
| Experimental and Characterisation Data: Amine scope with (R)-2a (Scheme 2)14  |
| Crystal Structure Data for (R)-3h26                                           |
| Preparation of enantioenriched 4-bromophenyl derivatives (Scheme 4)27         |
| Experimental Data for Racemic Sulfinamide Salts (S4b-f)33                     |
| Synthesis of sulfinamide salts33                                              |
| Synthesis of Sulfonimidoyl Fluorides (2c-2h)42                                |
| Synthesis of Racemic Sulfonimidamides (3z-aj)45                               |
| Experimental Procedures for NBoc-deprotection49                               |
| X-Ray Crystallography Supplementary Data51                                    |
| References                                                                    |

| <sup>1</sup> H and <sup>13</sup> C-NMR Spectra |  |
|------------------------------------------------|--|
| HPLC Data                                      |  |

### List of Supplementary Figures

| Figure S1: The crystal structure of ( <i>R</i> )-3h                              | 26 |
|----------------------------------------------------------------------------------|----|
| Figure S2: The crystal structure of ( <i>R</i> )-3h (50% probability ellipsoids) | 51 |

#### **Extended References from Manuscript**

- [2b] F. Sehgelmeble, J. Janson, C. Ray, S. Rosqvist, S. Gustavsson, L. I. Nilsson, A. Minidis, J. Holenz, D. Rotticci, J. Lundkvist and P. I. Arvidsson, *ChemMedChem*, **2012**, *7*, 396.
- [6a] A. Min, S.-A. Im, H. Jang, S. Kim, M. Lee, D. K. Kim, Y. Yang, H.-J. Kim, K.-H. Lee, J. W. Kim, T.-Y Kim, D.-Y. Oh, J. Brown, M. J. O'Connor, Y.-J. Bang, *Mol. Cancer Ther.*, **2017**, *16*, 566.
- [6b] K. M. Foote, J. W. M. Nissink, T. McGuire, P. Turner, S. Guichard, J. W. T. Yates, A. Lau, K. Blades, D. Heathcote, R. Odedra, G. Wilkinson, Z. Wilson, C. M. Wood and P. J. Jewsbury, *J. Med. Chem.*, 2018, 61, 9889.
- [7a] U. Lücking, R. Jautelat, M. Krüger, T. Brumby, P. Lienau, M. Schäfer, H. Briem, J. Schulze, A. Hillisch, A. Reichel, A. M. Wengner and G. Siemeister, *ChemMedChem*, **2013**, *8*, 1067.
- [7b] U. Lücking, A. Scholz, P. Lienau, G. Siemeister, D. Kosemund, R. Bohlmann, H. Briem, I. Terebesi, K. Meyer, K. Prelle, K. Denner, Ulf Bömer, M. Schäfer, K. Eis, R. Valencia, S. Ince, F. von Nussbaum, D. Mumberg, K. Ziegelbauer, B. Klebl, A. Choidas, P. Nussbaumer, M. Baumann, C. Schultz-Fademrecht, G. Rühter, J. Eickhoff, M. Brands, *ChemMedChem*, **2017**, *12*, 1776
- [8] U. T. Luecking, A. Scholz, D. Kosemund, R. Bohlmann, H. Briem, P. Lienau, G. Siemeister, I. Terebesi, K. Meyer, K. Prelle, R. Valencia, S. Ince, F. von Nussbaum, D. Mumberg, K. Ziegelbauer and M. Brands, in *Cancer Chemistry*, American Association for Cancer Research, **2017**, 77, 984.

#### **General Experimental Conditions**

All non-aqueous reactions were run under an inert atmosphere (argon) with flame-dried glassware, using standard techniques. Anhydrous solvents were obtained by filtration through drying columns (THF, CH<sub>2</sub>Cl<sub>2</sub>, DMF, MeCN, EtOH and toluene) or used as supplied. Reactions for the scope optimisation were carried out in sealed Biotage microwave vials.

Flash chromatography was performed using 230–400 mesh silica, with the indicated solvent system according to standard techniques. Analytical thin-layer chromatography (TLC) was performed on precoated, glassbacked silica gel plates. Visualization of the developed chromatogram was performed by UV absorbance (254 nm) and stained with aqueous potassium permanganate solution or a ninhydrin solution in reagent stain.

Nuclear magnetic resonance spectra were recorded on 400 MHz spectrometers. The frequency used to record the NMR spectra is given in each assignment and spectrum (<sup>1</sup>H NMR at 400 MHz; <sup>13</sup>C NMR at 101 MHz; <sup>19</sup>F NMR at 377 MHz). Chemical shifts for <sup>1</sup>H NMR spectra are recorded in parts per million with the residual protic solvent resonance as the internal standard (chloroform:  $\delta$  = 7.26 ppm, D<sub>2</sub>O:  $\delta$  = 4.79 ppm). Data is reported as follows: chemical shift (multiplicity [s = singlet, d = doublet, t = triplet, q = quartet, quint. = quintet, m = multiplet and br = broad], coupling constant (in Hz), integration and assignment). <sup>13</sup>C NMR spectra were recorded with complete proton decoupling. Chemical shifts are reported in parts per million with the residual protic solvent resonance as the internal standard (<sup>13</sup>CDCl<sub>3</sub>:  $\delta$  = 77.2 ppm). Assignments of <sup>1</sup>H and <sup>13</sup>C spectra were based upon the analysis of  $\delta_{H}$  and *J* values, as well as DEPT, COSY and HSQC experiments where appropriate. For clarity NMR spectra are displayed as follows unless this would obscure signals: <sup>1</sup>H NMR spectra are displayed between 10.0 ppm and 0.0 ppm; <sup>13</sup>C NMR spectra are displayed between 210 ppm and 0 ppm.

IR spectra were recorded as solids or neat liquids on an Agilent Cary 630 FTIR spectrometer and are reported in wavenumbers (cm<sup>-1</sup>) to the nearest integer.

High-resolution mass spectrometry (HRMS) analyses were performed using electrospray ion source (ESI). This was performed using a Waters LCT Premier equipped with an ESI source operated in positive ion mode. The software used was MassLynx 4.1. This software does not account for the electron and all the calibrations/references are calculated accordingly, i.e. [M+H]<sup>+</sup> is detected and the mass is calibrated to output [M+H]. In the cases where this software is used we report the HRMS as [M+H].

All melting points were determined in open glass capillaries and are uncorrected.

Reagents: Commercial reagents were used as supplied or purified by standard techniques where necessary.

Observed optical rotation ( $\alpha$ ') was measured at the indicated temperature (T °C) and were converted to the corresponding specific rotations [ $\alpha$ ]<sup>T</sup><sub>D</sub> in deg cm<sup>2</sup> g<sup>-1</sup>, concentration (c) in g per 100 mL.

HPLC analyses were carried out on an Agilent 1260 Infinity Series system, employing Daicel Chiracel columns.

#### Structures of Additional Compounds in SI



#### **General Procedures**

#### General Procedure A: Synthesis of racemic sulfonimidoyl fluorides

Selectfluor (1.32 g, 3.75 mmol, 1.5 equiv) was added to a solution of sulfinamide salt **1a-b**, **S4b-g** (2.5 mmol, 1 equiv) in DMF (13 mL, 0.2 M) at 0 °C and warmed to 25 °C for 18 h. H<sub>2</sub>O (25 mL) was added and the aqueous mixture extracted with EtOAc (3 × 25 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered and the solvent removed under reduced pressure to give the racemic sulfonimidoyl fluorides **2a-h** which was typically used with no further purification.

#### General Procedure B: Synthesis of racemic sulfonimidamides

Amine (0.50 mmol, 2.0 equiv) and triethylamine (70  $\mu$ L, 0.50 mmol, 2.0 equiv) were added to a stirred solution sulfonimidoyl fluoride **2a-h** (0.25 mmol, 1 equiv) in THF (0.83 mL, 0.3 M) at RT and warmed to 80 °C for 24 h. The solvent was removed under reduced pressure. The resulting residue was then purified by silica flash column chromatography as described for each entry to yield the sulfonimidamides **3a-3aj**.

#### General Procedure C: Synthesis of enantioenriched sulfonimidoyl fluorides

Selectfluor (0.71 g, 2.0 mmol, 2 equiv) were added to a stirred solution of sulfinamide salt **1a-b**, **S4b-g** (1.0 mmol, 1 equiv) and potassium acetate (0.20 g, 2.0 mmol, 2.0 equiv) in ethanol (5 mL, 0.2 M) at 0 °C and slowly warmed to RT over 24 h. The reaction mixture was quenched with water (10 mL) and diluted with  $CH_2Cl_2$  (10 mL). The mixture was extracted with  $CH_2Cl_2$  (3 × 40 mL) and the combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered and concentrated under reduced pressure. Typically, no further purification was required giving sulfonimidoyl fluoride **2a-h**.

#### General Procedure D: Synthesis of enantioenriched sulfonimidamides

Amine (0.50 mmol, 2.0 equiv) and triethylamine (70  $\mu$ L, 0.50 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride **2a-h** (0.25 mmol, 1 equiv) and LiBr (43 mg, 0.50 mmol, 2.0 equiv) in MeCN (0.83 mL, 0.3 M) at RT and warmed to 80 °C for 24 h. The solvent was removed under reduced pressure. The resulting residue was then purified by silica flash column chromatography as described for each entry to yield the sulfonimidamides **3a-aj**.



#### Initial route to racemic sulfonimidamides using Procedures A and B

Reactions were performed on a 0.25 mmol scale. In each case, the racemic material was remade in their enantioenriched form using General Procedures B & D. The experimental and analytical data are given later in the Amine Scope section of the SI (p S14)

Synthesis of enantioenriched sulfinamide salt ((S)-1a)



#### tert-Butyl (p-tolylsulfinyl)carbamate ((S)-5)

Prepared according to a literature procedure.<sup>[1]</sup> n-BuLi (1.52 M in hexanes, 10.6 mL, NHBoc 16.1 mmol, 2.5 equiv) was added dropwise to a stirred solution of (S)-p-toluenesulfinamide (1.0 g, 6.4 mmol, 1 equiv) in THF (8 mL, 0.8 M) at -78 °C. The mixture was stirred for 10 min followed by the addition of di-tert-butyl carbamate (1.70 g, 7.8 mmol, 1.2 equiv) in THF (5 mL, 1.5 M) and warmed to rt for 3 h. At 0 °C, the reaction mixture was quenched with NH<sub>4</sub>Cl solution (sat. aq., 10 mL) and diluted with  $CH_2CI_2$  (10 mL). The mixture was extracted with  $CH_2CI_2$  (5 × 15 mL) and the combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered and concentrated under reduced pressure. Purification by recrystallisation (3:1 hexane/EtOAc) gave sulfinamide (S)-5 as a white solid (1.03 g, 62%, >99% ee). mp = 90-92 °C. IR (film)/cm<sup>-1</sup> 3116, 3064, 2971, 2922, 2814, 1703 (C=O), 1595, 1490, 1331, 1156, 1100, 898, 809. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.59 (d, J = 7.9 Hz, 2H, 2 × Ar–H), 7.32 (d, J = 7.9 Hz, 2H, 2 × Ar–H), 2.41 (s, 3H, Ar– CH<sub>3</sub>), 1.49 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCI<sub>3</sub>) δ 152.7 (C=O), 142.5 (Ar–C<sub>q</sub>), 140.7 (Ar–C<sub>q</sub>), 130.1 (2 × Ar–C), 124.8 (2 × Ar–C), 83.6 (C(CH<sub>3</sub>)<sub>3</sub>), 28.2 (C(CH<sub>3</sub>)<sub>3</sub>), 21.5 (Ar–CH<sub>3</sub>). [α]<sup>21</sup><sub>D</sub> = +80 (c 0.1, CHCl<sub>3</sub>). HPLC Conditions: Chiralpak IB column, 98:2 nhexane: iPrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 260 nm, ((S)-5) retention time: 22 min. Analytical data (NMR) in agreement with those reported in the literature.<sup>[2]</sup>

(*rac*)-5 HPLC Conditions: Chiralpak IB column, 98:2 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 260 nm, retention times: 22 & 24 min.

#### Sodium (tert-butoxycarbonyl)(p-tolylsulfinyl)amide ((S)-1a)

NaH (60% in oil, 52 mg, 1.23 mmol, 1.05 equiv) was added portionwise to sulfinamide (S)-5 (300 mg, 1.23 mmol, 1 equiv) in THF (13 mL, 0.1 M) and stirred for 1 h at rt. The reaction mixture was quenched with MeOH (0.1 mL, 0.1 mmol, 0.05 equiv) and concentrated under reduced pressure. The precipitate was collected by filtration and washed with hexane to give sulfinamide salt (S)-1a (340 mg, 1.23 mmol, quant, >99% *ee*) as a white solid. mp = 233–234 °C. IR (film)/cm<sup>-1</sup> 3086, 3049, 2922, 2960, 1642 (C=O), 1580, 1480, 1241, 1152, 1021, 798. <sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O)  $\delta$  7.54 (d, *J* = 8.2 Hz, 2H, 2 × Ar–H), 7.35 (d, *J* = 8.2 Hz, 2H, 2 × Ar–H), 2.37 (s, 3H, Ar–CH<sub>3</sub>), 1.41 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, D<sub>2</sub>O)  $\delta$  165.9 (C=O), 143.2 (Ar–Cq), 141.7 (Ar–Cq), 129.6 (2 × Ar–C), 124.7 (2 × Ar–C), 79.6 (C(CH<sub>3</sub>)<sub>3</sub>), 27.8 (C(CH<sub>3</sub>)<sub>3</sub>), 20.5 (Ar–CH<sub>3</sub>). HRMS (ESI) m/z Calcd for C<sub>12</sub>H<sub>16</sub>NO<sub>3</sub>S [M]<sup>-</sup>: 254.0844; Found: 254.0851. [ $\alpha$ ]<sup>21</sup><sub>D</sub> = +56 (c 1.0, H<sub>2</sub>O).

Determination of ee from reprotonation. The minimum MeOH (~0.1 mL) was added to a sample of (S)-1a (~1 mg) until completely dissolved. An aliquot was removed and diluted with hexane for HPLC analysis of sulfinamide (S)-5.

#### Applying the racemic conditions to enantioenriched starting materials

When General Procedures A and B were applied to enantioenriched material, racemisation occurs at both steps in the synthesis.

#### *tert*-Butyl (fluoro(oxo)(*p*-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-2a)

Reaction performed according to General Procedure A. Selectfluor (1.15 g, 3.25 mmol, 1.5 equiv) was added to a solution of sulfinamide salt (**S**)-1a (600 mg, 2.16 mmol, >99% ee, 1 equiv) in DMF (10.8 mL) at 0 °C and warmed to 25 °C for 18 h. H<sub>2</sub>O (25 mL) was added and the aqueous mixture extracted with EtOAc (3 × 25 mL). The combined organic layers were dried (MgSO<sub>4</sub>), filtered and the solvent removed under reduced pressure to give sulfonimidoyl fluoride (*R*)-2a (585 mg, 98%, 81% ee) as a colourless oil. IR (film)/cm<sup>-1</sup> 2982, 2933, 1700 (C=O), 1595, 1454, 1327, 1141, 1096, 813, 678. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.99 (d, *J* = 8.4 Hz, 2H, 2 × Ar–H), 7.40 (d, *J* = 8.4 Hz, 2H, 2 × Ar–H), 2.48 (s, 3H, Ar–CH<sub>3</sub>), 1.53 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  152.7 (C=O), 147.1 (Ar–C<sub>q</sub>), 130.8 (d, *J* = 20.9 Hz, Ar–C<sub>q</sub>), 130.2 (2 × Ar–C), 128.3 (2 × Ar–C), 82.7 (*C*(CH<sub>3</sub>)<sub>3</sub>), 28.0 (C(CH<sub>3</sub>)<sub>3</sub>), 21.9 (Ar–CH<sub>3</sub>). <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  68.8. HRMS (ESI) m/z Calcd for C<sub>12</sub>H<sub>17</sub>NO<sub>3</sub>SF [M+H]<sup>+</sup>: 274.0913; Found: 274.0924.

(*R*)-2a  $[\alpha]^{21}_{D}$  = +9 (c 5.0, CHCl<sub>3</sub>). HPLC Conditions: Chiralpak IA column, 99:1 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 260 nm, retention time: 13 & 14 min.

#### *tert*-Butyl (oxo(piperidin-1-yl)(*p*-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-3a)

Reaction performed according to General Procedure B. Piperidine (49  $\mu$ L, 0.50 mmol) and triethylamine (70  $\mu$ L, 0.50 mmol) were added to a stirred solution of sulfonimidoyl fluoride (*R*)-2a (68.3 mg, 0.25 mmol) in THF (0.83 mL) at RT and warmed to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 15% EtOAc/pentane) afforded sulfonimidamide (*R*)-3a (64.8 mg, 77%, 8% ee) as a white solid; mp = 137– 139 °C. Rr 0.40 (15% EtOAc in pentane). IR (film)/cm<sup>-1</sup> 2974, 2937, 2855, 1677 (C=O), 1595, 1454, 1364, 1275, 1156, 1092, 932, 816. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.73 (d, *J* = 8.3 Hz, 2H, 2 × Ar–H), 7.31 (d, *J* = 8.3 Hz, 2H, 2 × Ar–H), 3.10–3.06 (m, 4H, 2 × NCH<sub>2</sub>), 2.42 (s, 3H, Ar–CH<sub>3</sub>), 1.66–1.59 (m, 4H, 2 × NCH<sub>2</sub>CH<sub>2</sub>), 1.45–1.41 (m, 2H, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 1.46–1.42 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  156.8 (C=O), 143.8 (Ar–Cq), 133.4 (Ar–Cq), 129.8 (2 × Ar–C), 127.9 (2 × Ar–C), 80.1 (C(CH<sub>3</sub>)<sub>3</sub>), 46.7 (2 × NCH<sub>2</sub>), 28.2 (C(CH<sub>3</sub>)<sub>3</sub>), 25.3 (2 × NCH<sub>2</sub>CH<sub>2</sub>), 23.7 (NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 21.6 (Ar–CH<sub>3</sub>). HRMS (SI) *m/z* Calcd for C<sub>17</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub>S [M+H]\*: 339.1742; Found: 339.1728.

(*R*)-3a  $[\alpha]^{21}_{D} = -18$  (c 0.5, CHCl<sub>3</sub>). HPLC Conditions: Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 270 nm, retention time: 17 & 21 min.

#### Determination of ee and conversion along the timescale of the reaction

Sulfonimidoyl fluoride (*R*)-2a (273 mg, 1 mmol) was subjected to General Procedure B with the initial addition of 1,3,5-trimethoxybenzene (169 mg, 1 mmol). Aliquots (~50  $\mu$ L) were removed from the sealed reaction vial at the timepoints given below and the sample was split and concentrated for preparation of <sup>1</sup>H-NMR and HPLC samples. Yields were determined using 1,3,5-trimethoxybenzene as the internal standard in the <sup>1</sup>H-NMR. %*ee* of the crude samples were obtained by HPLC analysis on both the (*R*)-2a and (*R*)-3a column conditions.

|          |                 | O NBoc NEt <sub>3</sub> (2.0 equiv) O NBoc piperidine (2.0 equiv) |                 |     |  |
|----------|-----------------|-------------------------------------------------------------------|-----------------|-----|--|
|          |                 | THF (0.3 M)<br>80 °C, 24 h                                        |                 |     |  |
|          | ( <i>R</i> )-2a | ,                                                                 | ( <i>R</i> )-3a |     |  |
| Time (b) | ( <i>R</i> )-2  | la                                                                | ( <i>R</i> )-3a |     |  |
|          | Yield (%)       | %ee                                                               | Yield (%)       | %ee |  |
| 0.00     | 100             | 100                                                               | 0               | -   |  |
| 0.33     | 73              | 52                                                                | 8               | 64  |  |
| 0.67     | 70              | 20                                                                | 13              | 56  |  |
| 1        | 71              | 4                                                                 | 14              | 38  |  |
| 1.5      | 50              | 0                                                                 | 29              | 18  |  |
| 2        | 52              | 0                                                                 | 27              | 15  |  |
| 2        | 44              | 0                                                                 | 37              | 10  |  |
| 3        | 42              | 0                                                                 | 35              | 10  |  |
| 4        | 37              | 0                                                                 | 43              | 9   |  |
| 5        | 28              | 0                                                                 | 45              | 8   |  |
| 6        | 23              | 0                                                                 | 53              | 8   |  |
| 8        | 17              | 0                                                                 | 58              | 8   |  |
| 10       | 7               | 0                                                                 | 69              | 7   |  |
| 24       | 0               | 0                                                                 | 72              | 6   |  |
| 48       | 0               | 0                                                                 | 73              | 6   |  |



#### Sulfonimidoyl Fluoride Racemisation in the Presence of Fluoride lons



The fluoride source (0.15 mmol, 1.5 equiv) was added to (*R*)-2a (27.3 mg, 0.1 mmol, 1.0 equiv) in THF (0.33 mL, 0.3 M) at rt and stirred for 3 h. The reaction mixture was then filtered, concentrated under reduced pressure and dissolved in minimal amounts of hexane (~2 mL). An aliquot was removed for HPLC analysis to determine the *ee* of the returned (*R*)-2a.

HPLC Conditions: Chiralpak IA column, 99:1 nhexane:iPrOH, flow rate: 1 mL min-1, 35 °C, UV detection wavelength: 260 nm, retention time: 13 & 14 min.

| Entry | Fluoride Ion Source | Retained ee of ( <i>R</i> )-2a (%) |
|-------|---------------------|------------------------------------|
| 1     | -                   | 93                                 |
| 2     | TBAF                | 0                                  |
| 3     | KF                  | 99                                 |

Retained ee given by %ee(R)-2a product/%ee(R)-2a Starting material

|                 |                   |                                | O<br>II ⊖<br>NBoc Base (2 eq    | equiv)<br>juiv)        | ONBoc              |               |  |
|-----------------|-------------------|--------------------------------|---------------------------------|------------------------|--------------------|---------------|--|
|                 |                   |                                | Na Solvent (0.:<br>0 ℃ to rt, 2 | 2 M)<br>24 h           |                    |               |  |
|                 |                   |                                | (S)-1a                          | (F                     | ?)-2a              |               |  |
| <b>F</b> actors | Selvent           | Basa                           | Yield                           | Yield (%) <sup>a</sup> |                    |               |  |
| Entry           | Solvent           | Dase                           | Protonated (S)-1a               | ( <i>R</i> )-2a        | Total <sup>b</sup> | (K)-2a ee (%) |  |
| 1               | DMF               | -                              | -                               | 74                     | 74                 | 81-95         |  |
| 2               | THF               | -                              | 19                              | 30                     | 49                 | 68            |  |
| 3               | MeCN              | -                              | 14                              | 59                     | 73                 | 79            |  |
| 4               | Et <sub>2</sub> O | -                              | 16                              | 52                     | 68                 | 85-99         |  |
| 5               | <i>i</i> PrOH     | -                              | 19                              | 59                     | 78                 | 79            |  |
| 6               | $CH_2CI_2$        | -                              | 22                              | 59                     | 81                 | 68            |  |
| 7               | Hexane            | -                              | 22                              | 57                     | 79                 | 44            |  |
| 8               | EtOH              | -                              | 23                              | 46                     | 69                 | >99           |  |
| 9               | EtOH              | K <sub>2</sub> CO <sub>3</sub> | 14                              | 58                     | 72                 | n.d.          |  |
| 10              | EtOH              | NaOAc                          | 9                               | 71                     | 80                 | >99           |  |
| 11              | EtOH              | KOAc                           | 2                               | 80                     | 82                 | >99           |  |
| 12              | EtOH              | NEt <sub>3</sub>               | 72                              | trace                  | 72                 | n.d.          |  |
| 13 <sup>c</sup> | EtOH              | KOAc                           | -                               | [98]                   | 98                 | >99           |  |

Reactions performed on a 0.1 mmol scale. <sup>a</sup>Conversion determined by <sup>1</sup>H-NMR spectroscopy using 1,3,5trimethoxybenzene as an internal standard. Isolated yield in parenthesis. <sup>b</sup>Sum of two preceding columns. <sup>c</sup>Reaction performed on a 1.2 mmol scale.

#### Optimisation of Synthesis of Enantioenriched Sulfonimidamide (R)-3a

|       |               | O NBoc                          | NEt <sub>3</sub> (2.0 equiv)<br>piperidine (2.0 equiv)<br>additive (2.0 equiv) | O N             |                    |        |
|-------|---------------|---------------------------------|--------------------------------------------------------------------------------|-----------------|--------------------|--------|
|       |               |                                 | solvent,<br>80 °C, 24 h                                                        |                 |                    |        |
|       |               | ( <i>R</i> )-2a                 | -                                                                              | ( <i>R</i> )-3a |                    |        |
| Entry | Salvant       | Additive                        | Yield (%) <sup>a</sup>                                                         |                 |                    | 9/ 006 |
| Entry | Solvent       |                                 | ( <i>R</i> )-2a                                                                | ( <i>R</i> )-3a | Total <sup>b</sup> | % es   |
| 1     | THF           | -                               | 30                                                                             | 52              | 82                 | 8      |
| 2     | THF           | TMS-CI                          | 75                                                                             | 1               | 76                 | n.d.   |
| 3     | THF           | KBr                             | 33                                                                             | 44              | 77                 | 13     |
| 4     | THF           | LiCI                            | 11                                                                             | 31              | 42                 | >99    |
| 5     | THF           | H <sub>2</sub> O                | 6                                                                              | 77              | 83                 | 26     |
| 6     | THF           | LiBr                            | 19                                                                             | 56              | 75                 | >99    |
| 7     | EtOH          | -                               | -                                                                              | 33              | 33                 | 45     |
| 8     | <i>t</i> BuOH | -                               | 18                                                                             | 54              | 72                 | 38     |
| 9     | <i>i</i> PrOH | -                               | 6                                                                              | 66              | 72                 | 29     |
| 10    | MeCN          | -                               | 9                                                                              | 73              | 82                 | 28     |
| 11    | MeCN          | LiBr                            | -                                                                              | 96              | 96                 | >99    |
| 12    | MeCN          | Lil                             | -                                                                              | 87              | 87                 | >99    |
| 13    | MeCN          | Li <sub>2</sub> CO <sub>3</sub> | -                                                                              | 60              | 60                 | 96     |

Reactions performed on a 0.1 mmol scale. <sup>a</sup>Conversion determined by <sup>1</sup>H-NMR spectroscopy using 1,3,5trimethoxybenzene as an internal standard. Isolated yield in parenthesis. <sup>b</sup>Sum of two preceding columns. <sup>c</sup>es, enantiospecificity, given by  $\&ee_{(R)-3a} / \&ee_{(R)-2a}$ 

#### *tert*-Butyl (fluoro(oxo)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-2a)

Reaction performed according to General Procedure C. Selectfluor (0.71 g, 2.0 mmol, 2 equiv) O NBoc were added to a stirred solution of sulfinamide salt (S)-1a (0.29 g, 1.0 mmol, 1 equiv) and potassium acetate (0.20 g, 2.0 mmol, 2.0 equiv) in ethanol (5 mL, 0.2 M) at 0 °C and slowly warmed to RT over 24 h. The reaction mixture was guenched with water (10 mL) and diluted with CH<sub>2</sub>Cl<sub>2</sub> (10 mL). The mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 40 mL) and the combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered and concentrated under reduced pressure. No further purification was required giving sulfonimidoyl fluoride (*R*)-2a (0.29 g, quant., >99% ee) as a colourless viscous oil. IR (film)/cm<sup>-1</sup> 2982, 2933, 1700 (C=O), 1595, 1454, 1327, 1141, 1096, 813, 678. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.99 (d, J = 8.4 Hz, 2H, 2 × Ar–H), 7.40 (d, J = 8.4 Hz, 2H, 2 × Ar–H), 2.48 (s, 3H, Ar–CH<sub>3</sub>), 1.53 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 152.7 (C=O), 147.1 (Ar–C<sub>q</sub>), 130.8 (d, *J* = 20.9 Hz, Ar–C<sub>q</sub>), 130.2 (2 × Ar–C), 128.3 (2 × Ar–C), 82.7 (C(CH<sub>3</sub>)<sub>3</sub>), 28.0 (C(CH<sub>3</sub>)<sub>3</sub>), 21.9 (Ar-CH<sub>3</sub>). <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>) δ 68.8. HRMS (ESI) m/z Calcd for C<sub>12</sub>H<sub>17</sub>NO<sub>3</sub>SF [M+H]<sup>+</sup>: 274.0913; Found: 274.0924. [α]<sup>21</sup><sub>D</sub> = +9 (c 5.0, CHCl<sub>3</sub>). HPLC Conditions: Chiralpak IA column, 99:1 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 260 nm, retention time: 13 & 14 min.

Synthesis of racemic sample for HPLC analysis performed according to General Procedure A, see p. S10: Selectfluor (533 g, 1.51 mmol, 1.5 equiv) was added to a solution of sulfinamide salt (rac)-1a (250 mg, 1.00 mmol) in DMF (5.00 mL) at 0 °C and warmed to 25 °C for 16 h. H<sub>2</sub>O (10 mL) was added and the aqueous mixture extracted with EtOAc (3 × 15 mL). The combined organic layers were dried (MgSO<sub>4</sub>), filtered and the solvent removed under reduced pressure to give sulfonimidoyl fluoride (rac)-2a (116 mg, 48%) as a colourless oil with characterisation data in accordance with the above.

#### *tert*-Butyl (oxo(piperidin-1-yl)(*p*-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-3a)



Reaction performed according to General Procedure D. Piperidine (50 µL, 0.50 mmol, 2.0 equiv) and triethylamine (70 µL, 0.50 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride (R)-2a (69 mg, 0.25 mmol, 1 equiv) and flame-dried LiBr (43 mg, 0.50 mmol, 2 equiv) in MeCN (0.83 mL, 0.3 M) at RT and warmed to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 20% EtOAc/pentane) afforded sulfonimidamide (R)-3a (81.3 mg, 96%, >99% ee) as a white solid. mp = 137-139 °C. Rf 0.40 (15% EtOAc in pentane). IR (film)/cm<sup>-1</sup> 2974, 2937, 2855, 1677 (C=O), 1595, 1454, 1364, 1275, 1156, 1092, 932, 816. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.72 (d, J = 8.3 Hz, 2H, 2 × Ar–H), 7.30 (d, J = 8.3 Hz, 2H, 2 × Ar–H), 3.07 (m, 4H, 2 × NCH<sub>2</sub>), 2.41 (s, 3H, Ar–CH<sub>3</sub>), 1.61 (p, J = 5.7 Hz, 4H, 2 × NCH<sub>2</sub>CH<sub>2</sub>), 1.49–1.41 (m, 2H, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 1.39 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 156.9 (C=O), 143.8 (Ar–C<sub>q</sub>), 133.4 (Ar–C<sub>q</sub>), 129.8 (2 × Ar-C), 127.9 (2 × Ar-C), 80.1 (C(CH<sub>3</sub>)<sub>3</sub>), 46.7 (2 × NCH<sub>2</sub>), 28.2 (C(CH<sub>3</sub>)<sub>3</sub>), 25.3 (2 × NCH<sub>2</sub>CH<sub>2</sub>), 23.7 (NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 21.6 (Ar–CH<sub>3</sub>). HRMS (ESI) *m*/z Calcd for C<sub>17</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub>S [M+H]<sup>+</sup>: 339.1742; Found: 339.1728.  $[\alpha]^{21}_{D} = -18$  (c 0.5, CHCl<sub>3</sub>). HPLC Conditions: Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 270 nm, ((R)-3a) retention time: 21 min.

Synthesis of racemic sample for HPLC analysis prepared according to General Procedure B, see p. S10, to afford sulfonimidamide (*rac*)-3a (64.8 mg, 77%) as a white solid with characterisation data in accordance with the above. HPLC Conditions: Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 270 nm, ((*rac*)-3a) retention time: 17 & 21 min.

#### *tert*-Butyl (*R*)-((butylamino)(oxo)(*p*-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-3b)

Reaction performed according to General Procedure D. Butylamine (50 µL, 0.50 mmol, O NBoc 2.0 equiv) and triethylamine (70 µL, 0.50 mmol, 2.0 equiv) were added to a stirred solution н of sulfonimidoyl fluoride (R)-2a (69 mg, 0.25 mmol, 1 equiv) and flame-dried LiBr (43 mg, 0.50 mmol, 2 equiv) in MeCN (0.83 mL, 0.3 M) at RT and warmed to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfonimidamide (*R*)-3b (66.2 mg, 81%, 99% *ee*) as a white solid. mp = 135–137 °C. R<sub>f</sub> 0.32 (5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>). IR (film)/cm<sup>-1</sup> 3068, 2960, 2930, 2870, 1681 (C=O), 1454, 1275, 1163, 1118, 902, 813. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.82 (d, J = 8.3 Hz, 2H, 2 × Ar–H), 7.30 (d, J = 8.1 Hz, 2H, 2 × Ar–H), 6.87 (s, 1H, NH), 2.98–2.93 (m, 1H, NCHH), 2.77–2.69 (m, 1H, NCHH), 2.42 (s, 3H, Ar–CH<sub>3</sub>), 1.51–1.42 (m, 2H, NCH<sub>2</sub>CH<sub>2</sub>), 1.35 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>), 1.28– 1.22 (m, 2H, CH<sub>2</sub>CH<sub>3</sub>), 0.83 (t, J = 7.3 Hz, 3H, CH<sub>2</sub>CH<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 157.1 (C=O), 143.8 (Ar-Cq), 135.8 (Ar-Cq), 129.7 (2 × Ar-C), 128.1 (2 × Ar-C), 80.1 (C(CH<sub>3</sub>)<sub>3</sub>), 41.0 (NCH<sub>2</sub>), 31.4 (NCH<sub>2</sub>CH<sub>2</sub>), 28.1 (C(CH<sub>3</sub>)<sub>3</sub>), 21.6 (Ar–CH<sub>3</sub>), 19.8 (CH<sub>2</sub>CH<sub>3</sub>), 13.6 (CH<sub>2</sub>CH<sub>3</sub>). HRMS (ESI) m/z Calcd for C<sub>16</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub>S [M+H]<sup>+</sup>: 327.1742; Found: 327.1739. [α]<sup>21</sup><sub>D</sub> = +42 (c 1.0, CHCl<sub>3</sub>). HPLC conditions: Chiralpak IA column, 97:3 nhexane: iPrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 254 nm, ((R)-3b) retention time: 21 min.

Synthesis of racemic sample for HPLC analysis prepared according to General Procedure B to afford sulfonimidamide (*rac*)-3b (53.0 mg, 65%) as a white solid with characterisation data in accordance with the above. HPLC conditions: Chiralpak IA column, 97:3 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 254 nm, (*rac*)-3b retention times: 21 & 23 min.

#### *tert*-Butyl (*R*)-((benzylamino)(oxo)(*p*-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-3c)

Reaction performed according to General Procedure D. Benzylamine (50  $\mu$ L, 0.50 mmol, 2.0 equiv) and triethylamine (70  $\mu$ L, 0.50 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride (*R*)-2a (69 mg, 0.25 mmol, 1 equiv) and flame-dried LiBr (43 mg,

0.50 mmol, 2 equiv) in MeCN (0.83 mL, 0.3 M) at RT and warmed to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfonimidamide (*R*)-3c (70.2 mg, 78%, 99% *ee*) as a white solid. mp = 62–63 °C. Rr 0.39 (10% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>). IR (film)/cm<sup>-1</sup> 3064, 2978, 2930, 2840, 1677, 1454, 1249, 1152, 1115, 1059, 906, 865, 787, 731, 697, 671. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.84 (d, *J* = 8.4 Hz, 2H, 2 × Ar–H), 7.33–7.29 (m, 2H, 2 × Ar–H), 7.28–7.26 (m, 2H, 2 × Ar–H), 7.25–7.19 (m, 3H, 3 × Ar–H), 6.43 (s, 1H, NH), 4.22 (d, *J* = 13.8 Hz, 1H, NHC*H*H), 3.94 (d, *J* = 13.8 Hz, 1H, NHCH*H*), 2.43 (s, 3H, Ar–CH<sub>3</sub>), 1.40 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  157.8 (C=O), 144.6 (Ar–Cq), 136.3 (Ar–Cq), 136.0 (Ar–Cq), 130.3 (2 × Ar–C), 129.2 (2 × Ar–C), 128.5 (2 × Ar–C), 128.45 (2 × Ar–C), 128.42 (Ar–C), 81.0 (C(CH<sub>3</sub>)<sub>3</sub>), 46.1 (NHCH<sub>2</sub>), 28.6 (C(CH<sub>3</sub>)<sub>3</sub>), 22.0 (Ar–CH<sub>3</sub>). HRMS (ESI) m/z Calcd for C<sub>19</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub>S [M+H]<sup>+</sup>: 361.1586; Found: 361.1593. [α]<sup>23</sup><sub>D</sub> = +88 (c 0.5, CHCl<sub>3</sub>). HPLC Conditions:

Chiralpak IA column, 97:3 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm. *((R)-3c)* Retention time: 41 min.

Synthesis of racemic sample for HPLC analysis prepared according to General Procedure D on a 0.1 mmol scale to afford the sulfonimidamide (*rac*)-3c (~10 mg) with characterisation data in accordance with the above. HPLC Conditions: Chiralpak IA column, 97:3 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm. ((*R*)-3c) Retention times: 37 & 42 min.

#### tert-Butyl (R)-((allylamino)(oxo)(p-tolyl)-λ<sup>6</sup>-sulfaneylidene)carbamate ((R)-3d)

NBoc S. /N H Reaction performed according to General Procedure D. Allylamine (37  $\mu$ L, 0.50 mmol, 2.0 equiv) and triethylamine (70  $\mu$ L, 0.50 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride (*R*)-2a (69 mg, 0.25 mmol, 1 equiv) and flame-dried LiBr (43 mg,

0.50 mmol, 2 equiv) in MeCN (0.83 mL, 0.3 M) at RT and warmed to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfonimidamide (*R*)-3d (45.9 mg, 60%, 98% *ee*) as a white solid. mp = 95–96 °C. R<sub>f</sub> 0.21 (10% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>). IR (film)/cm<sup>-1</sup> 3071, 2978, 2930, 1681, 1595, 1453, 1278, 1159, 1118, 1092, 1062, 924, 813. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.83 (d, *J* = 8.4 Hz, 2H, 2 × Ar–H), 7.31 (d, *J* = 7.9 Hz, 2H, 2 × Ar–H), 5.74 (ddt, *J* = 17.1, 10.3, 5.8 Hz, 1H, NCH<sub>2</sub>CH), 5.21 (dd, *J* = 17.1, 1.3 Hz, 1H, NHCH<sub>2</sub>CHCHH), 5.11 (dd, *J* = 10.2, 1.3 Hz, 1H, NHCH<sub>2</sub>CHCHH), 3.62 (ddt, *J* = 15.0, 5.6, 1.6 Hz, 1H, NHCHH), 3.42 (ddt, *J* = 14.9, 6.0, 1.5 Hz, 1H, NHCHH), 2.42 (s, 3H, Ar–CH<sub>3</sub>), 1.37 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  157.2 (C=O), 144.1 (Ar–Cq), 135.8 (Ar–Cq), 132.8 (NHCH<sub>2</sub>CH=CH<sub>2</sub>), 129.9 (2 × Ar–C), 128.1 (2 × Ar–C), 118.0 (NHCH<sub>2</sub>CH=CH<sub>2</sub>), 80.5 (C(CH<sub>3</sub>)<sub>3</sub>), 44.1 (NHCH<sub>2</sub>), 28.2 (C(CH<sub>3</sub>)<sub>3</sub>), 21.7 (Ar–CH<sub>3</sub>). HRMS (ESI) *m/z* Calcd for C<sub>20</sub>H<sub>28</sub>N<sub>5</sub>O<sub>3</sub>S [M+H]<sup>+</sup>: 418.1913; Found: 418.1899. [α]<sup>23</sup><sub>D</sub> = +40 (c 0.5, CHCl<sub>3</sub>). HPLC conditions: Chiralpak IA column, 97:3 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 270 nm, (*R*)-3d retention times 23 min.

Synthesis of racemic sample for HPLC analysis prepared according to General Procedure D on a 0.1 mmol scale to afford the sulfonimidamide (*rac*)-3d (~10 mg) with characterisation data in accordance with the above. HPLC conditions: Chiralpak IA column, 97:3 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 270 nm, (*rac*)-3d retention times 23 & 26 min.

#### *tert*-Butyl (*R*)-(((cyclopropylmethyl)amino)(oxo)(*p*-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-3e)



Reaction performed according to General Procedure D. Cyclopropylmethanamine (44  $\mu$ L, 0.50 mmol, 2.0 equiv) and triethylamine (70  $\mu$ L, 0.50 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride (*R*)-2a (69 mg, 0.25 mmol, 1 equiv) and flame-dried

LiBr (43 mg, 0.50 mmol, 2 equiv) in MeCN (0.83 mL, 0.3 M) at RT and warmed to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfonimidamide (*R*)-3e (50.0 mg, 62%, 95% ee) as a white solid. mp = 124–126 °C. R<sub>f</sub> 0.26 (5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>). IR (film)/cm<sup>-1</sup> 3086, 2974, 2926, 2873, 1674 (C=O), 1595, 1454, 1252, 1156, 1111, 1044, 809, 731. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.83 (d, *J* = 8.1 Hz, 2H, 2 × Ar–H), 7.30 (d, *J* = 8.1 Hz, 2H, 2 × Ar–H), 6.56 (s, 1H, NH), 2.89 (dd, *J* = 12.8, 7.0 Hz, 1H, NHC*H*H), 2.62 (dd, *J* = 12.8, 7.3 Hz, 1H, NHC*H*H), 2.42 (s, 3H, Ar–CH<sub>3</sub>), 1.37 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>), 0.95–0.86 (m, 1H, NHCH<sub>2</sub>CH), 0.50–0.41 (m, 2H, 2 × CHC*H*H), 0.16–0.05 (m, 2H, 2 × CHC*H*H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  157.2 (C=O), 143.9 (Ar–Cq), 135.9 (Ar–Cq), 129.8 (2 × Ar–C),

128.1 (2 × Ar–C), 80.3 (C(CH<sub>3</sub>)<sub>3</sub>), 46.6 (NCH<sub>2</sub>), 28.2 (C(CH<sub>3</sub>)<sub>3</sub>), 21.7 (Ar–CH<sub>3</sub>), 10.7 (NCH<sub>2</sub>CH), 3.9 (1 × CHCH<sub>2</sub>), 3.6 (1 × CHCH<sub>2</sub>). HRMS (ESI) *m/z* Calcd for C<sub>16</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub>S [M+H]<sup>+</sup>: 325.1586; Found: 325.1590. [ $\alpha$ ]<sup>21</sup><sub>D</sub> = +29 (c 1.0, CHCl<sub>3</sub>). HPLC conditions: Chiralpak IA column, 97:3 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 280 nm, (*R*)-3e retention time 26 min.

Synthesis of racemic sample for HPLC analysis prepared according to General Procedure B to afford sulfonimidamide (*rac*)-3e (34.1 mg, 65%) as a yellow solid with characterisation data in accordance with the above. HPLC conditions: Chiralpak IA column, 97:3 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 280 nm, (*rac*)-3e retention times 26 & 28 min.

#### tert-Butyl (R)-((cyclobutylamino)(oxo)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-3f)



Reaction performed according to General Procedure D. Cyclobutylamine (43  $\mu$ L, 0.50 mmol, 2.0 equiv) and triethylamine (70  $\mu$ L, 0.50 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride (*R*)-2a (69 mg, 0.25 mmol, 1 equiv) and flame-dried LiBr (43 mg,

0.50 mmol, 2 equiv) in MeCN (0.83 mL, 0.3 M) at RT and warmed to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfonimidamide (*R*)-3f (61.9 mg, 76%, >99% *ee*) as a white solid. mp = 131–133 °C. R<sub>r</sub> 0.18 (5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>). IR (film)/cm<sup>-1</sup> 3068, 2978, 2870, 1674, 1595, 1450, 1390, 1275, 1245, 1141, 1096, 973, 906, 857, 731. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.82 (d, *J* = 8.3 Hz, 2H, 2 × Ar–H), 7.29 (d, *J* = 8.1 Hz, 2H, 2 × Ar–H), 6.77 (s, 1H, NH), 3.75–3.59 (m, 1H, NHC*H*), 2.41 (s, 3H, Ar–CH<sub>3</sub>), 2.30–2.22 (m, 1H, 1 × NHCHC*H*H), 2.11–2.00 (m, 1H, 1 × NHCHC*H*H), 1.89–1.77 (m, 2H, 2 × NHCHC*HH*), 1.66–1.49 (m, 2H, NHCHCH<sub>2</sub>CH<sub>2</sub>), 1.36 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  157.3 (C=O), 143.9 (Ar–C<sub>q</sub>), 136.7 (Ar–C<sub>q</sub>), 129.7 (2 × Ar–C), 128.0 (2 × Ar–C), 80.4 (*C*(CH<sub>3</sub>)<sub>3</sub>), 46.9 (NHCH), 32.0 (1 × NHCHCH<sub>2</sub>), 31.3 (1 × NHCHCH<sub>2</sub>), 28.2 (C(CH<sub>3</sub>)<sub>3</sub>), 21.7 (Ar–CH<sub>3</sub>), 15.4 (NHCHCH<sub>2</sub>CH<sub>2</sub>). HRMS (ESI) *m/z* Calcd for C<sub>16</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub>S [M+H]<sup>+</sup>: 325.1586; Found: 325.1587. [α]<sup>21</sup><sub>D</sub> = +48 (c 0.8, CHCl<sub>3</sub>). HPLC Conditions: Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 260 nm, (*R*)-3f retention time: 15 min.

Synthesis of racemic sample for HPLC analysis prepared according to General Procedure B to afford sulfonimidamide (*rac*)-3f (44.0 mg, 54%) as a white solid with characterisation data in accordance with the above. HPLC Conditions: Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 260 nm, (*rac*)-3f retention times: 15 & 18 min.

#### tert-Butyl (R)-((cyclohexylamino)(oxo)(p-tolyl)-λ<sup>6</sup>-sulfaneylidene)carbamate ((R)-3g)



Reaction performed according to General Procedure D. Cyclohexylamine (57  $\mu$ L, 0.50 mmol, 2.0 equiv) and triethylamine (70  $\mu$ L, 0.50 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride (*R*)-2a (69 mg, 0.25 mmol, 1 equiv) and flame-dried

LiBr (43 mg, 0.50 mmol, 2 equiv) in MeCN (0.83 mL, 0.3 M) at RT and warmed to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfonimidamide (*R*)-3g (60.8mg, 68%, 97% *ee*) as a white solid. mp = 124–125 °C. R<sub>f</sub> 0.32 (10% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>). IR (film)/cm<sup>-1</sup> 2933, 2855, 1741, 1684, 1453, 1368, 1278, 1162 1096, 1021, 931, 909, 861, 813, 671. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.83 (d, *J* = 8.4 Hz, 2H, 2 × Ar–H), 7.30 (d, *J* = 7.8 Hz, 2H, 2 × Ar–H),

6.03 (d, *J* = 7.5 Hz, 1H, NH), 3.19–3.02 (m, 1H, NHC*H*), 2.43 (s, 3H, Ar–CH<sub>3</sub>), 2.04–1.97 (m, 1H, 1 × NHCHC*H*H), 1.76–1.63 (m, 1H, 1 × NHCHC*H*H), 1.55–1.45 (m, 2H, 2 × NHCHCH*H*), 1.40 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>), 1.36–1.22 (m, 2H, 2 × NHCHCH<sub>2</sub>C*H*H), 1.20–1.04 (m, 4H, 2 × NCHCH<sub>2</sub>CH*H* & NCHCH<sub>2</sub>CH<sub>2</sub>C*H*<sub>2</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 157.5 (C=O), 143.9 (Ar–C<sub>q</sub>), 137.2 (Ar–C<sub>q</sub>), 129.8 (2 × Ar–C), 128.0 (2 × Ar–C), 80.4 (C(CH<sub>3</sub>)<sub>3</sub>), 51.6 (NHCH), 34.6 (1 × NHCHCH<sub>2</sub>), 33.4 (1 × NHCHCH<sub>2</sub>), 28.3 (C(CH<sub>3</sub>)<sub>3</sub>), 25.3 (2 × NCHCH<sub>2</sub>CH<sub>2</sub>), 24.7 (NCHCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 21.7 (Ar–CH<sub>3</sub>). HRMS (ESI) m/z Calcd for C<sub>18</sub>H<sub>29</sub>N<sub>2</sub>O<sub>3</sub>S [M+H]<sup>+</sup>: 353.1899; Found: 353.1906. [α]<sup>23</sup><sub>D</sub> = +42 (c 0.5, CHCl<sub>3</sub>). HPLC conditions: Chiralpak IF column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 254 nm, (*R*)-3g retention times 24 min.

Synthesis of racemic sample for HPLC analysis prepared according to General Procedure D on a 0.1 mmol scale to afford the sulfonimidamide (*rac*)-3g (~10 mg) with characterisation data in accordance with the above. HPLC conditions: Chiralpak IF column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 254 nm, (*rac*)-3g retention times 19 & 24 min.

#### *tert*-Butyl (*R*)-((dimethylamino)(oxo)(*p*-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-3h)

Reaction performed according to General Procedure D. Dimethylamine hydrochloride (41 mg, 0.50 mmol, 2.0 equiv) and triethylamine (140  $\mu$ L, 1.00 mmol, 4.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride (*R*)-2a (69 mg, 0.25 mmol, 1 equiv) and flame-dried LiBr (43 mg, 0.50 mmol, 2 equiv) in MeCN (0.83 mL, 0.3 M) at RT and warmed to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 20% EtOAc/pentane) afforded sulfonimidamide (*R*)-3g (64.2 mg, 86%, 96% *ee*) as a white solid. mp = 115–116 °C. Rr 0.16 (20% EtOAc in pentane). IR (film)/cm<sup>-1</sup> 3027, 2974, 2922, 2878, 1692, 1592, 1476, 1390, 1275, 1156, 1040, 943, 820, 775. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (d, *J* = 8.3 Hz, 2H, 2 × Ar–H), 7.32 (d, *J* = 8.2 Hz, 2H, 2 × Ar–H), 2.75 (s, 6H, N(CH<sub>3</sub>)<sub>2</sub>), 2.42 (s, 3H, Ar–CH<sub>3</sub>), 1.40 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  156.7 (C=O), 144.0 (Ar–Cq), 132.6 (Ar–Cq), 129.8 (2 × Ar–C), 127.9 (2 × Ar–C), 80.3 (C(CH<sub>3</sub>)<sub>3</sub>), 37.8 (N(CH<sub>3</sub>)<sub>2</sub>), 28.2 (C(CH<sub>3</sub>)<sub>3</sub>), 21.6 (Ar–CH<sub>3</sub>). HRMS (ESI) m/z Calcd for C1<sub>14</sub>H<sub>23</sub>N<sub>2</sub>O<sub>3</sub>S [M+H]<sup>+</sup>: 299.1429; Found: 299.1437. [q]<sup>21</sup><sub>D</sub> = -28 (c 1.0, CHCl<sub>3</sub>). HPLC Conditions: Chiralpak IA column, 97:3 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm, (*R*)-3g retention time: 25 min.

Synthesis of racemic sample for HPLC analysis prepared according to General Procedure B to afford sulfonimidamide (*rac*)-3g (56.9 mg, 74%) as a colourless oil with characterisation data in accordance with the above. HPLC Conditions: Chiralpak IA column, 97:3 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm, (*rac*)-3g retention times: 23 & 25 min.

#### *tert*-Butyl (*R*)-((benzyl(methyl)amino)(oxo)(*p*-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-3i)

Reaction performed according to General Procedure D. *N*-methyl benzylamine (65  $\mu$ L, 0.50 mmol, 2.0 equiv) and triethylamine (70  $\mu$ L, 0.50 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride (*R*)-2a (69 mg, 0.25 mmol, 1 equiv) and flame-dried LiBr (43 mg, 0.50 mmol, 2 equiv) in MeCN (0.83 mL, 0.3 M) at RT and warmed to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfonimidamide (*R*)-3i (50.4 mg, 54%, 99% ee) as a white solid. mp = 95–97 °C. R<sub>f</sub> = 0.28 (5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>). IR (film)/cm<sup>-1</sup> 2971, 2926, 1666, 1450, 1282, 1248, 1148, 1085, 992, 936, 895, 816, 753. <sup>1</sup>H NMR (400 MHz,

CDCl<sub>3</sub>)  $\delta$  7.87 (d, *J* = 8.1 Hz, 2H, 2 × Ar–H), 7.38 (d, *J* = 8.1 Hz, 2H, 2 × Ar–H), 7.36–7.27 (m, 5H, 5 × Ar–H), 4.41 (d, *J* = 14.1 Hz, 1H, NC*H*H), 4.17 (d, *J* = 14.0 Hz, 1H, NCH*H*), 2.67 (s, 3H, NCH<sub>3</sub>), 2.47 (s, 3H, Ar–CH<sub>3</sub>), 1.47 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  157.0 (C=O), 144.4 (Ar–C<sub>q</sub>), 136.1 (Ar–C<sub>q</sub>), 134.5 (Ar– C<sub>q</sub>), 130.2 (2 × Ar–C), 129.1 (2 × Ar–C), 128.9 (2 × Ar–C), 128.3 (Ar–C), 128.2 (2 × Ar–C), 80.7 (*C*(CH<sub>3</sub>)<sub>3</sub>), 54.2 (NCH<sub>2</sub>), 34.7 (NCH<sub>3</sub>), 28.6 (C(CH<sub>3</sub>)<sub>3</sub>), 22.0 (Ar–CH<sub>3</sub>). HRMS (APCI) m/z Calcd for C<sub>20</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub>S [M+H]<sup>+</sup>: 375.1737; Found: 375.1735. [ $\alpha$ ]<sup>23</sup><sub>D</sub> = –12 (c 1, CHCl<sub>3</sub>). HPLC Conditions: Chiralpak IA column, 95:5 *n*hexane:/PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm. (*R*)-**3i** retention time: 33 min.

Synthesis of racemic sample for HPLC analysis prepared according to General Procedure B to afford sulfonimidamide (*rac*)-3i (56.9 mg, 61%) as a colourless oil with characterisation data in accordance with the above. HPLC Conditions: Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm. (*rac*)-3i retention times: 21 & 33 min.

#### tert-Butyl (R)-((3,4-dihydroisoquinolin-2(1H)-yl)(oxo)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-3j)

Reaction performed according to General Procedure D. 1,2,3,4-tetrahydroisoguinoline O. NBoc (63 µL, 0.50 mmol, 2.0 equiv) and triethylamine (70 µL, 0.50 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidovl fluoride (R)-2a (69 mg, 0.25 mmol, 1 equiv) and flame-dried LiBr (43 mg, 0.50 mmol, 2 equiv) in MeCN (0.83 mL, 0.3 M) at RT and warmed to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 20% EtOAc in pentane) afforded sulfonimidamide (R)-3j (90.3 mg, 93%, 97% ee) as a pale-yellow oil. Rr0.36 (20% EtOAc in pentane). IR (film)/cm<sup>-1</sup> 2974, 2930, 1670 (C=O), 1595, 1495, 1364, 1249, 1152, 951, 895, 727. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.82 (d, J = 8.4 Hz, 2H, 2 × Ar–H), 7.31 (d, J = 8.1 Hz, 2H, 2 × Ar–H), 7.14–7.10 (m, 2H, 2 × Ar-H), 7.08-7.00 (m, 2H, 2 × Ar-H), 4.41-4.32 (m, 2H, NCH<sub>2</sub>), 3.55 (dt, J = 11.7, 5.7 Hz, 1H, NCHH), 3.40 (dt, J = 17.7, 5.9 Hz, 1H, NCHH), 2.92–2.88 (m, 2H, NCH<sub>2</sub>CH<sub>2</sub>), 2.40 (s, 3H, Ar–CH<sub>3</sub>), 1.40 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 156.6 (C=O), 144.1 (Ar–C<sub>q</sub>), 133.5 (Ar–C<sub>q</sub>), 133.2 (Ar–C<sub>q</sub>), 131.8 (Ar-C<sub>q</sub>), 129.8 (2 × Ar-C), 128.8 (Ar-C), 127.9 (2 × Ar-C), 126.8 (Ar-C), 126.4 (Ar-C), 126.4 (Ar-C), 80.4 (C(CH<sub>3</sub>)<sub>3</sub>), 47.4 (NCH<sub>2</sub>), 43.5 (NCH<sub>2</sub>CH<sub>2</sub>), 29.0 (NCH<sub>2</sub>CH<sub>2</sub>), 28.1 (C(CH<sub>3</sub>)<sub>3</sub>), 21.6 (Ar–CH<sub>3</sub>). HRMS (ESI) m/z Calcd for  $C_{21}H_{27}N_2O_3S$  [M+H]<sup>+</sup>: 387.1742; Found: 387.1747. [ $\alpha$ ]<sup>23</sup><sub>D</sub> = 0 (c 1.0, CHCl<sub>3</sub>). HPLC Conditions Chiralpak IA column, 95:5 nhexane: iPrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm, (R)-3j retention times: 33 min.

Synthesis of racemic sample for HPLC analysis prepared according to General Procedure B to afford sulfonimidamide (*rac*)-3j (65.3 mg, 68%) as a colourless oil with characterisation data in accordance with the above. HPLC Conditions Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm, (*rac*)-3j retention times: 26 & 33 min.

#### *tert*-Butyl (*R*)-(oxo(pyrrolidin-1-yl)(*p*-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-3k)



Reaction performed according to General Procedure D. Pyrrolidine (42 μL, 0.50 mmol, 2.0 equiv) and triethylamine (70 μL, 0.50 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride (*R*)-2a (69 mg, 0.25 mmol, 1 equiv) and flame-dried LiBr (43 mg,

0.50 mmol, 2 equiv) in MeCN (0.83 mL, 0.3 M) at RT and warmed to 80 °C for 24 h. The solvent was removed

under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfonimidamide (*R*)-3k (75.7 mg, 93%, 97% *ee*) as a white solid. mp = 129–131 °C. R<sub>f</sub> 0.25 (5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>). IR (film)/cm<sup>-1</sup> 3068, 2975, 2926, 2866, 1674 (C=O), 1595, 1457, 1275, 1156, 1059, 887, 727. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.78 (d, *J* = 8.3 Hz, 2H, 2 × Ar–H), 7.29 (d, *J* = 8.3 Hz, 2H, 2 × Ar–H), 3.32–3.19 (m, 4H, 2 × NCH<sub>2</sub>), 2.40 (s, 3H, Ar–CH<sub>3</sub>), 1.82–1.76 (m, 4H, 2 × NCH<sub>2</sub>CH<sub>2</sub>), 1.38 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  156.9 (C=O), 143.7 (Ar–C<sub>q</sub>), 134.3 (Ar–C<sub>q</sub>), 129.8 (2 × Ar–C), 127.7 (2 × Ar–C), 80.0 (*C*(CH<sub>3</sub>)<sub>3</sub>), 47.9 (2 × NCH<sub>2</sub>), 28.1 (C(*C*H<sub>3</sub>)<sub>3</sub>), 25.4 (2 × NCH<sub>2</sub>CH<sub>2</sub>), 21.6 (Ar–CH<sub>3</sub>). HRMS (ESI) *m/z* Calcd for C<sub>16</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub>S [M+H]<sup>+</sup>: 325.1586; Found: 325.1594. [α]<sup>21</sup><sub>D</sub> = –9 (c 1.0, CHCl<sub>3</sub>). HPLC conditions: Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 260 nm, (*R*)-3k retention times: 20 min.

Synthesis of racemic sample for HPLC analysis prepared according to General Procedure B to afford sulfonimidamide (*rac*)-3k (51.5 mg, 64%) as a white solid with characterisation data in accordance with the above. HPLC conditions: Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm, (*rac*)-3k retention times: 19 & 20 min.

#### tert-Butyl (R)-(morpholino(oxo)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-31)

O NBoc

Reaction performed according to General Procedure D. Morpholine (50  $\mu$ L, 0.50 mmol, 2.0 equiv) and triethylamine (70  $\mu$ L, 0.50 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride (*R*)-2a (69 mg, 0.25 mmol, 1 equiv) and LiBr (43 mg, 0.50 mmol,

2 equiv) in MeCN (0.83 mL, 0.3 M) at RT and warmed to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfonimidamide (*R*)-3I (74.9 mg, 88%, >99% ee) as a white solid. R<sub>f</sub> 0.21 (5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>). mp = 136– 138 °C. IR (film)/cm<sup>-1</sup> 2974, 2859, 1677 (C=O), 1595, 1464, 1278, 1159, 1115, 939, 816. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 (d, *J* = 8.3 Hz, 2H, 2 × Ar–H), 7.33 (d, *J* = 8.1 Hz, 2H, 2 × Ar–H), 3.72–3.70 (m, 4H, 2 × OCH<sub>2</sub>), 3.09–3.08 (m, 4H, 2 × NCH<sub>2</sub>), 2.43 (s, 3H, Ar–/CH<sub>3</sub>), 1.39 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  156.5 (C=O), 144.4 (Ar–Cq), 132.1 Ar–Cq), 130.0 (2 × Ar–C), 128.0 (2 × Ar–C), 80.5 (*C*(CH<sub>3</sub>)<sub>3</sub>), 66.2 (2 × OCH<sub>2</sub>), 45.8 (2 × NCH<sub>2</sub>), 28.1 (C(CH<sub>3</sub>)<sub>3</sub>)), 21.7 (Ar–CH<sub>3</sub>). HRMS (ESI) *m*/*z* Calcd for C<sub>16</sub>H<sub>25</sub>N<sub>2</sub>O<sub>4</sub>S [M+H]<sup>+</sup>: 341.1535; Found: 341.1540. [ $\alpha$ ]<sup>21</sup><sub>D</sub> = –11 (c 1.0, CHCl<sub>3</sub>). HPLC Conditions: Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm, (*R*)-3I retention time: 31 min.

Synthesis of racemic sample for HPLC analysis prepared according to General Procedure B to afford sulfonimidamide (*rac*)-3I (66.2 mg, 78%) as a white solid with characterisation data in accordance with the above. HPLC Conditions: Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm, (*rac*)-3I retention time: 25 & 31 min.

#### *tert*-Butyl (*R*)-(oxo(4-oxopiperidin-1-yl)(*p*-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-3m)



Reaction performed according to General Procedure D. 4-piperidone hydrochloride salt (78 mg, 0.50 mmol, 2.0 equiv) and triethylamine (140  $\mu$ L, 1.00 mmol, 4.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride (*R*)-2a (69 mg, 0.25 mmol, 1 equiv) and

flame-dried LiBr (43 mg, 0.50 mmol, 2 equiv) in MeCN (0.83 mL, 0.3 M) at RT and warmed to 80 °C for 24 h.

The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfonimidamide (*R*)-3m (30.4 mg, 35%, 97% *ee*) as a white solid. mp = 145–146 °C. R<sub>f</sub> 0.28 (10% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>). IR (film)/cm<sup>-1</sup> 2974, 2926, 2870, 1718, 1670, 1595, 1368, 1341, 1274, 1252, 1156, 1111, 924, 816, 764, 708, 667. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.79 (d, *J* = 8.4 Hz, 2H, 2 × Ar–H), 7.34 (d, *J* = 7.7 Hz, 2H, 2 × Ar–H), 3.57–3.46 (m, 4H, 2 × NCH<sub>2</sub>), 2.53 (t, *J* = 6.2 Hz, 4H, 2 × NCH<sub>2</sub>CH<sub>2</sub>), 2.44 (s, 3H, Ar–CH<sub>3</sub>), 1.42 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  206.2 (C=O), 156.9 (C=O), 144.9 (Ar–C<sub>q</sub>), 134.0 (Ar–C<sub>q</sub>), 130.5 (2 × Ar–C), 128.1 (2 × Ar–C), 81.1 (*C*(CH<sub>3</sub>)<sub>3</sub>), 45.9 (NCH<sub>2</sub>), 41.1 (NCH<sub>2</sub>CH<sub>2</sub>), 28.5 (C(CH<sub>3</sub>)<sub>3</sub>), 22.0 (Ar–CH<sub>3</sub>). HRMS (ESI) m/z Calcd for C<sub>17</sub>H<sub>25</sub>N<sub>2</sub>O<sub>4</sub>S [M+H]<sup>+</sup>: 353.1535; Found: 353.1527. [α]<sup>23</sup><sub>D</sub> = 0 (c 0.2, CHCl<sub>3</sub>). HPLC Conditions: Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 254 nm. (*R*)-3m retention times: 43 min.

Synthesis of racemic sample for HPLC analysis prepared according to General Procedure D on a 0.1 mmol scale to afford the sulfonimidamide (*rac*)-3m (~10 mg) with characterisation data in accordance with the above. HPLC Conditions: Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 254 nm. (*rac*)-3m retention times: 37 & 43 min.

#### *tert*-Butyl (*R*)-((4,4-difluoropiperidin-1-yl)(oxo)(*p*-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-3n)



Reaction performed according to General Procedure D. 4,4-difluoropiperidine (61 mg, 0.50 mmol, 2.0 equiv) and triethylamine (70  $\mu$ L, 0.50 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride (*R*)-2a (69 mg, 0.25 mmol, 1 equiv) and flame-

dried LiBr (43 mg, 0.50 mmol, 2 equiv) in MeCN (0.83 mL, 0.3 M) at RT and warmed to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfonimidamide (*R*)-3n (70.0 mg, 75%, 99% ee) as a white solid. mp = 152–154 °C. Rr 0.80 (5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>). IR (film)/cm<sup>-1</sup> 2978, 2870, 1670, 1364, 1249, 1148, 1118, 1036, 996, 913, 865, 816, 768, 708. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (d, *J* = 8.4 Hz, 2H, 2 × Ar–H), 7.34 (d, *J* = 7.7 Hz, 2H, 2 × Ar–H), 3.29 (dd, *J* = 12.8, 6.5 Hz, 4H, 2 × NCH<sub>2</sub>), 2.44 (s, 3H, Ar–CH<sub>3</sub>), 2.06 (td, *J* = 13.4, 6.5 Hz, 4H, 2 × NCH<sub>2</sub>CH<sub>2</sub>), 1.41 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  156.8 (C=O), 144.8 (Ar–Cq), 133.8 (Ar–Cq), 130.4 (2 × Ar–C), 128.0 (2 × Ar–C), 81.0 (*C*(CH<sub>3</sub>)<sub>3</sub>), 43.4 (t, *J* = 5.7 Hz, NCH<sub>2</sub>), 34.0 (t, *J* = 23.9 Hz, (NCH<sub>2</sub>CH<sub>2</sub>), 28.6 (C(CH<sub>3</sub>)<sub>3</sub>), 22.0 (Ar–CH<sub>3</sub>). <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -99.2. HRMS (ESI) m/z Calcd for C<sub>17</sub>H<sub>25</sub>F<sub>2</sub>N<sub>2</sub>O<sub>3</sub>S [M+H]<sup>+</sup>: 375.1554; Found: 375.1548. [ $\alpha$ ]<sup>23</sup><sub>D</sub> = –6 (c 1, CHCl<sub>3</sub>). HPLC conditions: Chiralpak IB column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm, (*R*)-3n retention times 10 min.

Synthesis of racemic sample for HPLC analysis prepared according to General Procedure D on a 0.1 mmol scale to afford the sulfonimidamide (*rac*)-3n (~10 mg) with characterisation data in accordance with the above. HPLC conditions: Chiralpak IB column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm, (*rac*)-3n retention times 10 & 12 min.

#### *tert*-Butyl (*R*)-((4-hydroxypiperidin-1-yl)(oxo)(*p*-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-30)



Reaction performed according to General Procedure D. Triethylamine (70 μL, 0.50 mmol,
2.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride (*R*)-2a (69 mg,
0.25 mmol, 1 equiv), 4-piperidinol (51 mg, 0.50 mmol, 2.0 equiv) and flame-dried LiBr (43

mg, 0.50 mmol, 2 equiv) in MeCN (0.83 mL, 0.3 M) at RT and warmed to 80 °C for 24 h. The solvent was

removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfonimidamide (*R*)-3o (50.0 mg, 56%, 99% ee) as a viscous oil. R<sub>f</sub> 0.11 (5% MeOH in CH<sub>2</sub>Cl<sub>2</sub>). IR (film)/cm<sup>-1</sup> 3433, 2978, 2930, 2866, 1670, 1454, 1388, 1252, 1156, 1088, 1036, 917, 865, 813, 731, 667. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.70 (d, *J* = 8.4 Hz, 2H, 2 × Ar–H), 7.30 (d, *J* = 7.8 Hz, 2H. 2 × Ar–C), 3.75 (tt, *J* = 7.5, 3.7 Hz, 1H, CHOH), 3.45–3.29 (m, 2H, 2 × NCHH), 2.97–2.91 (m, 2H, 2 × NCH*H*), 2.41 (s, 3H, Ar–CH<sub>3</sub>), 2.08 (bs, 1H, OH), 1.93–1.82 (m, 2H, 2 × NCH<sub>2</sub>C*H*H), 1.67–1.53 (m, 2H, 2 × NCH<sub>2</sub>CH*H*), 1.37 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  157.1 (C=O), 144.3 (Ar–Cq), 133.7 (Ar–Cq), 130.2 (2 × Ar–C), 128.1 (2 × Ar–C), 80.6 (*C*(CH<sub>3</sub>)<sub>3</sub>), 66.3 (CHOH), 43.3 (NCH<sub>2</sub>), 33.7 (NCH<sub>2</sub>CH<sub>2</sub>), 28.5 (C(*C*H<sub>3</sub>)<sub>3</sub>), 21.9 (Ar–CH<sub>3</sub>). HRMS (ESI) m/z Calcd for C<sub>17</sub>H<sub>27</sub>N<sub>2</sub>O<sub>4</sub>S [M+H]<sup>+</sup>: 355.1692; Found: 355.1691. [α]<sup>23</sup><sub>D</sub> = –4 (c 1, CHCl<sub>3</sub>). HPLC conditions: Chiralpak IA column, 85:15 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 254 nm, (*R*)-30 retention time: 13 min.

Synthesis of racemic sample for HPLC analysis prepared according to General Procedure D on a 0.1 mmol scale to afford the sulfonimidamide (*rac*)-30 (~10 mg) with characterisation data in accordance with the above. HPLC conditions: Chiralpak IA column, 85:15 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 254 nm, (*rac*)-30 retention times: 11 & 13 min.

## *tert*-Butyl (*R*)-4-(*N*-(*tert*-butoxycarbonyl)-4-methylphenylsulfonimidoyl)piperazine-1-carboxylate ((*R*)-3p)



Reaction performed according to General Procedure D. 1-Boc piperazine (93 mg, 0.50 mmol, 2.0 equiv) and triethylamine (70  $\mu$ L, 0.50 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride (*R*)-2a (69 mg, 0.25 mmol, 1 equiv) and LiBr

(43 mg, 0.50 mmol, 2 equiv) in MeCN (0.83 mL, 0.3 M) at RT and warmed to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 20% EtOAc/pentane) afforded sulfonimidamide (*R*)-3p (79.0 mg, 74%, 97% *ee*) as a white solid. mp = 136–138 °C. R<sub>f</sub> 0.26 (20% EtOAc in pentane). IR (film)/cm<sup>-1</sup> 2974, 2930, 2863, 1692, 1595, 1464, 1364, 1249, 1159, 1126, 932, 865, 731. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.70 (d, *J* = 8.3 Hz, 2H, 2 × Ar–H), 7.32 (d, *J* = 8.3 Hz, 2H, 2 × Ar–H), 3.47 (t, *J* = 5.1 Hz, 4H, 2 × NCH<sub>2</sub>), 3.09–3.01 (m, 4H, 2 × NCH<sub>2</sub>), 2.41 (s, 3H, Ar–CH<sub>3</sub>), 1.39 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>), 1.38 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  156.5 (C=O), 154.3 (C=O), 144.3 (Ar–Cq), 132.6 (Ar–Cq), 130.0 (2 × Ar–C), 127.9 (2 × Ar–C), 80.5 (*C*(CH<sub>3</sub>)<sub>3</sub>), 80.5 (*C*(CH<sub>3</sub>)<sub>3</sub>), 45.7 (4 × NCH<sub>2</sub>), 28.4 (C(CH<sub>3</sub>)<sub>3</sub>), 28.1 (C(CH<sub>3</sub>)<sub>3</sub>), 21.6 (ArCH<sub>3</sub>). HRMS (ESI) m/z Calcd for C<sub>21</sub>H<sub>34</sub>N<sub>3</sub>O<sub>5</sub>S [M+H]<sup>+</sup>: 440.2219; Found: 440.2227. [α]<sup>21</sup><sub>D</sub> = –6 (c 1.0, CHCl<sub>3</sub>). HPLC Conditions: Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm, (*R*)-**3p** retention time: 30 min.

Synthesis of racemic sample for HPLC analysis prepared according to General Procedure B to afford sulfonimidamide (*rac*)-3p (81.2 mg, 74%) as a white solid with characterisation data in accordance with the above. HPLC Conditions: Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm, (*rac*)-3p retention times: 27 & 30 min.

#### *tert*-Butyl (*R*)-(oxo(4-(pyrimidin-2-yl)piperazin-1-yl)(*p*-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-3q)

Reaction performed according to General Procedure D. 1-(2-pyrimidyl)piperazine (70  $\mu$ L, 0.50 mmol, 2.0 equiv) and triethylamine (70  $\mu$ L, 0.50 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride (*R*)-2a (69 mg, 0.25 mmol, 1 equiv) and flame-dried LiBr (43 mg, 0.50 mmol, 2 equiv) in MeCN (0.83 mL, 0.3 M) at RT and

warmed to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfonimidamide (*R*)-3q (72.1 mg, 69%, >99% *ee*) as a white solid. mp = 193–196 °C. R<sub>f</sub> 0.25 (10% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>). IR (film)/cm<sup>-1</sup> 3019, 2978, 2874, 1740, 1681, 1588, 1551, 1491, 1450, 1364, 1260, 1159, 954, 913. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.29 (d, *J* = 4.7 Hz, 2H, 2 × Ar–H), 7.76 (d, *J* = 8.4 Hz, 2H, 2 × Ar–H), 7.35 (d, *J* = 8.0 Hz, 2H, 2 × Ar–H), 6.52 (t, *J* = 4.7 Hz, 1H, Ar–H), 3.94 (dd, *J* = 6.0, 4.3 Hz, 4H, 2 × NCH<sub>2</sub>), 3.19 (m, 4H, NCH<sub>2</sub>), 2.44 (s, 3H, Ar–CH<sub>3</sub>), 1.43 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  161.3 (Ar–Cq), 157.8 (C=O), 156.6 (2 × Ar–C), 144.2 (Ar–Cq), 132.6 (Ar–Cq), 130.0 (2 × Ar–C), 127.9 (2 × Ar–C), 110.6 (Ar–C), 80.5 (*C*(CH<sub>3</sub>)<sub>3</sub>), 45.8 (2 × NCH<sub>2</sub>), 43.2 (2 × NCH<sub>2</sub>), 28.2 (C(CH<sub>3</sub>)<sub>3</sub>), 21.6 (Ar–CH<sub>3</sub>). HRMS (ESI) m/z Calcd for C<sub>20</sub>H<sub>28</sub>N<sub>5</sub>O<sub>3</sub>S [M+H]<sup>+</sup>: 418.1913; Found: 418.1905. [α]<sup>23</sup><sub>D</sub> = 0 (c 1, CHCl<sub>3</sub>). HPLC Conditions: Chiralpak IB column, 97:3 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm. (*R*)-3q retention times: 33 min.

Synthesis of racemic sample for HPLC analysis prepared according to General Procedure D on a 0.1 mmol scale to afford the sulfonimidamide (*rac*)-3q (~10 mg) with characterisation data in accordance with the above. HPLC Conditions: Chiralpak IB column, 97:3 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm. (*rac*)-3q retention times: 33 & 38 min.

#### tert-Butyl (R)-((4-(6-fluorobenzo[d]isoxazol-3-yl)piperidin-1-yl)(oxo)(p-tolyl)-λ<sup>6</sup>-

#### sulfaneylidene)carbamate ((R)-3r)



Reaction performed according to General Procedure D. 6-Fluoro-3-(4piperidinyl)benzisoxazole (110 mg, 0.50 mmol, 2.0 equiv) and triethylamine (70  $\mu$ L, 0.50 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride (*R*)-2a (69 mg, 0.25 mmol, 1 equiv) and flame-dried LiBr (43 mg, 0.50 mmol, 2 equiv) in MeCN (0.83 mL, 0.3 M) at RT and warmed to 80 °C for 24 h. The solvent was removed under

reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfonimidamide (*R*)-3r (88.4 mg, 75%, 98% ee) as a pale-yellow oil.  $R_f 0.27$  (5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>). IR (film)/cm<sup>-1</sup> 2974, 2930, 2855, 1737, 1670, 1614, 1446, 1271, 1148, 1111, 1044, 924, 839, 796, 731, 667. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.80 (d, *J* = 8.4 Hz, 2H, 2 × Ar–H), 7.61 (dd, *J* = 8.8, 5.1 Hz, 1H, Ar–H), 7.35 (d, *J* = 8.0 Hz, 2H, 2 × Ar–H), 7.24 (dd, *J* = 8.4, 2.1 Hz, 1H, Ar–H), 7.06 (td, *J* = 8.8, 2.1 Hz, 1H, Ar–H), 4.06 (dd, *J* = 12.2, 1.9 Hz, 1H, NC*H*H), 3.87 (dd, *J* = 12.1, 1.9 Hz, 1H, NC*H*H), 3.12 (p, *J* = 7.7 Hz, 1H, NCH<sub>2</sub>CH<sub>2</sub>C*H*), 2.90–2.79 (m, 1H, NCH*H*), 2.72 (ddd, *J* = 12.1, 8.3, 6.1 Hz, 1H, NCH*H*), 2.45 (s, 3H, Ar–CH<sub>3</sub>), 2.12 (tt, *J* = 8.8, 4.6 Hz, 4H, 2 × NCH<sub>2</sub>C*H*<sub>2</sub>), 1.43 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  164.8 (d, *J* = 280 Hz, Ar–Cq), 164.3 (Ar–Cq), 160.4 (C=N), 156.6 (C=O), 134.0 (Ar–Cq), 130.3 (2 × Ar–C), 128.2 (2 × Ar–C), 125.5 (Ar–Cq), 122.7 (*J* = 11 Hz, Ar–C), 117.3 (Ar–Cq), 113.2 (d, *J* = 25 Hz, Ar–C), 97.9 (d, *J* = 27 Hz, Ar–C), 80.8 (C(CH<sub>3</sub>)<sub>3</sub>), 46.8 (NCH<sub>2</sub>), 45.3 (NCH<sub>2</sub>). 34.1 (NCH<sub>2</sub>CH<sub>2</sub>CH), 30.3 (1 × NCH<sub>2</sub>CH<sub>2</sub>), 30.0 (1 × NCH<sub>2</sub>CH<sub>2</sub>), 28.6 (C(CH<sub>3</sub>)<sub>3</sub>, 22.0 (Ar–CH<sub>3</sub>). <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  109.0. HRMS (ESI) m/z Calcd for C<sub>24</sub>H<sub>29</sub>N<sub>3</sub>O<sub>4</sub>SF [M+H]<sup>+</sup>: 474.1863; Found:

474.1861. [α]<sup>23</sup><sub>D</sub> = +20 (c 0.5, CHCl<sub>3</sub>). HPLC conditions: Chiralpak IA column, 90:10 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm. (*R*)-3*r* retention time: 36 min.

Synthesis of racemic sample for HPLC analysis prepared according to General Procedure D on a 0.1 mmol scale to afford the sulfonimidamide (*rac*)-3r (~10 mg) with characterisation data in accordance with the above. HPLC conditions: Chiralpak IA column, 90:10 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm. (*rac*)-3r retention times: 23 & 36 min.

## *tert*-Butyl (*R*)-(((3-(10,11-dihydro-5*H*-dibenzo[*b*,*f*]azepin-5-yl)propyl)(methyl)amino)(oxo)(*p*-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-3s)



Prepared according to General Procedure D. Desipramine hydrochloride (151 mg, 0.50 mmol, 2.0 equiv) and triethylamine (140  $\mu$ L, 1.00 mmol, 4.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride (*R*)-2a (69 mg, 0.25 mmol, 1 equiv) and LiBr (43 mg, 0.50 mmol, 2 equiv) in MeCN (0.83 mL, 0.3 M) at RT and warmed

to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 20% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfonimidamide (*R*)-3s (96.8 mg, 75%, 98% ee) as a colourless oil. R<sup>*t*</sup> 0.17 (20% EtOAc in pentane). IR (film)/cm<sup>-1</sup> 3060, 2974, 2922, 1670, 1595, 1487, 1454, 1390, 1249, 1152, 910, 865, 731. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.67 (d, *J* = 8.3 Hz, 2H, 2 × Ar–H), 7.22 (d, *J* = 8.3 Hz, 2H, 2 × Ar–H), 7.15–7.10 (m, 4H, 4 × Ar–C), 7.08 (d, *J* = 7.4 Hz, 2H, 2 × Ar–H), 6.95–6.91 (m, 2H, 2 × Ar–H), 3.72 (t, *J* = 6.6 Hz, 2H, NCH<sub>2</sub>), 3.29–3.17 (m, 2H, NCH<sub>2</sub>), 3.15 (s, 4H, 2 × Ar–CH<sub>2</sub>), 2.69 (s, 3H, NCH<sub>3</sub>), 2.40 (s, 3H, Ar–CH<sub>3</sub>), 1.79–1.74 (m, 2H, NCH<sub>2</sub>CH<sub>2</sub>), 1.42 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  156.7 (C=O), 148.1 (2 × Ar–C<sub>q</sub>), 143.7 (Ar–C<sub>q</sub>), 134.7 (Ar–C<sub>q</sub>), 134.4 (2 × Ar–C<sub>q</sub>), 130.0 (2 × Ar–C), 129.7 (2 × Ar–C), 127.6 (2 × Ar–C), 126.5 (2 × Ar–C), 122.7 (2 × Ar–C), 119.9 (2 × Ar–C), 80.1 (C(CH<sub>3</sub>)<sub>3</sub>), 47.8 (NCH<sub>2</sub>), 47.6 (NCH<sub>2</sub>), 34.7 (NCH<sub>3</sub>), 32.2 (2 × Ar–CH<sub>2</sub>), 28.2 (C(CH<sub>3</sub>)<sub>3</sub>), 25.9 (NCH<sub>2</sub>CH<sub>2</sub>), 21.6 (Ar–CH<sub>3</sub>). HRMS (ESI) m/z Calcd for C<sub>30</sub>H<sub>38</sub>N<sub>3</sub>O<sub>3</sub>S [M+H]<sup>+</sup>: 520.2634; Found: 520.2622. [α]<sup>21</sup><sub>D</sub> = +8 (c 1.0, CHCl<sub>3</sub>). HPLC conditions: Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 290 nm, (*R*)-3s retention time: 30 min.

Synthesis of racemic sample for HPLC analysis prepared according to General Procedure B to afford sulfonimidamide (*rac*)-3s (77.7 mg, 60%) as a colourless oil with characterisation data in accordance with the above. HPLC conditions: Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 290 nm, (*rac*)-3s retention times: 22 & 30 min.

#### *tert*-Butyl ((*R*)-oxo(((*S*)-1-phenylethyl)amino)(*p*-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-3t)



Prepared according to General Procedure D. (S)-1-phenylethan-1-amine (64  $\mu$ L, 0.50 mmol, 2.0 equiv) and triethylamine (70  $\mu$ L, 0.50 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride (*R*)-2a (69 mg, 0.25 mmol, 1 equiv) and LiBr

(43 mg, 0.50 mmol, 2 equiv) in MeCN (0.83 mL, 0.3 M) at RT and warmed to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfonimidamide (*R*)-3t (42 mg, 45%) as a single diastereomer as a colourless oil.  $R_f$  0.24 (5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) in CH<sub>2</sub>Cl<sub>2</sub>). IR (film)/cm<sup>-1</sup> 3083, 2978, 1673, 1453, 1367, 1278, 1162, 1118. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.58

(d, J = 8.4 Hz, 2H, 2 × Ar–H), 7.15–7.07 (m, 5H, 5 × Ar–C), 7.03–6.96 (m, 2H, 2 × Ar–H), 6.55 (d, J = 4.7 Hz, 1H, NH), 4.47–4.44 (m, 1H, NHC*H*), 2.34 (s, 3H, Ar–CH<sub>3</sub>), 1.57 (d, J = 6.8 Hz, 3H, CHC*H*<sub>3</sub>), 1.41 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  157.3 (C=O), 143.5 (Ar–C<sub>q</sub>), 141.3 (Ar–C<sub>q</sub>), 136.0 (Ar–C<sub>q</sub>), 129.3 (2 × Ar–C), 128.4 (2 × Ar–C), 127.8 (2 × Ar–C), 127.4 (Ar–C), 126.2 (2 × Ar–C), 80.4 (C(CH<sub>3</sub>)<sub>3</sub>), 52.6 (NCH), 28.1 (C(CH<sub>3</sub>)<sub>3</sub>), 24.1 (CH(*C*H<sub>3</sub>)), 21.4 (Ar–CH<sub>3</sub>). HRMS (APCI +p) m/z: Calcd for C<sub>20</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub>S [M+H]<sup>+</sup>: 375.1737; Found: 375.1737. [ $\alpha$ ]<sup>23</sup><sub>D</sub> = +4 (c 1.0, CDCl<sub>3</sub>).

#### *tert*-Butyl ((*R*)-oxo(((*R*)-1-phenylethyl)amino)(*p*-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-3u)

Prepared according to General Procedure D. (*R*)-1-phenylethan-1-amine (64  $\mu$ L, N Ph N 0.50 mmol, 2.0 equiv) and triethylamine (70  $\mu$ L, 0.50 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride (*R*)-2a (69 mg, 0.25 mmol, 1 equiv) and LiBr

(43 mg, 0.50 mmol, 2 equiv) in MeCN (0.83 mL, 0.3 M) at RT and warmed to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfonimidamide (*R*)-3u (40 mg, 43%) as a single diastereomer as a colourless oil. R<sub>f</sub> 0.28 (5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>). IR (film)/cm<sup>-1</sup> 3063, 2978, 1677, 1453, 1367, 1274, 1159, 1118, 969, 909. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.86 (d, *J* = 8.4 Hz, 2H, 2 × Ar–H), 7.34–7.25 (m, 7H, 7 × Ar–C), 6.58 (s, 1H, NH), 4.43 (q, *J* = 6.9 Hz, 1H, NHC*H*), 2.45 (s, 3H, Ar–CH<sub>3</sub>), 1.39 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>), 1.30 (d, *J* = 6.9 Hz, 3H, CHC*H*<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 157.0 (C=O), 143.9 (Ar–C<sub>q</sub>), 142.3 (Ar–C<sub>q</sub>), 136.8 (Ar–C<sub>q</sub>), 129.6 (2 × Ar–C), 128.6 (2 × Ar–C), 127.9 (2 × Ar–C), 127.6 (Ar–C), 126.2 (2 × Ar–C), 80.3 (C(CH<sub>3</sub>)<sub>3</sub>), 52.4 (NHCH), 28.1 (C(CH<sub>3</sub>)<sub>3</sub>), 23.0 (CHCH<sub>3</sub>), 21.5 (Ar–CH<sub>3</sub>). HRMS (APCI +p) m/z: Calcd for C<sub>20</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub>S [M+H]<sup>+</sup>: 375.1737; Found: 375.1725. [α]<sup>23</sup><sub>D</sub> = +39 (c 1.0, CDCl<sub>3</sub>).

#### Crystal Structure Data for (R)-3h

#### (*R*)-3h

The absolute structure of (*R*)-3h was unambiguously determined by use of the Flack parameter [x = -0.035(17)].

#### Figures



Figure S 1: The crystal structure of (R)-3h.





#### Methyl 3-((4-bromophenyl)thio)propanoate (7)

Methyl acrylate (2.00 mL, 22.0 mmol, 1.1 equiv) and sodium acetate (247 mg, 3.0 mmol, 0.15 equiv) were added to 4-bromobenzenethiol (3.78 g, 20.0 mmol, 1 equiv) in THF:H<sub>2</sub>O (1:1, 67 mL) and stirred at 25 °C for 18 h. Aqueous NaHCO<sub>3</sub> (50 mL) was added and the aqueous mixture was extracted with EtOAc (3 × 60 mL) and washed with brine (60 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated under reduced pressure to give sulfide **7** (5.08, 92%) as a white solid. mp = 52–54 °C. R<sub>f</sub> 0.18 (5% Et<sub>2</sub>O in pentane). IR (film)/cm<sup>-1</sup> 2997, 2950, 2844, 1737, 1474, 1435, 1359, 1245, 1217, 1195, 1172, 1092, 1008, 811. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.42 (d, *J* = 8.6 Hz, 2H, 2 × Ar–H), 7.23 (d, *J* = 8.6 Hz, 2H, 2 × Ar–H), 3.68 (s, 3H, OCH<sub>3</sub>), 3.15 (t, *J* = 7.4 Hz, 2H, SCH<sub>2</sub>), 2.62 (t, *J* = 7.4 Hz, 2H, SCH<sub>2</sub>CH<sub>2</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  172.5 (C=O), 134.6 (Ar–Cq), 132.2 (2 × Ar–C), 131.8 (2 × Ar–C), 120.8 (Ar–Cq), 52.0 (OCH<sub>3</sub>), 34.2 (SCH<sub>2</sub>), 29.3 (SCH<sub>2</sub>CH<sub>2</sub>). Analytical data (NMR) in agreement with those reported in the literature.<sup>[3]</sup>

#### Methyl 3-((4-bromophenyl)sulfinyl)propanoate (8)

Br OMe

Prepared according to a literature procedure.<sup>[4,5]</sup> A solution of VO(acac)<sub>2</sub> (16 mg, 0.06 mmol, 1 mol%) in CHCl<sub>3</sub> (1.5 mL) was added dropwise to a solution of (*S*,*E*)-2-((((1-hydroxy-3,3-dimethylbutan-2-yl)imino)methyl)-4,6-diiodophenol (42 mg,

0.09 mmol, 1.5 mol%) in CHCl<sub>3</sub> (1.5 mL) and stirred at 25 °C for 30 min. Sulfide **7** (1.65 g, 6.0 mmol, 1.0 equiv) and CHCl<sub>3</sub> (3 mL) were added and the reaction mixture cooled to 0 °C. H<sub>2</sub>O<sub>2</sub> (30% in H<sub>2</sub>O, 736  $\mu$ L, 7.2 mmol, 1.2 equiv) was added dropwise and the mixture left to vigorously stir at 0 °C for 72 h. Sat. aq. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> (30 mL) was added and the aqueous mixture was extracted with CHCl<sub>3</sub> (3 × 30 mL) and washed with brine (40 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated under reduced pressure. Purification by flash column chromatography (40% EtOAc in pentane) afforded sulfoxide **(S)-8** (1.19 g, 68%, 99% *ee*) as a white solid. mp = 79–80 °C. R<sub>f</sub> 0.23 (40% EtOAc in pentane). IR (film)/cm<sup>-1</sup> 3050, 2997, 2948, 2916, 2846, 1728, 1571, 1472, 1435, 1415, 1388, 1239, 1170, 1131, 1060, 1034, 1005, 893, 826, 762, 732, 718. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.68 (d, *J* = 8.5 Hz, 2H, 2 × Ar–H), 7.49 (d, *J* = 8.6 Hz, 2H, 2 × Ar–H), 3.67 (s, 3H, OCH<sub>3</sub>), 3.23 (ddd, *J* = 13.2, 8.2, 6.8 Hz, 1H, SCHH), 2.94 (ddd, *J* = 13.4, 8.0, 5.7 Hz, 1H, SCHH), 2.84 (ddd, *J* = 17.2, 8.1, 6.8 Hz, 1H, SCH<sub>2</sub>CHH), 2.56 (ddd, *J* = 17.2, 8.2, 5.7 Hz, 1H, SCH<sub>2</sub>CHH). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  171.6 (C=O), 142.2 (Ar–Cq), 132.7 (2 × Ar–C), 125.8 (Ar–Cq), 125.8 (2 × Ar–C), 52.3 (SCH<sub>2</sub>), 51.3 (OCH<sub>3</sub>), 26.1 (SCH<sub>2</sub>CH<sub>2</sub>). HRMS (Voltage El+) *m*/z Calcd for C<sub>10</sub>H<sub>11</sub>O<sub>3</sub>SBr [M+H]\*: 289.9612;

Found: 289.9607.  $[\alpha]^{23}_{D} = -98$  (c 1.0, CHCl<sub>3</sub>). HPLC conditions: Chiralpak IA column, 90:10 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm, **(S)-8** retention time: 19 min.

Synthesis of racemic sample for HPLC analysis prepared by *m*CPBA oxidation to afford sulfoxide (*rac*)-8 (5.09 g, 87%) as a white solid with characterisation data in accordance with the above. HPLC conditions: Chiralpak IA column, 90:10 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm, (*rac*)-8 retention times: 19 & 21 min.

#### Methyl 3-(4-bromo-N-(tert-butoxycarbonyl)phenylsulfonimidoyl)propanoate ((S)-9)

Br

Prepared according to a literature procedure.<sup>[6]</sup> Magnesium oxide (659 mg, 16.4 mmol, 4 equiv), *tert*-butyl carbamate (720 mg, 6.2 mmol, 1.5 equiv), PhI(OAc)<sub>2</sub> (1.98 g, 6.2 mmol, 1.5 equiv) and Rh<sub>2</sub>(OAc)<sub>4</sub> (45 mg, 0.10 mmol, 2.5 mol%) were added to a

stirred solution of sulfoxide **(S)-8** (1.19 g, 4.1 mmol, 1 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (40 mL, 0.1 M) at RT and warmed to 40 °C for 18 h. At rt, the reaction mixture was filtered through celite and concentrated under reduced pressure. Purification by flash column chromatography (25% EtOAc in pentane) afforded sulfoximine **(S)-9** (1.45 g, 87%, 99% *ee*) as a white solid. mp = 83–84 °C. Rr 0.15 (25% EtOAc in pentane). mp = 100–101 °C. IR (film)/cm<sup>-1</sup> 2978, 1740 (C=O), 1699, 1669, 1390, 1274, 1252, 1155, 1110. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.82–7.78 (m, 2H, 2 × Ar–H), 7.77–7.73 (m, 2H, 2 × Ar–H), 3.76–3.65 (m, 1H, SC*H*H), 3.63 (s, 3H, OCH<sub>3</sub>), 3.58 (dd, *J* = 6.3, 5.5 Hz, 1H, SCH*H*), 2.81 (qdd, *J* = 17.3, 8.9, 6.2 Hz, 2H, SCH<sub>2</sub>C*H*<sub>2</sub>), 1.38 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  170.0 (C=O), 157.3 (C=O), 136.0 (Ar–Cq), 133.0 (Ar–Cq), 129.6 (2 × Ar–C), 129.4 (2 × Ar–C), 81.0 (*C*(CH<sub>3</sub>)<sub>3</sub>), 52.4 (OCH<sub>3</sub>), 51.6 (SCH<sub>2</sub>), 27.9 (C(CH<sub>3</sub>)<sub>3</sub>), 27.1 (SCH<sub>2</sub>CH<sub>2</sub>). HRMS (ESI) m/z: Calcd for C<sub>15</sub>H<sub>21</sub>NO<sub>5</sub>S<sub>81</sub>Br [M+H]<sup>+</sup>: 408.0303; Found: 408.0296. [ $\alpha$ ]<sup>23</sup><sub>D</sub> = +44 (c 1.0, CHCl<sub>3</sub>). HPLC conditions: Chiralpak IA column, 93:7 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm, (*R*)-9 retention time: 22 min.

Synthesis of racemic sample for HPLC analysis prepared by using the above procedure to afford sulfoximine (*rac*)-9 (6.24 g, 95%) as a white solid with characterisation data in accordance with the above. HPLC conditions: Chiralpak IA column, 93:7 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm, (*rac*)-9 retention times: 22 & 37 min.

#### Sodium ((4-bromophenyl)sulfinyl)(tert-butoxycarbonyl)amide ((S)-1b)

5 M NaOH in MeOH (718 µL, 3.6 mmol, 1.05 equiv) was added to sulfoximine **(S)-9** (1.39 g, 3.4 mmol, 1.0 equiv) at 25 °C in CH<sub>2</sub>Cl<sub>2</sub> (25 mL, 0.1 M) and the reaction was stirred for 1 h. The suspension was then filtered to collect the white precipitate, which was washed with CH<sub>2</sub>Cl<sub>2</sub> (100 mL). Excess solvent was then removed under reduced pressure to afford sulfinamide salt **(S)-1b** as a white solid (1.05 g, 90%, 99% ee). mp = 227–229 °C. IR (film)/cm<sup>-1</sup> 2981, 1640, 1468, 1390, 1271, 1162, 998, 834, 760; <sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O)  $\delta$  7.71–7.65 (m, 2H, 2 × Ar–H), 7.56–7.50 (m, 2H, 2 × Ar–H), 1.40 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, D<sub>2</sub>O)  $\delta$  165.9 (C=O), 145.6 (Ar–C<sub>q</sub>), 132.0 (2 × Ar–C), 126.5 (2 × Ar–C), 124.6 (Ar–C<sub>q</sub>), 79.7 (C(CH<sub>3</sub>)<sub>3</sub>), 27.7 (C(CH<sub>3</sub>)<sub>3</sub>). HRMS (ESI) m/z: Calcd for C<sub>11</sub>H<sub>13</sub>NO<sub>3</sub>SBr [M]<sup>-</sup>: 317.9800; Found: 317.9806. Further characterisation was carried out after washing ~20 mg with sat. aq. NH<sub>4</sub>Cl solution. Sulfinamide: [α]<sup>23</sup><sub>D</sub> = +88 (c 1.0, CDCl<sub>3</sub>). HPLC conditions: Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm, **(S)-1b** retention time: 20 min. Synthesis of racemic sample for HPLC analysis prepared by using the above procedure to afford sulfinamide salt (*rac*)-1b (786 mg, 89%) as a white solid with characterisation data in accordance with the above. HPLC conditions: Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm, (*rac*)-1b retention times: 18 & 20 min.

#### *tert*-Butyl ((4-bromophenyl)fluoro(oxo)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-2b)

Prepared according to General Procedure C. Selectfluor (850 mg, 2.4 mmol, 2.0 equiv) was added to a stirred solution of sulfinamide salt (*S*)-1b (411 mg, 1.2 mmol, 1.0 equiv) and potassium acetate (235 mg, 2.4 mmol, 2.0 equiv) in ethanol (6.0 mL, 0.2 M) at 0 °C and slowly warmed to RT over 24 h. The reaction mixture was quenched with water (10 mL) and diluted with  $CH_2Cl_2$  (10 mL). The mixture was extracted with  $CH_2Cl_2$  (5 × 15 mL) and the combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered and concentrated under reduced pressure. No further purification was required giving sulfonimidoyl fluoride (*R*)-2b (175 mg, quant, 92% ee) as a colourless oil. IR (film)/cm<sup>-1</sup> 3093, 2982, 1707, 1573, 1331, 1252, 1148, 1069, 1010, 909, 857, 756. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.01–7.94 (m, 2H, 2 × Ar–H), 7.79–7.74 (m, 2H, 2 × Ar–H), 1.53 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  151.7 (C=O), 132.5 (2 × Ar–C), 132.3 (Ar–Cq), 130.8 (Ar–Cq), 129.2 (2 × Ar–C), 82.7 (C(CH<sub>3</sub>)<sub>3</sub>), 27.5 (C(CH<sub>3</sub>)<sub>3</sub>). <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  69.8. [ $\alpha$ ]<sup>23</sup><sub>D</sub> = –15 (c 1.7, CDCl<sub>3</sub>). HPLC conditions: Chiralpak IA column, 98:2 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm, (*R*)-2b retention time: 11 min.

Synthesis of racemic sample for HPLC analysis prepared by using the above procedure to afford sulfonimidoyl fluoride (*rac*)-2b (175 mg, quant.) as a colourless oil with characterisation data in accordance with the above. HPLC conditions: Chiralpak IA column, 98:2 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm, (*rac*)-2b retention times: 10 & 11 min.

#### tert-Butyl (R)-((benzylamino)(4-bromophenyl)(oxo)-λ<sup>6</sup>-sulfaneylidene)carbamate ((R)-3v)



Prepared according to General Procedure D. Benzylamine (55  $\mu$ L, 0.50 mmol, 2.0 equiv) and triethylamine (70  $\mu$ L, 0.50 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride (*R*)-2b (85 mg, 0.25 mmol, 1.0 equiv) and LiBr (43 mg, 0.50 mmol,

2.0 equiv) in MeCN (0.83 mL, 0.3 M) at RT and heated to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 2% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfonimidamide (*R*)-3v (66 mg, 62%, 92% *ee*) as a white solid.  $R_f = 0.23$  (2% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>); mp = 154–156 °C. IR (film)/cm<sup>-1</sup> 3086, 1684, 1572, 1282, 1159, 1088, 909; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.79–7.75 (m, 2H, 2 × Ar–H), 7.63–7.60 (m, 2H, 2 × Ar–H), 7.30–7.25 (m, 3H, 3 × Ar–C), 7.23–7.17 (m, 2H, 2 × Ar–H), 6.89 (s, 1H, NH), 4.25 (d, *J* = 14.1 Hz, 1H, NHC*H*H), 3.99 (d, *J* = 14.1 Hz, 1H, NHC*H*H), 1.38 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  156.8 (C=O), 138.0 (Ar-C<sub>q</sub>), 135.6 (Ar-C<sub>q</sub>), 132.3 (2 × Ar–C), 129.4 (2 × Ar–C), 128.7 (2 × Ar–C), 128.2 (Ar–C<sub>q</sub>), 128.0 (3 × Ar–C), 80.9 (*C*(CH<sub>3</sub>)<sub>3</sub>), 45.5 (NHCH<sub>2</sub>), 28.0 (C(CH<sub>3</sub>)<sub>3</sub>). HRMS (ESI) m/z: Calcd for C<sub>18</sub>H<sub>22</sub>N<sub>2</sub>O<sub>3</sub>SBr [M+H]<sup>+</sup>: 425.0535; Found: 425.0531. [α]<sup>23</sup><sub>D</sub> = +6 (c 0.5, CH<sub>2</sub>Cl<sub>2</sub>). HPLC conditions: Chiralpak ID column, 90:10 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 254 nm, (*R*)-3v retention time: 15 min.

Synthesis of racemic sample for HPLC analysis prepared by using the above procedure to afford sulfonimidamide (*rac*)-3v (20 mg, 47%) as a white solid with characterisation data in accordance with the above. HPLC conditions: Chiralpak ID column, 90:10 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 254 nm, (*rac*)-3v retention times: 15 & 20 min.

#### *tert*-Butyl (*R*)-((allylamino)(4-bromophenyl)(oxo)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-3w)

Prepared according to General Procedure D. Allylamine (38  $\mu$ L, 0.50 mmol, 2.0 equiv) and triethylamine (70  $\mu$ L, 0.50 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride (*R*)-2b (85 mg, 0.25 mmol, 1.0 equiv) and LiBr (43 mg, 0.50 mmol, 2.0 equiv) in MeCN (0.83 mL, 0.3 M) at RT and heated to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfonimidamide (*R*)-3w (70 mg, 75%, 90% ee) as a white solid.  $R_r = 0.31$  (5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>); mp = 86–88 °C. IR (film)/cm<sup>-1</sup> 3243, 2981, 1677, 1572, 1390, 1282, 1159, 1088, 905; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.84–7.81 (m, 2H, 2 × Ar–H), 7.70–7.66 (m, 2H, 2 × Ar–H), 6.36 (s, 1H, NH), 5.73 (dddd, *J* = 17.1, 10.2, 6.1, 5.5 Hz, 1H, NCH<sub>2</sub>CH), 5.22 (dq, *J* = 17.1, 1.5 Hz, 1H, NCH<sub>2</sub>CHCHH), 5.15 (dq, *J* = 10.2, 1.3 Hz, 1H, NCH<sub>2</sub>CHCHH), 3.68 (dd, *J* = 15.1, 5.5 Hz, 1H, NCHH), 3.46 (dd, *J* = 15.0, 6.1 Hz, 1H, NCHH), 1.41 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  156.7 (C=O), 138.0 (Ar–Cq), 132.4 (2 × Ar–C), 132.3 (NCH<sub>2</sub>CH), 129.5 (2 × Ar–C), 128.2 (Ar–Cq), 118.2 (NCH<sub>2</sub>CHCH<sub>2</sub>), 80.8 (*C*(CH<sub>3</sub>)<sub>3</sub>), 43.9 (NCH<sub>2</sub>), 28.0 (C(CH<sub>3</sub>)<sub>3</sub>). HRMS (ESI) m/z: Calcd for C<sub>14</sub>H<sub>20</sub>N<sub>2</sub>O<sub>3</sub>SBr [M+H]\*: 375.0378; Found: 375.0380. [ $\alpha$ ]<sup>23</sup><sub>D</sub> = +8 (c 0.5, CH<sub>2</sub>Cl<sub>2</sub>). HPLC conditions: Chiralpak IA column, 97:3 *n*hexane:/PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm, (*R*)-3w retention time: 20 min.

Synthesis of racemic sample for HPLC analysis prepared by using the above procedure to afford sulfonimidamide (*rac*)-3w (18 mg, 48%) as a white solid with characterisation data in accordance with the above. HPLC conditions: Chiralpak IA column, 97:3 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm, (*rac*)-3w retention times: 20 & 29 min.

#### *tert*-Butyl ((4-bromophenyl)(oxo)(piperidin-1-yl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-3x)

Prepared according to General Procedure D. Piperidine (50 μL, 0.50 mmol, 2.0 equiv) and triethylamine (70 μL, 0.50 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride (*R*)-2b (85 mg, 0.25 mmol, 1.0 equiv) and LiBr (43 mg, 0.50 mmol, 2.0 equiv) in MeCN (0.83 mL, 0.3 M) at RT and heated to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 2% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfonimidamide (*R*)-3x (88 mg 87%, 90% ee) as a white solid.  $R_f = 0.36$  (2% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>); mp = 171–172 °C. IR (film)/cm<sup>-1</sup> 2974, 2937, 2855, 1674, 1572, 1275, 1151, 931, 745; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.75–7.71 (m, 2H, 2 × Ar–H), 7.69–7.65 (m, 2H, 2 × Ar–H), 3.20–3.05 (m, 4H, 2 × NCH<sub>2</sub>), 1.67–1.59 (m, 4H, 2 × NCH<sub>2</sub>CH<sub>2</sub>), 1.51–1.44 (m, 2H, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 1.42 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 156.4 (C=O), 135.8 (Ar–C<sub>q</sub>), 132.3 (2 × Ar–C), 129.2 (2 × Ar–C), 127.9 (Ar–C<sub>q</sub>), 80.4 (*C*(CH<sub>3</sub>)<sub>3</sub>), 46.6 (2 × NCH<sub>2</sub>), 28.0 (C(CH<sub>3</sub>)<sub>3</sub>), 25.2 (2 × NCH<sub>2</sub>CH<sub>2</sub>), 23.5 (NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>). HRMS (ESI) m/z: Calcd for C<sub>16</sub>H<sub>24</sub>N<sub>2</sub>O<sub>3</sub>SBr [M+H]<sup>+</sup>: 403.0691; Found: 403.0703. [α]<sup>23</sup><sub>D</sub> = –8 (c 0.5, CH<sub>2</sub>Cl<sub>2</sub>). HPLC conditions: Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm, (*R*)-3x retention time: 24 min.

Synthesis of racemic sample for HPLC analysis prepared by using the above procedure to afford sulfonimidamide (*rac*)-3x (~20mg, 50%) as a white solid with characterisation data in accordance with the above. HPLC conditions: Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm, (*rac*)-3x retention times: 16 & 24 min.

## *tert*-Butyl ((*R*)-(4-bromophenyl)(methyl((*S*)-3-(naphthalen-1-yloxy)-3-(thiophen-2-yl)propyl)amino)(oxo)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-3y)

Prepared according to General Procedure D. Duloxetine Hydrochloride (167 mg, 0.50 mmol, 2.0 equiv) and triethylamine (140 µL, 1.0 mmol, 4.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride (R)-2a (85 mg, 0.25 mmol, 1.0 equiv) and LiBr (43 mg, 0.50 mmol, 2.0 equiv) in MeCN (0.83 mL, 0.3 M) at RT and heated to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) followed by (SiO<sub>2</sub>, 10% acetone in pentane) afforded sulfonimidamide (**R**)-3y (124 mg, 80%) as a single diastereomer as a white solid.  $R_f 0.15$  (10% acetone in pentane). mp = 57–60 °C. IR (film)/cm<sup>-1</sup> 2978, 1744, 1673, 1572, 1461, 1394, 1263, 1151, 1088, 775. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.27 (dd, J = 6.9, 3.0 Hz, 1H, Ar-H), 7.82-7.76 (m, 1H, Ar-H), 7.70 (d, J = 8.6 Hz, 2H, 2 × Ar-H), 7.56-7.46 (m, 4H, 4 × Ar–C), 7.41 (d, J = 8.2 Hz, 1H, Ar–H), 7.32–7.24 (m, 1H, Ar–H), 7.22 (dd, J = 5.1, 1.2 Hz, 1H, Ar–H), 7.10 (d, J = 3.4 Hz, 1H, Ar–H), 6.94 (dd, J = 5.0, 3.5 Hz, 1H, Ar–H), 6.83 (d, J = 7.7 Hz, 1H, Ar–H), 5.74 (dd, J = 8.3, 4.3 Hz, 1H, OCHAr), 3.52 (ddd, J = 13.7, 8.2, 5.3 Hz, 1H, NCHH), 3.37 (dt, J = 14.2, 7.4 Hz, 1H, NCH*H*), 2.87 (s, 3H, NCH<sub>3</sub>), 2.51 (dtd, *J* = 13.5, 8.0, 5.2 Hz, 1H, NCH<sub>2</sub>C*H*H), 2.40–2.28 (m, 1H, NCH<sub>2</sub>CH*H*), 1.45 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 156.3 (C=O), 152.8 (Ar–C<sub>q</sub>), 144.3 (Ar–C<sub>q</sub>), 136.6 (Ar– Cq), 134.5 (Ar–Cq), 132.3 (2 × Ar–C), 128.9 (2 × Ar–C), 128.0 (Ar–Cq), 127.6 (Ar–C), 126.7 (Ar–C), 126.3 (Ar– C), 125.9 (Ar-Cq), 125.7 (Ar-C), 125.3 (Ar-C), 124.98 (Ar-C), 124.97 (Ar-C), 121.8 (Ar-C), 120.9 (Ar-C), 107.0 (Ar-C), 80.5 (C(CH<sub>3</sub>)<sub>3</sub>), 73.4 (OCHAr), 47.0 (NCH<sub>2</sub>), 37.4 (NCH<sub>3</sub>), 35.4 (NCH<sub>2</sub>CH<sub>2</sub>), 28.1 (C(CH<sub>3</sub>)<sub>3</sub>). HRMS (ESI) m/z: Calcd for C<sub>29</sub>H<sub>31</sub>N<sub>2</sub>O<sub>4</sub>S<sub>2</sub>BrNa [M+Na]<sup>+</sup>: 637.0815; Found: 637.0806.  $[\alpha]^{23}_{D}$  = +10 (c 0.5,  $CH_2CI_2$ ).

#### *tert*-Butyl (*R*)-([1,1'-biphenyl]-4-yl(oxo)(piperidin-1-yl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-10)

Prepared according to a literature procedure.<sup>[7]</sup> Sulfonimidamide (*R*)-3x (40 mg, 0.10 mmol, 1 equiv), phenylboronic acid (18 mg, 0.15 mmol, 1.5 equiv), potassium carbonate (28 mg, 0.20 mmol, 2 equiv) and 1,1'-bis(di-tert-butylphosphino)ferrocene palladium dichloride (6.5 mg, 0.01 mmol, 10 mol%) was added to a glass vial with MeCN:H<sub>2</sub>O (1:1, 500  $\mu$ L, 0.2 M) and was degassed before being stirred and heated to 80 °C for 2 h. The reaction mixture was quenched with aq. sat. NH<sub>4</sub>Cl (10 mL) and diluted with CH<sub>2</sub>Cl<sub>2</sub> (10 mL). The mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 10 mL) and the combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered and concentrated under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 3% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfonimidamide (*R*)-10 (37 mg, 91%, 90% ee) as a colourless oil. R<sub>f</sub> 0.38 (3% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>). IR (film)/cm<sup>-1</sup> 2974, 2937, 2855, 1669, 1595, 1453, 1394, 1248, 1148, 928, 760. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.95–7.90 (m, 2H, 2 × Ar–H), 7.76–7.70 (m, 2H, 2 × Ar–H), 7.64–7.60 (m, 2H, 2 × Ar–H), 7.52–7.46 (m, 2H, 2 × Ar–H), 7.45–7.39 (m, 1H, Ar–H), 3.17 (q, *J* = 4.9 Hz, 4H, 2 × NCH<sub>2</sub>), 1.67 (p, *J* = 5.6 Hz, 4H, 2 × NCH<sub>2</sub>C*H*<sub>2</sub>), 1.52–1.46 (m, 2H, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 1.43 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  156.7 (C=O), 145.7 (Ar–Cq), 139.2 (Ar–

C<sub>q</sub>), 135.1 (Ar–C<sub>q</sub>), 129.0 (2 × Ar–C), 128.5 (Ar–C), 128.2 (2 × Ar–C), 127.6 (2 × Ar–C), 127.3 (2 × Ar–C), 80.1 (*C*(CH<sub>3</sub>)<sub>3</sub>), 46.6 (2 × NCH<sub>2</sub>), 28.1 (C(CH<sub>3</sub>)<sub>3</sub>), 25.2 (2 × NCH<sub>2</sub>CH<sub>2</sub>), 23.6 (NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>). [ $\alpha$ ]<sup>23</sup><sub>D</sub> = -7 (c 1.0, CDCl<sub>3</sub>). HPLC conditions: Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm, (*R*)-10 retention time: 32 min.

Synthesis of racemic sample for HPLC analysis prepared by using the above procedure to afford sulfonimidamide (*rac*)-10 (~10 mg) as a colourless oil with characterisation data in accordance with the above. HPLC conditions: Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm, (*rac*)-10 retention times: 27 & 32 min.

#### Experimental Data for Racemic Sulfinamide Salts (S4b-f)

#### Synthesis of sulfinamide salts



#### Thiol Alkylation

#### Methyl 3-(tolylthio)propanoate (S1a)

Methyl acrylate (2.00 mL, 22.1 mmol) and sodium acetate (247 mg, 3.02 mmol) were added to 4-methylbenzene-1-thiol (2.50 g, 20.1 mmol) in THF:H<sub>2</sub>O (1:1, 67 mL) and stirred at 25 °C for 18 h. Aqueous NaHCO<sub>3</sub> (50 mL) was added and the aqueous mixture was extracted with EtOAc (3 × 60 mL) and washed with brine (60 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated under reduced pressure to give sulfide **S1a** (4.25, quant.) as a colourless oil. IR (film)/cm<sup>-1</sup> 3019, 2952, 1737 (C=O), 1491, 1435, 1353, 1193, 1241, 1092, 1017, 980, 805. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.29 (d, J = 8.1 Hz, 2H, 2 × Ar–H), 7.11 (d, J = 7.9 Hz, 2H, 2 × Ar–H), 3.67 (s, 3H, OCH<sub>3</sub>), 3.11 (t, J = 7.4 Hz, 2H, SCH<sub>2</sub>CH<sub>2</sub>), 2.60 (t, J = 7.4 Hz, 2H, SCH<sub>2</sub>CH<sub>2</sub>), 2.32 (s, 3H, Ar–CH<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  172.3 (C=O), 136.9 (Ar–Cq), 131.3 (Ar–Cq), 131.1 (2 × Ar–C), 129.8 (2 × Ar–C), 51.8 (OCH<sub>3</sub>), 34.3 (SCH<sub>2</sub>), 29.8 (SCH<sub>2</sub>CH<sub>2</sub>), 21.1 (Ar–CH<sub>3</sub>). Analytical data (NMR) in agreement with those reported in the literature.<sup>[8]</sup>

#### Methyl 3-(phenylthio)propanoate (S1b)

Methyl acrylate (269 µL, 3.0 mmol, 1.0 equiv) and sodium acetate (37 mg, 0.45 mmol, 0.15 equiv) were added to benzenethiol (306 µL, 3.0 mmol, 1.0 equiv) in THF:H<sub>2</sub>O (1:1, 10 mL) and stirred at 25 °C for 18 h. Aqueous NaHCO<sub>3</sub> (50 mL) was added and the aqueous mixture was extracted with EtOAc (3 × 15 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated under reduced pressure. Purification by flash column chromatography (5% EtOAc in pentane) afforded sulfide **S1b** (498 mg, 72%) as a colourless oil. R<sub>f</sub> 0.25 (5% EtOAc in pentane). IR (film)/cm<sup>-1</sup> 2951, 1733 (C=O), 1583, 1481, 1437, 1356, 1243, 1171, 1024, 737, 690. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.39–7.35 (m, 2H, 2 × Ar–H), 7.35–7.25 (m, 2H, 2 × Ar–H), 7.24–7.18 (m, 1H, Ar–H), 3.68 (s, 3H, OCH<sub>3</sub>), 3.17 (t, *J* = 7.4 Hz, 2H, SCH<sub>2</sub>), 2.63 (t, *J* = 7.4 Hz, 2H, SCH<sub>2</sub>CH<sub>2</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  172.2 (C=O), 135.1 (Ar–Cq), 130.1 (Ar–C), 129.0 (2 × Ar–C), 126.6 (2 × Ar–C), 51.9 (OCH<sub>3</sub>), 34.2 (SCH<sub>2</sub>), 29.1 (SCH<sub>2</sub>CH<sub>2</sub>). Analytical data (NMR) in agreement with those reported in the literature.<sup>[9]</sup>

#### Methyl 3-((4-fluorophenyl)thio)propanoate (S1c)

 $_{F}$   $_{OMe}$  Methyl acrylate (1.81 mL, 20 mmol, 1.0 equiv) and sodium acetate (247 mg, 3.00 mmol, 0.15 equiv) were added to the 4-fluorobenzenethiol (2.13 mL, 20 mmol, 1 equiv) in THF:H<sub>2</sub>O (67 mL, 1:1) and stirred at 25 °C and monitored by TLC. Aqueous NaHCO<sub>3</sub> (50 mL) was added and the aqueous mixture was extracted with EtOAc (3 × 60 mL). The combined organic layers were dried (MgSO<sub>4</sub>), filtered, and concentrated under reduced pressure to give sulfide **S1c** (3.59 g, 84%) as a yellow oil which was

used without further purification. IR (film)/cm<sup>-1</sup> 2952, 1733 (C=O), 1588, 1491, 1435, 1357, 1219, 1156, 1088, 980, 820. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.39–7.36 (m, 2H, 2 × Ar–H), 7.02–6.98 (m, 2H, 2 × Ar–H), 3.66 (s, 3H, OCH<sub>3</sub>), 3.09 (t, *J* = 7.4 Hz, 2H, SCH<sub>2</sub>), 2.58 (t, *J* = 7.4 Hz, 2H, SCH<sub>2</sub>CH<sub>2</sub>).<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 172.2 (C=O), 162.3 (d, <sup>1</sup>*J*<sub>C-F</sub> = 247 Hz, Ar–C<sub>q</sub>), 133.5 (d, <sup>3</sup>*J*<sub>C-F</sub> = 8.1 Hz, 2 × Ar–C), 130.1 (d, <sup>4</sup>*J*<sub>C-F</sub> = 3.1 Hz, Ar–C<sub>q</sub>), 116.3 (d, <sup>2</sup>*J*<sub>C-F</sub> = 21.9 Hz, 2 × Ar–C), 51.9 (OCH<sub>3</sub>), 34.3 (SCH<sub>2</sub>), 30.5 (SCH<sub>2</sub>CH<sub>2</sub>). <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>) δ -114.6– -114.7 (m, 1F, Ar–F). Analytical data (NMR) in agreement with those reported in the literature.<sup>[10]</sup>

#### Methyl 3-((4-methoxyphenyl)thio)propanoate (S1d)

Methyl acrylate (1.81 mL, 20 mmol, 1.0 equiv) and sodium acetate (247 mg, 3.00 mmol, 0.15 equiv) were added to the 4-methoxybenzenethiol (2.13 mL, 20 mmol, 1 equiv) in THF:H<sub>2</sub>O (67 mL, 1:1) and stirred at 25 °C and monitored by TLC. Aqueous NaHCO<sub>3</sub> (50 mL) was added and the aqueous mixture was extracted with EtOAc ( $3 \times 60$  mL). The combined organic layers were dried (MgSO<sub>4</sub>), filtered, and concentrated under reduced pressure to give the corresponding sulfide **S1d** (3.76 g, 83%) as an orange oil which was used without further purification. IR (film)/cm<sup>-1</sup> 3001, 2952, 2837, 1733 (C=O), 1592, 1491, 1461, 1357, 1241, 1170, 1029, 980, 824. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.40–7.33 (m, 2H, 2 × Ar–H), 6.86–6.81 (m, 2H, 2 × Ar–H), 3.78 (s, 3H, OCH<sub>3</sub>), 3.65 (s, 3H, OCH<sub>3</sub>), 3.03 (t, *J* = 7.4 Hz, 2H, SCH<sub>2</sub>), 2.56 (t, *J* = 7.4 Hz, 2H, SCH<sub>2</sub>CH<sub>2</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  172.3 (C=O), 159.4 (Ar–Cq), 134.2 (2 × Ar–C), 125.1 (2 × Ar–C), 114.7 (Ar–Cq), 55.3 (Ar–OCH<sub>3</sub>), 51.7 (COOCH<sub>3</sub>), 34.4 (SCH<sub>2</sub>), 31.1 (SCH<sub>2</sub>CH<sub>2</sub>). Analytical data (NMR) in agreement with those reported in the literature.<sup>[11]</sup>

#### Methyl 3-(pyridin-2-ylthio)propanoate (S1e)

Prepared according to a literature procedure.<sup>[12]</sup> Methyl 3-bromopropionate (2.6 mL, 24 mmol, 1.2 equiv) was added to a stirred solution of 2-mercaptopyridine (2.22 g, 20 mmol, 1 equiv) and NEt<sub>3</sub> (4.16 mL, 30 mmol, 1.5 equiv) in acetonitrile (10 mL, 2 M) and heated under reflux to 85 °C for 24 h. At rt the reaction mixture was concentrated under reduced pressure. Purification by flash column chromatography (10% EtOAc in pentane) afforded sulfide **S1e** (3.11 g, 15.8 mmol, 79%) as a pale-yellow oil. Rr 0.33 (10% EtOAc in pentane). IR (film)/cm<sup>-1</sup> 3049, 2997, 2952, 1737 (C=O), 1580, 1454, 1412, 1357, 1249, 1108, 984, 760, 723. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.41 (ddd, *J* = 5.0, 1.9, 1.0 Hz, 1H, Ar–H), 7.46 (ddd, *J* = 8.1, 7.3, 1.9 Hz, 1H, Ar–H), 7.16 (dt, *J* = 8.1, 1.1 Hz, 1H, Ar–H), 6.97 (ddd, *J* = 7.3, 4.9, 1.1 Hz, 1H, Ar–H), 3.70 (s, 3H, OCH<sub>3</sub>), 3.43 (t, *J* = 7.1 Hz, 2H, SCH<sub>2</sub>), 2.79 (t, *J* = 7.1 Hz, 2H, SCH<sub>2</sub>CH<sub>2</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  172.7 (C=O), 158.3 (Ar–Cq), 149.6 (Ar–C), 136.0 (Ar–C), 122.5 (Ar–C), 119.6 (Ar–C), 51.9 (OCH<sub>3</sub>), 34.7 (SCH<sub>2</sub>), 25.0 (SCH<sub>2</sub>CH<sub>2</sub>). Analytical data (NMR) in agreement with those reported in the literature.<sup>[12]</sup>

#### Methyl 3-(isopropylthio)propanoate (S1f)

ightarrow S igh

(C=O), 1439, 1357, 1244, 1170, 1051, 1021, 980. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.69 (s, 3H, OCH<sub>3</sub>), 2.94 (p, J = 6.7 Hz, 1H, SCH), 2.80 (td, J = 7.4, 0.7 Hz, 2H, SCH<sub>2</sub>), 2.63–2.56 (m, 2H, SCH<sub>2</sub>CH<sub>2</sub>), 1.26 (d, J = 6.7 Hz, 6H, CH(CH<sub>3</sub>)<sub>2</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  172.6 (C=O), 51.9 (OCH<sub>3</sub>), 35.1 (SCH), 34.9 (SCH<sub>2</sub>), 25.6 (SCH<sub>2</sub>CH<sub>2</sub>), 23.4 (CH(CH<sub>3</sub>)<sub>2</sub>). HRMS (ESI) m/z Calcd for C<sub>7</sub>H<sub>15</sub>O<sub>2</sub>S [M+H]<sup>+</sup>: 163.0793; Found: 163.0791.

#### Methyl 3-(methylthio)propanoate (S1g)

 $Me^{-S}$  OMe lodomethane (5.6 mL, 90 mmol, 2 equiv) was added to methyl 3-sulfanylpropanoate (5.0 mL, 45 mmol, 1 equiv) and K<sub>2</sub>CO<sub>3</sub> (7.46 g, 54 mmol, 1.2 equiv) in acetone (200 mL, 0.2 M) at 25 °C and stirred for 24 h. The reaction mixture was quenched with 1 M K<sub>2</sub>CO<sub>3</sub> (100 mL) and extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 200 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 5% Et<sub>2</sub>O in pentane) afforded sulfide **S1g** (5.09 g, 84%) as a colourless oil. \**Note: due to the volatility of the product, removal of solvent was carried out at pressures no less than 200 mbar at 25* °C\* R<sub>f</sub> 0.25 (5% Et<sub>2</sub>O in pentane). IR (film)/cm<sup>-1</sup> 2952, 2918, 1733 (C=O), 1435, 1357, 1245, 1144, 1021. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.70 (s, 3H, OCH<sub>3</sub>), 2.78–2.75 (m, 2H, SCH<sub>2</sub>), 2.64–2.61 (m, 2H, SCH<sub>2</sub>CH<sub>2</sub>), 2.12 (s, 3H, SCH<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  172.6 (C=O), 51.9 (OCH<sub>3</sub>), 34.4 (SCH<sub>2</sub>), 29.2 (SCH<sub>2</sub>CH<sub>2</sub>), 15.6 (SCH<sub>3</sub>). Analytical data (NMR) in agreement with those reported in the literature.<sup>[13]</sup>

#### Sulfide Oxidation

#### Methyl 3-(p-tolylsulfinyl)propanoate (S2a)

 $\begin{tabular}{l} \label{eq:mcPBA} & \end{tabular} \end{tabular} \end{tabular} \\ \end{tabular} \end{tabular} \end{tabular} \end{tabular} \\ \end{tabular} \end{tabular}$ 

#### Methyl 3-(phenylsulfinyl)propanoate (S2b)



*m*CPBA (131 mg, 0.76 mmol, 1 equiv) was added portionwise to sulfide **S1b** (150 mg, 0.76 mmol, 1 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (5 mL, 0.2 M) at 0  $^{\circ}$ C and stirred for 2 h. The reaction mixture was quenched with 3 M KOH (15 mL) and the aqueous mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub>

(3 × 15 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated under reduced pressure. Purification by flash column chromatography (50% EtOAc in pentane) afforded sulfoxide **S2b** (113 mg, 70%) as a colourless oil. R<sub>f</sub> 0.17 (50% EtOAc in pentane). IR (film)/cm<sup>-1</sup> 3316, 3054, 2949, 2901, 1721 (C=O), 1591, 1440, 1197, 1183, 819, 756. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.67–7.60 (m, 2H, 2 × Ar–H), 7.58–7.48 (m, 3H, 3 × Ar–H), 3.67 (s, 3H, OCH<sub>3</sub>), 3.25 (ddd, *J* = 13.4, 8.5, 6.7 Hz, 1H, SC*H*H), 2.97 (ddd, *J* =
13.3, 8.3, 5.7 Hz, 1H, SCHH), 2.85 (ddd, J = 17.2, 8.4, 6.7 Hz, 1H, SCH<sub>2</sub>CHH), 2.57 (ddd, J = 17.2, 8.5, 5.7 Hz, 1H, SCH<sub>2</sub>CHH). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 171.8 (C=O), 143.0 (Ar–C<sub>0</sub>), 131.3 (Ar–C), 129.4 (2 × Ar– C), 124.1 (2 × Ar–C), 52.3 (OCH<sub>3</sub>), 51.2 (SCH<sub>2</sub>), 26.1 (SCH<sub>2</sub>CH<sub>2</sub>). Analytical data (NMR) in agreement with those reported in the literature.<sup>[15]</sup>

#### Methyl 3-((4-fluorophenyl)sulfinyl)propanoate (S2c)



mCPBA (2.83 g, 16.4 mmol, 1 equiv) was added portionwise to sulfide S1c (3.50 g, 16.4 mmol, 1 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (80 mL, 0.2 M) at 0 °C and stirred for 4 hr. The reaction mixture was guenched with 1 M K<sub>2</sub>CO<sub>3</sub> (100 mL) and the agueous mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 80 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated under reduced pressure to afford sulfoxide S2c (3.76 g, quant.) as a pale-yellow oil. Rr0.20 (50% EtOAc in pentane). IR (film)/cm<sup>-1</sup> 2997, 2952, 1773 (C=O), 1588, 1491, 1439, 1357, 1219, 1174, 1219, 1044, 977, 835, 749. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.70–7.53 (m, 2H, 2 × Ar–H), 7.24–7.19 (m, J = 8.5 Hz, 2H, 2 × Ar–H), 3.64 (s, 3H, OCH<sub>3</sub>), 3.25-3.15 (m, 1H, SCHH), 2.93 (ddd, J = 13.7, 7.9, 6.0 Hz, 1H, SCHH), 2.85-2.77 (m, 1H, SCH<sub>2</sub>CHH), 2.59–2.50 (m, 1H, SCH<sub>2</sub>CHH). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 171.6 (C=O), 164.5 (d, <sup>1</sup>J<sub>C-F</sub> = 251.9 Hz, Ar–F), 138.5 (Ar-C<sub>a</sub>), 126.4 (d,  ${}^{3}J_{C-F}$  = 8.8 Hz, 2 × Ar–C), 116.8 (d,  ${}^{2}J_{C-F}$  = 22.6 Hz, 2 × Ar–C), 52.3 (OCH<sub>3</sub>), 51.5 (SCH<sub>2</sub>), 26.0 (SCH<sub>2</sub>CH<sub>2</sub>). <sup>19</sup>F{<sup>1</sup>H} NMR (377 MHz, CDCI<sub>3</sub>) δ -108.3 (1F, Ar–F). HRMS (ESI) *m/z* Calcd for C<sub>10</sub>H<sub>12</sub>O<sub>3</sub>SF [M+H]<sup>+</sup>: 231.0491; Found: 231.0481.

#### Methyl 3-((4-methoxyphenyl)sulfinyl)propanoate (S2d)

mCPBA (2.83 g, 16.4 mmol, 1 equiv) was added portionwise to sulfide S1d (3.70 g, 16.4 mmol, 1 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (80 mL, 0.2 M) at 0 °C and stirred for 4 hr. The reaction mixture was guenched with 1 M K<sub>2</sub>CO<sub>3</sub> (100 mL) and the agueous mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 80 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated under reduced pressure to afford sulfoxide S2d (3.91 g, 99%) as a yellow oil. Rr0.14 (50% EtOAc in pentane). IR (film)/cm<sup>-1</sup> 2952, 2840, 1733 (C=O), 1595, 1495, 1461, 1357, 1245, 1170, 1025, 828, 753. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.45–7.42 (m, 2H, 2 × Ar–H), 6.93–6.90 (m, 2H, 2 × Ar–H), 3.73 (s, 3H, OCH<sub>3</sub>), 3.53 (s, 3H, OCH<sub>3</sub>), 3.06 (ddd, J = 13.4, 8.5, 6.8 Hz, 1H, SCHH), 2.90–2.81 (m, 1H, SCHH), 2.67 (ddd, J = 17.2, 8.5, 6.8 Hz, 1H, SCH<sub>2</sub>CHH), 2.43 (ddd, J = 17.2, 8.5, 5.9 Hz, 1H, SCH<sub>2</sub>CHH). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 171.4 (C=O), 161.9 (Ar-C<sub>q</sub>), 133.5 (Ar-C<sub>q</sub>), 125.7 (2 × Ar-C), 114.7 (2 × Ar-C), 55.4 (Ar-OCH<sub>3</sub>), 51.9 (COOCH<sub>3</sub>), 51.03 (SCH<sub>2</sub>), 25.89 (SCH<sub>2</sub>CH<sub>2</sub>). HRMS (ESI) *m/z* Calcd for C<sub>11</sub>H<sub>15</sub>O<sub>4</sub>S [M+H]<sup>+</sup>: 243.0691; Found: 243.0691.

#### Methyl 3-(pyridin-2-ylsulfinyl)propanoate (S2e)



mCPBA (2.62 g, 15.2 mmol, 1 equiv) was added portionwise to sulfide S1e (3.00 g, 15.2 mmol, 1 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (80 mL, 0.2 M) at 0 °C and stirred for 4 hr. The reaction mixture was guenched with 1 M K<sub>2</sub>CO<sub>3</sub> (100 mL) and the aqueous mixture was extracted

with CH<sub>2</sub>Cl<sub>2</sub> (3 × 80 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated under reduced pressure to afford sulfoxide S2e (1.97 g, 9.3 mmol, 61%) as a pale yellow oil. Rr0.26 (2% MeOH in CH<sub>2</sub>Cl<sub>2</sub>). IR (film)/cm<sup>-1</sup> 3049, 2993, 2952, 1733 (C=O), 1576, 1424, 1356, 1238, 1174, 1084, 1036, 771. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.64 (ddd, J = 4.7, 1.7, 1.0 Hz, 1H, Ar–H), 8.00–7.87 (m, 2H, 2 × Ar–H), 7.39 (ddd, J = 7.1, 4.7, 1.7 Hz, 1H, Ar–H), 3.65 (s, 3H, OCH<sub>3</sub>), 3.50 (ddd, J = 13.6, 9.3, 6.1 Hz, 1H, SCHH), 3.20 (ddd, J = 13.7, 9.2, 5.9 Hz, 1H, SCH*H*), 2.86 (ddd, J = 17.1, 9.2, 6.1 Hz, 1H, SCH<sub>2</sub>C*H*H), 2.45 (ddd, J = 17.0, 9.3, 5.9 Hz, 1H, SCH<sub>2</sub>CH*H*). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 171.7 (C=O), 163.9 (Ar–C<sub>q</sub>), 150.0 (Ar–C), 138.1 (Ar–C), 124.9 (Ar–C), 120.4 (Ar–C), 52.3 (CH<sub>3</sub>), 48.1 (SCH<sub>2</sub>), 25.6 (SCH<sub>2</sub>CH<sub>2</sub>). Analytical data (NMR) in agreement with those reported in the literature.<sup>[12]</sup>

#### Methyl 3-(isopropylsulfinyl)propanoate (S2f)

 $\int_{0}^{9} \int_{0}^{0Me} MCPBA (2.56 \text{ g}, 14.8 \text{ mmol}, 1 \text{ equiv}) \text{ was added portionwise to sulfide$ **S1f**(2.40 g, 14.8 mmol, 1 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (75 mL, 0.2 M) at 0 °C and stirred for 2 hr. The reaction mixture was quenched with 1 M K<sub>2</sub>CO<sub>3</sub> (100 mL) and the aqueous mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 80 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated under reduced pressure to afford sulfoxide**S2f** $(1.63 g, 62%) as a pale-yellow oil. R<sub>f</sub> 0.11 (60% EtOAc in pentane). IR (film)/cm<sup>-1</sup> 2960, 2874, 1737 (C=O), 1439, 1364, 1234, 1040, 977, 828. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) <math>\delta$  3.73 (s, 3H, OCH<sub>3</sub>), 3.03–2.91 (m, 1H, SC*H*(CH<sub>3</sub>)<sub>2</sub>), 2.91–2.74 (m, 4H, 2 × CH<sub>2</sub>), 1.33 (d, *J* = 6.9 Hz, 3H, 1 × CH(CH<sub>3</sub>)<sub>2</sub>), 1.28 (d, *J* = 6.9 Hz, 3H, 1 × CH(CH<sub>3</sub>)<sub>2</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  172.2 (C=O), 52.3 (OCH<sub>3</sub>), 51.0 (SCH<sub>2</sub>), 43.6 (CH(CH<sub>3</sub>)<sub>2</sub>), 27.4 (SCH<sub>2</sub>CH<sub>2</sub>), 15.9 (1 × CH(CH<sub>3</sub>)<sub>2</sub>), 15.0 (1 × CH(CH<sub>3</sub>)<sub>2</sub>). HRMS (APCl) m/z Calcd for C<sub>7</sub>H<sub>14</sub>O<sub>3</sub>S [M+H]<sup>+</sup>: 179.0742; Found: 179.0736.

#### Methyl 3-(methanesulfinyl)propanoate (S2g)

Me<sup>-</sup> Me<sup></sup>

#### NBoc-transfer

#### Methyl 3-(N-(tert-butoxycarbonyl)-4-methylphenylsulfonimidoyl)propanoate (S3a)



Prepared according to a literature procedure.<sup>[6]</sup> Magnesium oxide (3.24 g, 80.4 mmol, 4 equiv), *tert*-butyl carbamate (3.53 g, 30.2 mmol, 1.5 equiv), PhI(OAc)<sub>2</sub> (9.71 g, 30.2 mmol, 1.5 equiv) and Rh<sub>2</sub>(OAc)<sub>4</sub> (0.22 g, 0.5 mmol, 2.5 mol%) were added to a

stirred solution of sulfoxide **S2a** (4.20 g, 20.1 mmol, 1 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (200 mL, 0.1 M) at RT and warmed to 40 °C for 18 h. At RT the reaction mixture was filtered through celite and concentrated under reduced pressure. Purification by flash column chromatography (50% EtOAc in pentane) afforded sulfoximine **S3a** (4.39 g, 19.4 mmol, 97%) as a white solid. mp = 83–84 °C. R<sub>f</sub> 0.34 (50% EtOAc in pentane). IR (film)/cm<sup>-1</sup> 2978, 1740 (C=O), 1670 (C=O), 1439, 1364, 1274, 1252, 1156, 894 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.80 (d, J = 8.4 Hz, 2H, 2 × Ar–H), 7.37 (d, J = 8.4 Hz, 2H, 2 × Ar–H), 3.69 (ddd, J = 14.3, 9.5, 6.0 Hz, 1H, SCHH), 3.61 (s, 3H, OCH<sub>3</sub>), 3.55 (ddd, J = 14.2, 9.3, 6.0 Hz, 1H, SCHH), 2.89–2.67 (m, 2H, SCH<sub>2</sub>CH<sub>2</sub>), 2.46 (s, 3H, Ar–CH<sub>3</sub>), 1.37 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  170.3 (C=O), 157.7 (C=O), 145.2 (Ar–C<sub>q</sub>), 133.8 (Ar–C<sub>q</sub>), 130.5 (2 ×

Ar–C), 128.3 (2 × Ar–C), 80.8 (*C*(CH<sub>3</sub>)<sub>3</sub>), 52.5 (OCH<sub>3</sub>), 51.9 (Ar–CH<sub>3</sub>), 28.1 (C(CH<sub>3</sub>)<sub>3</sub>), 27.4 (CH<sub>2</sub>), 21.8 (CH<sub>2</sub>). HRMS (ESI) *m*/*z* Calcd for C<sub>16</sub>H<sub>25</sub>NO<sub>5</sub>S [M+H]<sup>+</sup>: 342.1370; Found: 342.1375.

#### Methyl 3-(N-(tert-butoxycarbonyl)phenylsulfonimidoyl)propanoate (S3b)

Prepared according to a literature procedure.<sup>[6]</sup> Magnesium oxide (71 mg, 1.8 mmol, 4 equiv), *tert*-butyl carbamate (77 mg, 0.66 mmol, 1.5 equiv), Phl(OAc)<sub>2</sub> (213 mg, 0.66 mmol, 1.5 equiv) and Rh<sub>2</sub>(OAc)<sub>4</sub> (4.9 mg, 0.011 mmol, 2.5 mol%) were added to a stirred solution of sulfoxide **S2b** (94 mg, 0.44 mmol, 1 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (4.4 mL, 0.1 M) at RT and warmed to 40 °C for 18 h. At RT the reaction mixture was filtered through celite and concentrated under reduced pressure. Purification by flash column chromatography (50% EtOAc in pentane) afforded sulfoximine **S3b** (114 mg, 80%) as a colourless oil. Rr 0.43 (50% EtOAc in pentane). IR (film)/cm<sup>-1</sup> 2987, 2940, 1738 (C=O), 1666, 1447, 1408, 1367, 1215, 1153, 1133, 872, 740. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.00–7.93 (m, 2H, 2 × Ar–H), 7.73–7.67 (m, 1H, Ar–H), 7.65–7.58 (m, 2H, 2 × Ar–H), 3.73 (ddd, *J* = 14.4, 9.4, 6.0 Hz, 1H, SCHH), 3.63 (s, 3H, OCH<sub>3</sub>), 3.61–3.54 (m, 1H, SCH*H*), 2.92–2.72 (m, 2H, SCH<sub>2</sub>C*H*<sub>2</sub>), 1.37 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ 170.3 (C=O), 157.5 (C=O), 137.1 (Ar–Cq), 134.1 (Ar–C), 129.8 (2 × Ar–C), 128.2 (2 × Ar–C), 80.9 (C(CH<sub>3</sub>)<sub>3</sub>), 52.5 (OCH<sub>3</sub>), 51.8 (CH<sub>2</sub>), 28.1 (C(CH<sub>3</sub>)<sub>3</sub>), 27.4 (CH<sub>2</sub>). HRMS (ESI) *m/z* Calcd for C<sub>15</sub>H<sub>22</sub>NO<sub>5</sub>S [M+H]<sup>+</sup>: 328.1219; Found: 328.1213.

#### Methyl 3-(*N*-(*tert*-butoxycarbonyl)-4-fluorophenylsulfonimidoyl)propanoate (S3c)



Prepared according to a literature procedure.<sup>[6]</sup> Magnesium oxide (2.63 g, 65.2 mmol, 4 equiv), *tert*-butyl carbamate (2.87 g, 24.5 mmol, 1.5 equiv), PhI(OAc)<sub>2</sub> (7.87 g, 24.5 mmol, 1.5 equiv) and Rh<sub>2</sub>(OAc)<sub>4</sub> (0.18 g, 0.4 mmol, 2.5 mol%) were added to a

stirred solution of sulfoxide **S2c** (3.76 g, 16.3 mmol, 1 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (162 mL, 0.1 M) at RT and warmed to 40 °C for 18 h. At RT the reaction mixture was filtered through celite and concentrated under reduced pressure. Purification by flash column chromatography (30% EtOAc in pentane) afforded sulfoximine **S3c** (3.63 g, 64%) as a viscous yellow oil. R<sub>f</sub> 0.22 (30% EtOAc in pentane). IR (film)/cm<sup>-1</sup> 2978, 1737 (C=O), 1666 (C=O), 1588, 1491, 1364, 1275, 1226, 1144, 895, 835, 731. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.96–7.89 (m, 2H, 2 × Ar–H), 7.29–7.23 (m, 2H, 2 × Ar–H), 3.74–3.65 (m, 1H, SC/H), 3.60 (s, 3H, OCH<sub>3</sub>), 3.59–3.53 (m, 1H, SCH*H*), 2.78 (ddd, *J* = 15.5, 8.9, 6.3 Hz, 2H, SCH<sub>2</sub>C*H*<sub>2</sub>), 1.35 (s, 9H,C(CH<sub>3</sub>)<sub>3</sub>).<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.1 (C=O), 166.0 (d, <sup>1</sup>*J*<sub>*C-F*</sub> = 257.2 Hz, Ar–F), 157.3 (C=O), 132.7 (Ar–Cq), 131.0 (d, <sup>3</sup>*J*<sub>*C-F*</sub> = 9.6 Hz, 2 × Ar–C), 117.1 (d, <sup>2</sup>*J*<sub>*C-F*</sub> = 22.8 Hz, 2 × Ar–C), 80.9 (*C*(CH<sub>3</sub>)<sub>3</sub>), 52.4 (OCH<sub>3</sub>), 51.8 (CH<sub>2</sub>), 28.0 (CH<sub>2</sub>), 27.2 (C(CH<sub>3</sub>)<sub>3</sub>). <sup>19</sup>F{<sup>1</sup>H} NMR (377 MHz, CDCl<sub>3</sub>) δ -103.0 (1F, Ar–F). HRMS (ESI) *m*/*z* Calcd for C<sub>15</sub>H<sub>21</sub>NO<sub>5</sub>SF [M+H]<sup>+</sup>: 346.1124; Found: 346.1130.

#### Methyl 3-(N-(tert-butoxycarbonyl)-4-methoxyphenylsulfonimidoyl)propanoate (S3d)



Prepared according to a literature procedure.<sup>[6]</sup> Magnesium oxide (2.60 g, 64.4 mmol, 4 equiv), *tert*-butyl carbamate (2.84 g, 24.2 mmol, 1.5 equiv), PhI(OAc)<sub>2</sub> (7.80 g, 24.2 mmol, 1.5 equiv) and Rh<sub>2</sub>(OAc)<sub>4</sub> (0.18 g, 0.4 mmol, 2.5 mol%) were added to a

stirred solution of sulfoxide **S2d** (3.90 g, 16.1 mmol, 1 equiv) in  $CH_2Cl_2$  (161 mL, 0.1 M) at RT and warmed to 40 °C for 18 h. At RT the reaction mixture was filtered through celite and concentrated under reduced pressure. Purification by flash column chromatography (60% Et<sub>2</sub>O in Hexane) afforded sulfoximine **S3d** (3.62 g, 63%) as a pale pink solid. mp = 93–95 °C. R<sub>f</sub> 0.12 (60% Et<sub>2</sub>O in Hexane). IR (film)/cm<sup>-1</sup> 2974, 1737 (C=O), 1666 (C=O), 1592, 1498, 1364, 1245, 1148, 1107, 891, 731. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.83 (d, *J* = 8.8 Hz, 2H, 2 × Ar–H), 7.02 (d, *J* = 8.8, 2H, 2 × Ar–H), 3.87 (s, 3H, OCH<sub>3</sub>), 3.69–3.63 (m, 1H, SC*H*H), 3.59 (s, 3H, OCH<sub>3</sub>), 3.57–3.51 (m, 1H, SCH*H*), 2.79–2.71 (m, 2H, SCH<sub>2</sub>C*H*<sub>2</sub>), 1.36 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  170.3 (C=O), 164.1 (Ar–C<sub>q</sub>), 157.7 (C=O), 130.4 (2 × Ar–C), 127.6 (Ar–C<sub>q</sub>), 115.0 (2 × Ar–C), 80.6 (C(CH<sub>3</sub>)<sub>3</sub>), 55.9 (OCH<sub>3</sub>), 52.4 (OCH<sub>3</sub>), 52.0 (CH<sub>2</sub>), 28.1 (CH<sub>2</sub>), 27.5 (C(*C*H<sub>3</sub>)<sub>3</sub>). HRMS (ESI) *m*/z Calcd for C<sub>16</sub>H<sub>24</sub>NO<sub>6</sub>S [M+H]<sup>+</sup> 358.1324; Found: 358.1340.

# Methyl 3-(*N*-(*tert*-butoxycarbonyl)pyridine-2-sulfonimidoyl)propanoate (S3e)

O. NBoc Prepared according to a literature procedure.<sup>[6]</sup> Magnesium oxide (1.48 g, 36.8 mmol, .OMe 4 equiv), tert-butyl carbamate (1.62 g, 13.8 mmol, 1.5 equiv), PhI(OAc)<sub>2</sub> (4.44 g, 13.8 mmol, 1.5 equiv) and Rh<sub>2</sub>(OAc)<sub>4</sub> (0.10 g, 0.2 mmol, 2.5 mol%) were added to a stirred solution of sulfoxide S2e (1.97 g, 9.2 mmol, 1 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (92 mL, 0.1 M) at RT and warmed to 40 °C for 18 h. At RT the reaction mixture was filtered through celite and concentrated under reduced pressure. Purification by flash column chromatography (1% MeOH in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfoximine S3e (0.97 g, 64%) as a pale yellow oil. Rr 0.14 (1% MeOH in CH<sub>2</sub>Cl<sub>2</sub>). IR (film)/cm<sup>-1</sup> 3056, 2978, 1737 (C=O), 1700, 1662 (C=O), 1580, 1429, 1364, 1275, 1230, 1148, 895, 864, 764. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.71 (ddd, J = 4.7, 1.7, 0.8 Hz, 1H, Ar–H), 8.20 (dt, J = 7.9, 1.0 Hz, 1H, Ar–H), 7.98 (td, J = 7.8, 1.7 Hz, 1H, Ar–H), 7.55 (ddd, J = 7.7, 4.7, 1.1 Hz, 1H, Ar–H), 3.98–3.79 (m, 2H, SCH<sub>2</sub>CH<sub>2</sub>), 3.62 (s, 3H, OCH<sub>3</sub>), 2.91 (ddd, J = 17.3, 8.9, 6.3 Hz, 1H, SC*H*H), 2.76 (ddd, *J* = 17.3, 9.1, 6.3 Hz, 1H, SCH*H*), 1.33 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.3 (C=O), 157.5 (C=O), 155.8 (Ar-Cq), 150.3 (Ar-C), 138.3 (Ar-C), 127.5 (Ar-C), 124.4 (Ar-C), 80.8 (C(CH<sub>3</sub>)<sub>3</sub>), 52.4 (OCH<sub>3</sub>), 47.8 (CH<sub>2</sub>), 28.0 (C(CH<sub>3</sub>)<sub>3</sub>), 27.2 (CH<sub>2</sub>). HRMS (ESI) *m/z* Calcd for C<sub>14</sub>H<sub>21</sub>N<sub>2</sub>O<sub>5</sub>S [M+H]<sup>+</sup> 329.1171; Found: 329.1168.

#### Methyl 3-(*N*-(*tert*-butoxycarbonyl)propan-2-ylsulfonimidoyl)propanoate (S3f)

Prepared according to a literature procedure.<sup>[6]</sup> Magnesium oxide (1.45 g, 36.4 mmol, 4 equiv), *tert*-butyl carbamate (1.60 g, 13.7 mmol, 1.5 equiv), PhI(OAc)<sub>2</sub> (4.40 g, 13.7 mmol, 1.5 equiv) and Rh<sub>2</sub>(OAc)<sub>4</sub> (0.10 g, 0.2 mmol, 2.5 mol%) were added to a stirred solution of

sulfoxide **S2f** (1.62 g, 9.1 mmol, 1 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (91 mL, 0.1 M) at RT and warmed to 40 °C for 18 h. At RT, the reaction mixture was filtered through celite and concentrated under reduced pressure. Purification by flash column chromatography (50% EtOAc in pentane) afforded sulfoximine **S3f** (1.15 g, 43%) as a white solid. mp = 93–94 °C. R<sub>f</sub> 0.30 (50% EtOAc in pentane). IR (film)/cm<sup>-1</sup> 2982, 1737 (C=O), 1655 (C=O), 1364, 1279, 1249, 1156, 1092, 1054, 891, 848. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.79–3.69 (m, 4H, C*H*(CH<sub>3</sub>)<sub>3</sub> and OCH<sub>3</sub>), 3.69–3.51 (m, 2H, SCH<sub>2</sub>), 2.98 (ddd, *J* = 8.1, 6.8, 4.0 Hz, 2H, SCH<sub>2</sub>CH<sub>2</sub>), 1.52–1.44 (m, 15H, C(CH<sub>3</sub>)<sub>3</sub> and CH(CH<sub>3</sub>)<sub>2</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  171.2 (C=O), 158.8 (C=O), 80.5 (C(CH<sub>3</sub>)<sub>3</sub>), 54.3 (CH(CH<sub>3</sub>)<sub>2</sub>), 52.6 (OCH<sub>3</sub>), 43.2 (CH<sub>2</sub>), 28.3 (C(CH<sub>3</sub>)<sub>3</sub>), 27.2 (CH<sub>2</sub>), 15.8 (1 × CH(CH<sub>2</sub>)<sub>2</sub>), 15.7 (1 × CH(CH<sub>2</sub>)<sub>2</sub>). HRMS (ESI) *m/z* Calcd for C<sub>12</sub>H<sub>24</sub>NO<sub>5</sub>S [M+H]<sup>+</sup> 294.1375; Found: 294.1381.

#### Methyl 3-(*N*-(*tert*-butoxycarbonyl)-S-methylsulfonimidoyl)propanoate (S3g)

Me<sup>S</sup> OMe

ONBoc

Prepared according to a literature procedure.<sup>[6]</sup> Magnesium oxide (2.58 g, 64 mmol, 4 equiv), *tert*-butyl carbamate (2.81 g, 24 mmol, 1.5 equiv), PhI(OAc)<sub>2</sub> (7.73 g, 24 mmol,

1.5 equiv) and Rh<sub>2</sub>(OAc)<sub>4</sub> (0.18 g, 0.4 mmol, 2.5 mol%) were added to a stirred solution of sulfoxide S2g (2.46 g, 16 mmol, 1 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (160 mL, 0.1 M) at RT and warmed to 40 °C for 18 h. At RT the reaction mixture was filtered through celite and concentrated under reduced pressure. Purification by flash column chromatography (50% EtOAc in pentane) afforded sulfoximine S3g (3.39 g, 14.0 mmol, 87%) as a pale-yellow oil. Rf 0.28 (50% EtOAc in pentane). IR (film)/cm<sup>-1</sup> 2978, 2933, 1737 (C=O), 1655 (C=O), 1439, 1364, 1275, 1250, 1152, 992, 861,790. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 3.78 (dd, J = 14.3, 7.1 Hz, 1H, SCHH), 3.74 (s, 3H, OCH<sub>3</sub>), 3.65 (dt, J = 14.4, 7.2 Hz, 1H, SCH*H*), 3.24 (s, 3H, SCH<sub>3</sub>), 3.10–2.86 (m, 2H, SCH<sub>2</sub>CH<sub>2</sub>), 1.48 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.9 (C=O), 158.5 (C=O), 80.9 (C(CH<sub>3</sub>)<sub>3</sub>), 52.7 (OCH<sub>3</sub>), 49.5 (CH<sub>2</sub>), 40.8 (CH<sub>2</sub>), 28.3 (C(CH<sub>3</sub>)<sub>3</sub>), 27.7 (SCH<sub>3</sub>). HRMS (ESI) m/z Calcd for C<sub>10</sub>H<sub>19</sub>NO<sub>5</sub>S [M+H]<sup>+</sup>: 266.1060; Found: 266.1062.

#### Elimination to Sulfinamide Salt

identical to that shown for (S)-1a above.

#### Sodium (*tert*-butoxycarbonyl)(*p*-tolylsulfinyl)amide ((*rac*)-1a)



NaH (60% in oil, 526 mg, 13.1 mmol) was added to sulfoximine S3a (4.28 g, 12.5 mmol) in THF (125 mL) at 25 °C and stirred for 3 h. The reaction was guenched with MeOH (25 µL) <sup>∋</sup>⊕ Na and concentrated under reduced pressure. The precipitate was collected by filtration and washed with hexane to give sulfinamide salt (rac)-1a (3.46 g, quant. yield) as a white solid. The data was

# Sodium (*tert*-butoxycarbonyl)(phenylsulfinyl)amide (S4b)

NaH (60 % in oil, 137 mg, 3.44 mmol, 1.05 equiv) was added to a stirred solution of sulfoximine 0 NBoc S3b (1.07 g, 3.27 mmol, 1.0 equiv) in anhydrous THF (33 mL, 0.1 M) at 25 °C and stirred for Na 1 h. MeOH (100 mL) was added and the solvent removed under reduced pressure. The resulting precipitate was washed with hexane (50 mL) and collected by filtration to afford the sulfinamide salt S4b as a white solid (852 mg, 99%). mp = 238–240 °C. IR (film)/cm<sup>-1</sup>3344, 2978, 1631 (C=O), 1582, 1268, 1155, 1004, 993, 829, 747, 697. <sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O) δ 7.63 (dd, J = 6.7, 3.0 Hz, 2H, 2 × Ar–H), 7.54–7.47 (m, 3H, 3 × Ar–H), 1.39 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, D<sub>2</sub>O) δ 165.9 (C=O), 146.1 (Ar–C<sub>3</sub>), 130.9 (Ar–C), 129.0 (2 × Ar-C), 124.6 (2 × Ar-C), 79.6 (C(CH<sub>3</sub>)<sub>3</sub>), 27.7 (C(CH<sub>3</sub>)<sub>3</sub>). HRMS (ESI) m/z: Calcd for C<sub>11</sub>H<sub>14</sub>NO<sub>3</sub>S [M]<sup>-</sup>: 240.0694; Found: 240.0704.

#### Sodium (*tert*-butoxycarbonyl)((4-fluorophenyl)sulfinyl)amide (S4c)



NaH (60% in oil, 442 mg, 11.0 mmol, 1.05 equiv) was added to sulfoximine S3c (3.60 g, 10.5 mmol, 1 equiv) in THF (100 mL) at 25 °C and stirred for 3 h. The reaction was quenched

with MeOH (25 µL) and concentrated under reduced pressure. The precipitate was collected by filtration and washed with hexane to give sulfinamide salt S4c (1.91 g, 65%) as a white solid. mp = 162-164 °C. IR (film)/cm-1 2982, 2933, 1644 (C=O), 1588, 1484, 1453, 1394, 1275, 1219, 1167, 999, 895, 831, 794, 761. <sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O) δ 7.72–7.62 (m, 2H, 2 × Ar–H), 7.25 (t, J = 8.9 Hz, 2H, 2 × Ar–H), 1.41 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, D<sub>2</sub>O) δ 165.7 (C=O), 163.9 (d, <sup>1</sup>J<sub>C-F</sub> = 247.8 Hz, Ar–C<sub>q</sub>), 127.1 (d, <sup>3</sup>J<sub>C-F</sub> = 9.3 Hz, 2 × Ar–C), 126.5 (Ar–C<sub>q</sub>), 116.1 (d, <sup>2</sup>J<sub>C-F</sub> = 23.5 Hz, 2 × Ar–C), 79.8 (*C*(CH<sub>3</sub>)<sub>3</sub>), 27.8 (*C*(CH<sub>3</sub>)<sub>3</sub>). <sup>19</sup>F NMR (377 MHz, CD<sub>3</sub>OD) δ -114.03 (1F, Ar–F). HRMS (ESI) m/z Calcd for C<sub>11</sub>H<sub>13</sub>FNO<sub>3</sub>S [M]: 258.0600; Found: 258.0594.

#### Sodium (tert-butoxycarbonyl)((4-methoxyphenyl)sulfinyl)amide (S4d)



NaH (60% in oil, 425 mg, 10.6 mmol, 1.05 equiv) was added to sulfoximine **S3d** (3.61 g, 10.1 mmol, 1 equiv) in THF (100 mL) at 25 °C and stirred for 3 h. The reaction was quenched with MeOH (25  $\mu$ L) and concentrated under reduced pressure. The precipitate

was collected by filtration and washed with hexane to give sulfinamide salt **S4d** (2.69 g, 91%) as a white solid. mp = 219–220 °C. IR (film)/cm<sup>-1</sup> 2982, 2933, 1633 (C=O), 1595, 1491, 1457, 1252, 1159, 1081, 1033, 999, 832. <sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O)  $\delta$  7.61 (d, *J* = 8.9 Hz, 2H, 2 × Ar–H), 7.09 (d, *J* = 8.9 Hz, 2H, 2 × Ar–H), 3.86 (s, 3H, OCH<sub>3</sub>), 1.41 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, D<sub>2</sub>O)  $\delta$  165.6 (C=O), 160.9 (Ar–C<sub>q</sub>), 138.3 (Ar–C<sub>q</sub>), 126.6 (2 × Ar–C), 114.5 (2 × Ar–C), 79.6 (*C*(CH<sub>3</sub>)<sub>3</sub>), 55.5 (OCH<sub>3</sub>), 27.8 (*C*(*C*H<sub>3</sub>)<sub>3</sub>). HRMS (ESI) m/z Calcd for C<sub>12</sub>H<sub>16</sub>NO<sub>4</sub>S [M]<sup>-</sup>: 270.0800; Found: 270.0804.

#### Sodium (tert-butoxycarbonyl)(pyridin-2-ylsulfinyl)amide (S4e)

NaH (60% in oil, 370 mg, 9.2 mmol, 1.05 equiv) was added to sulfoximine **S3e** (3.02 g, 8.8 mmol, 1 equiv) in THF (90 mL) at 25 °C and stirred for 24 h. The reaction was quenched with MeOH (25  $\mu$ L) and concentrated under reduced pressure. The precipitate was collected by filtration and washed with hexane to give sulfinamide salt **S4e** (2.64 g, quant) as a white solid. mp = 191–194 °C. IR (film)/cm<sup>-1</sup> 3015, 2978, 2933, 1629 (C=O), 1573, 1454, 1368, 1290, 1156, 1085, 999, 835, 798, 760. <sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O)  $\delta$  8.53 (ddd, *J* = 4.9, 1.8, 0.9 Hz, 1H, Ar–H), 8.02 (td, *J* = 7.8, 1.7 Hz, 1H, Ar–H), 7.87 (dt, *J* = 8.0, 1.1 Hz, 1H, Ar–H), 7.52 (ddd, *J* = 7.7, 4.9, 1.2 Hz, 1H, Ar–H), 1.41 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, D<sub>2</sub>O)  $\delta$  166.2 (C=O), 164.9 (Ar–C<sub>q</sub>), 148.9 (Ar–C), 139.3 (Ar–C), 125.7 (Ar–C), 119.6 (Ar–C), 79.9 (*C*(CH<sub>3</sub>)<sub>3</sub>), 27.7 (C(CH<sub>3</sub>)<sub>3</sub>).HRMS (ESI) m/z Calcd for C<sub>10</sub>H<sub>13</sub>N<sub>2</sub>O<sub>3</sub>S [M]<sup>-</sup>: 241.0647; Found: 241.0641.

#### Sodium (tert-butoxycarbonyl)(isopropylsulfinyl)amide (S4f)

NaH (60% in oil, 164 mg, 4.1 mmol, 1.05 equiv) was added to sulfoximine **S3f** (1.15 g, 3.9 mmol,  $^{NBoc}_{0} \oplus ^{\oplus}_{0} \oplus ^{\odot}_{0}$  (25 L) and the subscript of the subscript

<sup>Na</sup> (25 μL) and concentrated under reduced pressure. The precipitate was collected by filtration and washed with hexane to give sulfinamide salt **S4f** (1.06 g, quant.) as a white solid. mp = 199–200 °C. IR (film)/cm<sup>-1</sup> 2930, 2986, 2870, 1606 (C=O), 1464, 1297, 1256, 1170, 1074, 988, 905, 746, 664. <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD)  $\delta$  2.51–2.44 (m, 1H, SCH), 1.39 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>), 1.17 (d, *J* = 7.0 Hz, 3H, 1 × CH(CH<sub>3</sub>)<sub>2</sub>), 1.11 (d, *J* = 7.0 Hz, 3H, 1 × CH(CH<sub>3</sub>)<sub>2</sub>). <sup>13</sup>C NMR (101 MHz, MeOD)  $\delta$  167.2 (C=O), 78.4 (*C*(CH<sub>3</sub>)<sub>3</sub>), 54.1 (CH(CH<sub>3</sub>)<sub>2</sub>), 29.3 (C(CH<sub>3</sub>)<sub>3</sub>), 16.7 (1 × CH(CH<sub>3</sub>)<sub>2</sub>), 16.3 (1 × CH(CH<sub>3</sub>)<sub>2</sub>). HRMS (ESI) m/z Calcd for C<sub>8</sub>H<sub>16</sub>NO<sub>3</sub>S [M]<sup>-</sup>: 206.0851; Found: 206.0847.

#### Sodium (tert-butoxycarbonyl)(methylsulfinyl)amide (S4g)

NaH (60% in oil, 0.34 g, 8.4 mmol, 1.05 equiv) was added to sulfoximine **S3g** (2.16 g, 8.0 mmol, Me<sup>rSNBoc</sup> Na<sup>ightarrow</sup> 1 equiv) in THF (0.1 M) at 25 °C and stirred for 2 h. The reaction was quenched with MeOH (20 µL) and concentrated under reduced pressure. The precipitate was collected by filtration and washed with hexane to give sulfinamide salt **S4g** (1.44 g, 7.2 mmol, 90%) as a white solid. mp = 183–188 °C. IR (film)/cm<sup>-1</sup> 2974, 2930, 1610 (C=O), 1364, 1286, 1163, 999, 835, 756. <sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O)  $\delta$  2.40 (s,

3H, SCH<sub>3</sub>), 1.38 (s, 9H, (C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, D<sub>2</sub>O) δ 79.4 (C(CH<sub>3</sub>)<sub>3</sub>), 40.6 (SCH<sub>3</sub>), 27.7 (C(CH<sub>3</sub>)<sub>3</sub>). HRMS (ESI) m/z Calcd for C<sub>6</sub>H<sub>12</sub>NO<sub>3</sub>S [M]<sup>-</sup>: 178.0538; Found: 178.0542.

#### Synthesis of Sulfonimidoyl Fluorides (2c-2h)

#### *tert*-Butyl (fluoro(oxo)(phenyl)- $\lambda^6$ -sulfaneylidene)carbamate (2c)

Prepared according to General Procedure A. Selectfluor (81 mg, 0.23 mmol, 1.5 equiv) was O NBoc added to a solution of sulfinamide salt S4b (40 mg, 0.15 mmol) in DMF (0.75 mL, 0.2 M) at 0 °C and warmed to 25 °C for 18 h. H<sub>2</sub>O (25 mL) was added and the aqueous mixture extracted with EtOAc (3 × 25 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered and the solvent removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 10% EtOAc in pentane) afforded sulfonimidoyl fluoride 2c (21 mg, 54%) as a colourless oil. Rr 0.51 (20% EtOAc in pentane). IR (film)/cm<sup>-1</sup>2980, 1726 (C=O), 1700, 1325, 1249, 1140, 1095, 744, 697. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.16–8.07 (m, 2H, 2 × Ar– H), 7.81–7.73 (m, 1H, Ar–H), 7.68–7.57 (m, 2H, 2 × Ar–H), 1.54 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 152.3 (d, J = 2.8 Hz, C=O), 135.4 (Ar–C), 133.9 (d, J = 21.4 Hz, Ar–C<sub>q</sub>), 129.5 (2 × Ar–C), 128.1 (2 × Ar–C), 82.7 (C(CH<sub>3</sub>)<sub>3</sub>), 27.9 (C(CH<sub>3</sub>)<sub>3</sub>). <sup>19</sup>F NMR (377 MHz, CDCI<sub>3</sub>) δ 68.54. Analytical data (NMR) in agreement with those reported in the literature.[16]

#### *tert*-Butyl (fluoro(4-fluorophenyl)( $\infty$ o)- $\lambda^6$ -sulfaneylidene)carbamate (2d)



Prepared according to General Procedure C. Selectfluor (0.71 g, 2.0 mmol, 2 equiv) was O. NBoc added to a stirred solution of sulfinamide salt S4c (0.28 g, 1.0 mmol, 1 equiv) and potassium acetate (0.20 g, 2.0 mmol, 2.0 equiv) in ethanol (5 mL, 0.2 M) at 0 °C and slowly warmed to RT over 24 h. The reaction mixture was quenched with water (10 mL) and diluted with CH<sub>2</sub>Cl<sub>2</sub> (10 mL). The mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 40 mL) and the combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered and concentrated under reduced pressure. No further purification was required giving sulfonimidoyl fluoride 2d (0.25 g, 88%) as a colourless viscous oil. IR (film)/cm<sup>-1</sup> 3109, 2981, 2937, 1700, 1588, 1495, 1371, 1271, 1238, 1141, 1014, 910, 839, 731, 682. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.21–8.13 (m, 2H, 2 × Ar–H), 7.32 (dd, J = 9.2, 7.9 Hz, 2H, 2 × Ar–H), 1.55 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 166.9 (d, <sup>1</sup>*J*<sub>C-F</sub> 259.9 Hz, Ar-Cq), 152.6 (C=O), 131.7 (d, <sup>3</sup>J<sub>C-F</sub> = 10.1 Hz, 2 × Ar-C), 131.1 (Ar-Cq), 117.5 (d, <sup>2</sup>J<sub>C-F</sub> = 25.5 Hz, 2 × Ar-C), 83.0 (C(CH<sub>3</sub>)<sub>3</sub>), 28.0 (C(CH<sub>3</sub>)<sub>3</sub>).<sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>) δ 70.1 (S–F), -99.5 (Ar–F).

#### *tert*-Butyl (fluoro(4-methoxyphenyl)(oxo)- $\lambda^6$ -sulfaneylidene)carbamate (2e)



Prepared according to General Procedure C. Selectfluor (0.71 g, 2.0 mmol, 2 equiv) were added to a stirred solution of sulfinamide salt S4d (0.29 g, 1.0 mmol, 1 equiv) and potassium acetate (0.20 g, 2.0 mmol, 2.0 equiv) in ethanol (5 mL, 0.2 M) at 0 °C and slowly warmed to

RT over 24 h. The reaction mixture was guenched with water (10 mL) and diluted with CH<sub>2</sub>Cl<sub>2</sub> (10 mL). The mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 40 mL) and the combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered and concentrated under reduced pressure. No further purification was required giving sulfonimidoyl fluoride 2e (0.29 g, quant.) as a colourless viscous oil. IR (film)/cm<sup>-1</sup> 2982, 2937, 1700, 1595, 1498, 1461, 1320, 1245, 1141, 1096, 1021, 910, 835, 805, 708. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.04 (d, J = 9.1 Hz, 2H, 2 × Ar–H), 7.04 (d, J = 9.1 Hz, 2H, 2 × Ar–H), 3.91 (s, 3H, OCH<sub>3</sub>), 1.52 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ 

165.3 (Ar–C<sub>q</sub>), 152.8 (C=O), 130.8 (2 × Ar–C), 114.9 (2 × Ar–C), 110.1 (Ar–C<sub>q</sub>), 82.6 (C(CH<sub>3</sub>)<sub>3</sub>), 56.1 (OCH<sub>3</sub>), 28.1 (C(CH<sub>3</sub>)<sub>3</sub>). <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  69.9.

#### *tert*-Butyl (fluoro(oxo)(pyridin-2-yl)-λ<sup>6</sup>-sulfaneylidene)carbamate (2f)

Prepared according to General Procedure A. Selectfluor (527 mg, 1.5 mmol, 1.5 equiv) was added to a stirred solution of sulfinamide salt **S4e** (0.26 g, 1.0 mmol, 1 equiv) in DMF (5 mL, 0.2 M) at 0 °C and slowly warmed to RT over 24 h. The reaction mixture was quenched with water (10 mL) and diluted with CH<sub>2</sub>Cl<sub>2</sub> (10 mL). The mixture was extracted with EtOAc (5 × 15 mL) and the combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered and concentrated under reduced pressure. Purification by column chromatography (SiO<sub>2</sub>, 100% CH<sub>2</sub>Cl<sub>2</sub>) gave sulfonimidoyl fluoride **2f** (177 mg, 68%) as an amorphous solid. R<sub>f</sub> 0.19 (20% EtOAc in pentane). IR (film)/cm<sup>-1</sup> 3094, 2982, 2937, 1726, 1481, 1580, 1491, 1368, 1334, 1275, 1252, 1144, 1043, 991, 973, 857, 760.<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.83 (d, *J* = 5.5 Hz, 1H, Ar–H), 8.23 (d, *J* = 8.0 Hz, 1H, Ar–H), 8.03 (t, *J* = 7.8 Hz, 1H, Ar–H), 7.71–7.65 (m, 1H, Ar–H), 1.52 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>).<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  150.8 (Ar–C), 138.7 (Ar–C), 129.1 (Ar–C), 124.0 (Ar–C), 83.2 (*C*(CH<sub>3</sub>)<sub>3</sub>), 27.98 (C(CH<sub>3</sub>)<sub>3</sub>). <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  58.0.

# tert-Butyl (fluoro(isopropyl)(oxo)-λ<sup>6</sup>-sulfaneylidene)carbamate (2g)

Prepared according to General Procedure C. Selectfluor (0.71 g, 2.0 mmol, 2 equiv) was added to  $\gamma$  a stirred solution of sulfinamide salt **S4f** (0.26 g, 1.0 mmol, 1 equiv) and potassium acetate (0.20 g, 2.0 mmol, 2.0 equiv) in ethanol (5 mL, 0.2 M) at 0 °C and slowly warmed to RT over 24 h. The reaction mixture was quenched with water (10 mL) and diluted with CH<sub>2</sub>Cl<sub>2</sub> (10 mL). The mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (5 × 15 mL) and the combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered and concentrated under reduced pressure. No further purification was required giving sulfonimidoyl fluoride **2g** (0.19 g, 0.86 mmol, 86%) as a white solid.

Alternatively, prepared according to General Procedure A. Selectfluor (0.71 g, 2.0 mmol, 2 equiv) was added to a stirred solution of sulfinamide salt **S4f** (0.26 g, 1.0 mmol, 1 equiv) in DMF (5 mL, 0.2 M) at 0 °C and slowly warmed to RT over 24 h. The reaction mixture was quenched with water (10 mL) and diluted with  $CH_2Cl_2$  (10 mL). The mixture was extracted with  $CH_2Cl_2$  (5 × 15 mL) and the combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered and concentrated under reduced pressure. No further purification was required giving sulfonimidoyl fluoride **2g** (0.20 g, 0.90 mmol, 90%) as a white solid.

mp = 62–65 °C. IR (film)/cm<sup>-1</sup> 3440, 3388, 3340, 1737, 1670, 1621, 1488, 1454, 1379, 1215, 752. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.72 (hept, *J* = 6.8 Hz, 1H, SCH), 1.56 (m, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.50 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>).<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  153.1 (C=O), 82.6 (*C*(CH<sub>3</sub>)<sub>3</sub>), 55.4 (d, *J* = 12.6 Hz, *C*H(CH<sub>3</sub>)<sub>2</sub>), 28.1 (C(CH<sub>3</sub>)<sub>3</sub>), 16.7 (1 × CH(CH<sub>3</sub>)<sub>2</sub>), 16.5 (1 × CH(CH<sub>3</sub>)<sub>2</sub>). <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  41.3

#### *tert*-Butyl (fluoro(methyl)(oxo)-λ<sup>6</sup>-sulfaneylidene)carbamate (2h)

Prepared according to General Procedure A. Selectfluor (1.32 g, 3.74 mmol, 1.5 equiv) was added to a solution of sulfinamide salt **S4g** (500 mg, 2.49 mmol, 1 equiv) in DMF (13 mL, 0.2 M) at 0 °C and warmed to 25 °C for 18 h. H<sub>2</sub>O (25 mL) was added and the aqueous mixture extracted with EtOAc (3 × 25 mL). The combined organic layers were dried (MgSO<sub>4</sub>), filtered and the solvent removed under reduced pressure to give sulfonimidoyl fluoride **2h** (233 mg, 47%) as a colorless oil. IR (film)/cm<sup>-1</sup> 2937, 2981, 1692 (C=O), 1319, 1252, 1141, 984, 909, 857, 782. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.43 (d, <sup>3</sup>*J*<sub>H-F</sub> = 4.8 Hz, 3H, SCH<sub>3</sub>), 1.50 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  82.9 (*C*(CH<sub>3</sub>)<sub>3</sub>), 39.6 (d, <sup>2</sup>*J*<sub>C-F</sub> = 19.5 Hz, SCH<sub>3</sub>) 28.0 (C(CH<sub>3</sub>)<sub>3</sub>). <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  62.66.

#### Synthesis of Racemic Sulfonimidamides (3z-aj)

#### tert-Butyl (oxo(phenyl)(piperidin-1-yl)-λ<sup>6</sup>-sulfaneylidene)carbamate (3z)

Prepared according to General Procedure D. Piperidine (50 μL, 0.50 mmol, 2.0 equiv) and triethylamine (70 μL, 0.50 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride **2c** (65 mg, 0.25 mmol, 1.0 equiv) and LiBr (43 mg, 0.50 mmol, 2.0 equiv) in MeCN (0.83 mL, 0.3 M) at RT and heated to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 1% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfonimidamide **3z** (60 mg, 74%) as a white solid. R<sub>f</sub> = 0.12 (1% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>); mp = 95–97 °C. IR (film)/cm<sup>-1</sup> 2974, 2937, 2855, 1673, 1446, 1364, 1249, 1148, 928. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.88–7.82 (m, 2H, 2 × Ar–H), 7.62–7.56 (m, 1H, Ar–H), 7.55–7.49 (m, 2H, 2 × Ar–H), 3.11 (td, *J* = 5.0, 3.2 Hz, 4H, 2 × NCH<sub>2</sub>), 1.63 (p, *J* = 5.8 Hz, 4H, 2 × NCH<sub>2</sub>CH<sub>2</sub>), 1.48–1.41 (m, 2H, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 1.39 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 156.5 (C=O), 136.5 (Ar–C<sub>q</sub>), 132.7 (Ar– C), 128.9 (2 × Ar–C), 127.6 (2 × Ar–C), 80.1 (*C*(CH<sub>3</sub>)<sub>3</sub>), 46.6 (2 × NCH<sub>2</sub>), 28.0 (C(CH<sub>3</sub>)<sub>3</sub>), 25.2 (2 × NCH<sub>2</sub>CH<sub>2</sub>), 23.5 (NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>). HRMS (ESI) m/z: Calcd for C<sub>16</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub>S [M+H]<sup>+</sup>: 325.1586; Found: 325.1596.

#### *tert*-Butyl ((4-fluorophenyl)(oxo)(piperidin-1-yl)-λ<sup>6</sup>-sulfaneylidene)carbamate (3aa)

F N N

Prepared according to General Procedure D. Piperidine (50  $\mu$ L, 0.50 mmol, 2.0 equiv) and triethylamine (70  $\mu$ L, 0.50 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidoyl

<sup>1</sup> fluoride **2d** (69 mg, 0.25 mmol, 1 equiv) and LiBr (43 mg, 0.50 mmol, 2 equiv) in MeCN (0.83 mL, 0.3 M) at RT and heated to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfonimidamide **3aa** (41.5 mg, 48%) as a white solid. mp = 137–138 °C. R<sub>r</sub> 0.48 (5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>). IR (film)/cm<sup>-1</sup> 3071, 2975, 2937, 2855, 1674, 1588, 1491, 1365, 1275, 1152, 1096, 932, 865, 821. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.93–7.84 (m, 2H, 2 × Ar–H), 7.24–7.15 (m, 2H, 2 × Ar–H), 3.12 (m, 4H, 2 × NCH<sub>2</sub>), 1.64 (p, *J* = 5.7 Hz, 2H, 2 × NCH<sub>2</sub>CH<sub>2</sub>), 1.52–1.43 (m, 2H, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 1.42 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.3 (d, <sup>1</sup>*J*<sub>C-F</sub> = 258 Hz, Ar–C), 156.6 (C=O), 132.9 (Ar–C<sub>q</sub>), 130.6 (d, <sup>3</sup>*J*<sub>C-F</sub> = 8.9 Hz, 2 × Ar–C), 116.4 (d, <sup>2</sup>*J*<sub>C-F</sub> = 22.5 Hz, 2 × Ar–C), 80.4 (*C*(CH<sub>3</sub>)<sub>3</sub>), 46.8 (2 × NCH<sub>2</sub>), 28.2 (*C*(CH<sub>3</sub>)<sub>3</sub>), 25.4 (NCH<sub>2</sub>CH<sub>2</sub>), 23.7 (NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>). <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -105.2. HRMS (ESI) m/z Calcd for C<sub>16</sub>H<sub>24</sub>FN<sub>2</sub>O<sub>3</sub>S [M+H]<sup>+</sup>: 343.1492; Found: 343.1489.

#### *tert*-Butyl ((4-methoxyphenyl)(oxo)(piperidin-1-yl)-λ<sup>6</sup>-sulfaneylidene)carbamate (3ab)

MeO

Prepared according to General Procedure D. Piperidine (50  $\mu$ L, 0.50 mmol, 2.0 equiv) and triethylamine (70  $\mu$ L, 0.50 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride **2e** (72 mg, 0.25 mmol, 1 equiv) and flame-dried LiBr (43 mg, 0.50 mmol, 2 equiv)

in MeCN (0.83 mL, 0.3 M) at RT and heated to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfonimidamide **3ab** (77.8 mg, 88%) as a white solid. mp = 115–117 °C. R<sub>f</sub> 0.45 (5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>). IR (film)/cm<sup>-1</sup>2975, 2937, 2851, 1670, 1595, 1495, 1454, 1364, 1245, 1148, 1092, 1047, 924, 835, 805, 723. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.80 (d, *J* = 8.9 Hz, 2H, 2 × Ar–H), 6.98 (d, *J* = 9.0 Hz, 2H, 2 × Ar–H), 3.87 (s, 3H, OCH<sub>3</sub>), 3.09 (m, 4H, 2 × NCH<sub>2</sub>), 1.63 (p, *J* = 5.6 Hz, 4H, 2 × NCH<sub>2</sub>CH<sub>2</sub>), 1.49–1.43 (m, 2H, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 1.42 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  163.2 (Ar–C<sub>q</sub>), 156.9 (C=O), 130.1 (2 × Ar–C), 127.8 (Ar–C<sub>q</sub>), 114.3 (2 × Ar–C),

80.1 ( $C(CH_3)_3$ ), 55.8 (OCH<sub>3</sub>), 46.7 (2 × NCH<sub>2</sub>), 28.3 ( $C(CH_3)_3$ ), 25.4 (2 × NCH<sub>2</sub> $CH_2$ ), 23.8 (NCH<sub>2</sub> $CH_2CH_2$ ). HRMS (ESI) m/z Calcd for C<sub>17</sub>H<sub>27</sub>N<sub>2</sub>O<sub>4</sub>S [M+H]<sup>+</sup>: 355.1692; Found: 355.1689.

#### tert-Butyl (oxo(piperidin-1-yl)(pyridin-2-yl)-λ6-sulfaneylidene)carbamate (3ac)

Prepared according to General Procedure D. Piperidine (50 μL, 0.50 mmol, 2.0 equiv) and triethylamine (70 μL, 0.50 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride **2f** (65 mg, 0.25 mmol, 1 equiv) and flame-dried LiBr (43 mg, 0.50 mmol, 2 equiv) in MeCN (0.83 mL, 0.3 M) at RT and heated to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfonimidamide **3ac** (69 mg, 84%) as a white solid. R<sub>f</sub> 0.14 (2% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>). mp = 123–124 °C. IR (film)/cm<sup>-1</sup> 2974, 2940, 2855, 1700, 1364, 1278, 1151, 1051, 939. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.69 (d, *J* = 4.7 Hz, 1H, Ar–H), 8.08 (d, *J* = 7.9 Hz, 1H, Ar–H), 7.91 (t, *J* = 7.7 Hz, 1H, Ar–H), 7.48 (t, *J* = 7.6 Hz, 1H, Ar–H), 3.38–3.34 (m, 4H, 2 × NCH<sub>2</sub>), 1.67–1.62 (m, 4H, 2 × NCH<sub>2</sub>CH<sub>2</sub>), 1.55–1.46 (m, 2H, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 1.39 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 156.8 (C=O), 156.5 (Ar–C<sub>q</sub>), 149.6 (Ar–C), 137.8 (Ar–C), 126.4 (Ar–C), 124.0 (Ar–C), 80.1 (C(CH<sub>3</sub>)<sub>3</sub>), 47.3 (2 × NCH<sub>2</sub>), 28.0 (C(CH<sub>3</sub>)<sub>3</sub>), 25.4 (2 × NCH<sub>2</sub>CH<sub>2</sub>), 23.7 (NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>). HRMS (APCI +p) m/z: Calcd for C<sub>15</sub>H<sub>24</sub>N<sub>3</sub>O<sub>3</sub>S [M+H]<sup>+</sup>:326.1533; Found: 326.1542.

#### *tert*-Butyl (isopropyl(oxo)(piperidin-1-yl)- $\lambda^6$ -sulfaneylidene)carbamate (3ad)

Prepared according to General Procedure D. Piperidine (50  $\mu$ L, 0.50 mmol, 2.0 equiv) and triethylamine (70  $\mu$ L, 0.50 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride **2g** (56 mg, 0.25 mmol, 1 equiv) and flame-dried LiBr (43 mg, 0.50 mmol, 2 equiv) in MeCN (0.83 mL, 0.3 M) at RT and heated to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 20% EtOAc in pentane) afforded sulfonimidamide **3ad** (23 mg, 32%) as a white solid. R<sub>f</sub> 0.25 (1% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>). mp = 72–74 °C. IR (film)/cm<sup>-1</sup> 2929, 2855, 1666, 1453, 1278, 1237, 1162, 1043, 939. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.44–3.22 (m, 5H, CH(CH<sub>3</sub>)<sub>2</sub> + 2 × NCH<sub>2</sub>), 1.68–1.60 (m, 6H, 2 × NCH<sub>2</sub>CH<sub>2</sub> and NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 1.49 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>), 1.42 (d, *J* = 6.8 Hz, 3H, 1 × CH(CH<sub>3</sub>)<sub>2</sub>), 1.32 (d, *J* = 6.9 Hz, 3H, 1 × CH(CH<sub>3</sub>)<sub>2</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  157.6 (C=O), 79.7 (C(CH<sub>3</sub>)<sub>3</sub>), 54.5 (CHCH<sub>3</sub>), 47.4 (2 × NCH<sub>2</sub>), 28.2 (C(CH<sub>3</sub>)<sub>3</sub>), 25.8 (2 × NCH<sub>2</sub>CH<sub>2</sub>), 23.9 (NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 16.2 (1 × CH(CH<sub>3</sub>)<sub>2</sub>), 15.7 (1 × CH(CH<sub>3</sub>)<sub>2</sub>). HRMS (ESI) m/z: Calcd for C<sub>13</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub>S [M+H]<sup>+</sup>: 291.1742; Found: 291.1732.

#### *tert*-Butyl (methyl(oxo)(piperidin-1-yl)-λ<sup>6</sup>-sulfaneylidene)carbamate (3ae)



Prepared according to General Procedure B. Piperidine (50  $\mu$ L, 0.50 mmol, 2.0 equiv) and triethylamine (70  $\mu$ L, 0.50 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride **2h** (50 mg, 0.25 mmol, 1 equiv) in THF (0.83 mL, 0.3 M) at RT and warmed to 80 °C for

24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 50% EtOAc/pentane) afforded sulfonimidamide **3ae** (53.4 mg, 81%) as a white solid. mp = 63—64 °C. R<sub>f</sub> 0.29 (50% EtOAc in pentane). IR (film)/cm<sup>-1</sup> 2930, 2855, 1662 (C=O), 1595, 1457, 1249, 1279, 1204, 1148, 1066, 981, 924, 820. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.34–3.18 (m, 4H, 2 × NCH<sub>2</sub>), 2.97 (s, 3H, SCH<sub>3</sub>), 1.70–1.60 (m, 4H, 2 × NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 1.59–1.51 (m, 2H, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 1.45 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  156.9 (C=O), 80.1 (*C*(CH<sub>3</sub>)<sub>3</sub>), 46.8 (2 × NCH<sub>2</sub>), 38.7 (SCH<sub>3</sub>), 28.2 (C(CH<sub>3</sub>)<sub>3</sub>), 25.6 (2 × NCH<sub>2</sub>CH<sub>2</sub>), 23.8 (NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>). HRMS (APCI) m/z Calcd for C<sub>11</sub>H<sub>22</sub>N<sub>2</sub>O<sub>3</sub>S [M+H]<sup>+</sup>: 263.1424; Found: 263.1421.

#### tert-Butyl (methyl(morpholino)(oxo)-λ<sup>6</sup>-sulfaneylidene)carbamate (3af)



Prepared according to General Procedure B. Morpholine (44  $\mu$ L, 0.50 mmol, 2.0 equiv) and triethylamine (70  $\mu$ L, 0.50 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride **2h** (50 mg, 0.25 mmol, 1 equiv) in THF (0.83 mL, 0.3 M) at RT and warmed to 80 °C for

24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 50% EtOAc/pentane) afforded sulfonimidamide **3af** (53.7 mg, 81%) as a white solid. mp = 96–97 °C. R<sub>f</sub> 0.31 (50% EtOAc in pentane). IR (film)/cm<sup>-1</sup> 2863, 2974, 2930, 1666 (C=O), 1453, 1368, 1279, 1245, 1156, 1111, 1069, 939, 865, 790, 723. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.76 (t, *J* = 4.6 Hz, 4H, 2 × OCH<sub>2</sub>), 3.35–3.20 (m, 4H, 2 × NCH<sub>2</sub>), 3.01 (s, 3H, SCH<sub>3</sub>), 1.45 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  156.4 (C=O), 80.3 (*C*(CH<sub>3</sub>)<sub>3</sub>), 66.2 (2 × OCH<sub>2</sub>), 45.9 (2 × NCH<sub>2</sub>), 37.9 (SCH<sub>3</sub>), 27.9 (C(CH<sub>3</sub>)<sub>3</sub>). HRMS (ESI) m/z Calcd for C<sub>10</sub>H<sub>20</sub>N<sub>2</sub>O<sub>4</sub>S [M+H]<sup>+</sup>: 265.1230; Found: 265.1222.

#### tert-Butyl 4-(N-(tert-butoxycarbonyl)-S-methylsulfonimidoyl)piperazine-1-carboxylate (3ag)

Prepared according to General Procedure B. 1-Boc piperazine (93 mg, 0.50 mmol, 2.0 equiv) Me Norman Methods and triethylamine (70  $\mu$ L, 0.50 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride **2h** (50 mg, 0.25 mmol, 1 equiv) in THF (0.83 mL, 0.3 M) at RT and warmed to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 60% EtOAc/pentane) afforded sulfonimidamide **3ag** (66.3 mg, 73%) as a white solid. mp = 126–127 °C. R<sub>f</sub> 0.19 (60% EtOAc in pentane). IR (film)/cm-1 2978, 2933, 2870, 1696 (C=O), 1457, 1420, 1368, 1282, 1249, 1163, 1125, 691, 931. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.54 (bs, 4H, 2 × NCH<sub>2</sub>), 3.29 (tq, *J* = 12.1, 6.6, 5.8 Hz, 4H, 2 × NCH<sub>2</sub>), 3.02 (s, 3H, SCH<sub>3</sub>), 1.47 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>), 1.46 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  156.6 (C=O), 154.3 (C=O), 80.6 (*C*(CH<sub>3</sub>)<sub>3</sub>), 80.5 (*C*(CH<sub>3</sub>)<sub>3</sub>), 45.8 (2 × NCH<sub>2</sub>), 38.7 (2 × NCH<sub>2</sub>), 28.4 (C(CH<sub>3</sub>)<sub>3</sub>), 28.2 (C(CH<sub>3</sub>)<sub>3</sub>). HRMS (ESI) m/z Calcd for C<sub>15</sub>H<sub>29</sub>N<sub>3</sub>O<sub>5</sub>SNa [M+Na]<sup>+</sup>: 363.1726; Found: 363.1730.

# *tert*-Butyl (((4-((6-methoxyquinolin-8-yl)amino)pentyl)amino)(methyl)(oxo)- $\lambda^6$ -sulfaneylidene)carbamate (3ah)



Prepared according to General Procedure B. Primaquine bisphosphate (227 mg, 0.50 mmol, 2.0 equiv) and triethylamine (210  $\mu$ L, 1.50 mmol, 6.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride **2h** (49 mg, 0.25 mmol, 1 equiv) in THF (0.83 mL, 0.3 M) at RT and warmed to 80 °C for 24 h. The solvent was removed

under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfonimidamide **3ah** (49 mg, 58%) as a 1:1 mixture of diastereomers as a colourless oil. R<sub>f</sub> 0.14 (10% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>). IR (film)/cm<sup>-1</sup> 2970, 2933, 1666, 1617, 1520, 1386, 1282, 1162, 977, 824, 790. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.53 (dd, *J* = 4.3, 1.7 Hz, 2H, Ar–H<sub>a+b</sub>), 7.92 (dd, *J* = 8.3, 1.7 Hz, 2H, Ar–H<sub>a+b</sub>), 7.31 (dd, *J* = 8.2, 4.2 Hz, 2H, Ar–H<sub>a+b</sub>), 6.34 (d, *J* = 2.5 Hz, 2H, Ar–H<sub>a+b</sub>), 6.28 (t, *J* = 2.4 Hz, 2H, Ar–H<sub>a+b</sub>), 5.99 (d, *J* = 8.5 Hz, 2H, NH<sub>a+b</sub>), 5.70 (s, 2H, NH<sub>a+b</sub>), 3.89 (s, 6H, OCH<sub>3(a+b)</sub>), 3.68–3.59 (m, 2H, NCH<sub>a+b</sub>), 3.16 (s, 4H, NCH<sub>2(a+b)</sub>), 3.11 (d, *J* = 1.6 Hz, 6H, SCH<sub>3(a+b)</sub>), 1.79–1.67 (m, 8H, 2 × CH<sub>2(a+b)</sub>), 1.46 (s, 18H, C(CH<sub>3(a+b)</sub>)<sub>3</sub>), 1.31 (d, *J* = 6.4 Hz, 6H, CH<sub>3(a+b)</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  159.3 (Ar–C<sub>q</sub>)<sub>a+b</sub>, 157.7 (C=O)<sub>a+b</sub>, 144.8 (Ar–C<sub>q</sub>)<sub>a+b</sub>, 144.3 (Ar–C)<sub>a+b</sub>, 135.2 (Ar–C<sub>q</sub>)<sub>a+b</sub>, 134.8 (Ar–C)<sub>a+b</sub>, 129.8 (Ar–C<sub>q</sub>)<sub>a+b</sub>, 121.9 (Ar–C)<sub>a+b</sub>, 96.8 (Ar–C)<sub>a+b</sub>, 91.7 (Ar–C)<sub>a+b</sub>, 80.4 (*C*(CH<sub>3)3</sub>)<sub>a+b</sub>, 55.2 (OCH<sub>3</sub>)<sub>a+b</sub>, 47.7 (NCH<sub>2</sub>)<sub>a/b</sub>, 47.6 (NCH<sub>2</sub>)<sub>a/b</sub>, 42.4 (NCH)<sub>a/b</sub>, 42.3 (NCH)<sub>a/b</sub>, 41.0 (SCH<sub>3</sub>)<sub>a+b</sub>,

#### Greed et al.

33.6  $(CH_2)_{a/b}$ , 33.5  $(CH_2)_{a/b}$ , 28.1  $(C(CH_3)_3)_{a+b}$ , 26.5  $(CH_2)_{a/b}$ , 26.4  $(CH_2)_{a/b}$ , 20.6  $(CHCH_3)_{a+b}$ . HRMS (ESI) m/z: Calcd for C<sub>21</sub>H<sub>33</sub>N<sub>4</sub>O<sub>4</sub>S [M+H]<sup>+</sup>: 437.2223; Found: 437.2225.

# *tert*-Butyl (((3-(10,11-dihydro-5*H*-dibenzo[*b*,*f*]azepin-5-yl)propyl)(methyl)amino)(methyl)(oxo)- $\lambda^{6}$ -sulfaneylidene)carbamate (3ai)



Prepared according to General Procedure B. Desipramine hydrochloride (151 mg, 0.50 mmol, 2.0 equiv) and triethylamine (210  $\mu$ L, 1.50 mmol, 6.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride **2h** (49 mg, 0.25 mmol, 1 equiv) in THF (0.83 mL, 0.3 M) at RT and warmed to 80 °C for 24 h. The solvent was removed under

reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfonimidamide **3ai** (79.2 mg, 71%) as a colourless oil. R<sub>f</sub> 0.35 (50% EtOAc in pentane). IR (film)/cm<sup>-1</sup> 3060, 2974, 2930, 1666 (C=O) 1595, 1487, 1274, 1244, 1156, 910, 862, 731. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.15–7.09 (m 6H, 6 × Ar–H), 6.96–6.87 (m, 2H, 2 × Ar–H), 3.81 (t, *J* = 6.5 Hz, 2H, NCH<sub>2</sub>), 3.36 (dt, *J* = 14.2, 7.2 Hz, 1H, NCHH), 3.24 (dt, *J* = 14.1, 7.1 Hz, 1H, NCH*H*), 3.17 (s, 4H, 2 × Ar–CH<sub>2</sub>), 2.81 (s, 3H, SCH<sub>3</sub>), 2.77 (s, 3H, NCH<sub>3</sub>), 1.86 (dtd, *J* = 8.4, 7.4, 6.7, 4.2 Hz, 2H, NCH<sub>2</sub>CH<sub>2</sub>), 1.46 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  156.8 (C=O), 148.0 (2 × Ar–C<sub>q</sub>), 134.4 (2 × Ar–C<sub>q</sub>), 130.1 (2 × Ar–C), 126.6 (2 × Ar–C), 122.9 (2 × Ar–C), 119.9 (2 × Ar–C), 80.2 (*C*(CH<sub>3</sub>)<sub>3</sub>), 47.9 (NCH<sub>2</sub>), 47.5 (NCH<sub>2</sub>), 39.5 (SCH<sub>3</sub>), 34.9 (NCH<sub>3</sub>), 32.3 (2 × Ar–CH<sub>2</sub>), 28.3 (C(CH<sub>3</sub>)<sub>3</sub>), 26.3 (NCH<sub>2</sub>CH<sub>2</sub>). HRMS (ESI) m/z Calcd for C<sub>24</sub>H<sub>33</sub>N<sub>3</sub>O<sub>3</sub>S [M+H]<sup>+</sup>: 444.2330; Found: 444.2321.

# *tert*-Butyl ((4-(2-chlorodibenzo[*b*,*f*][1,4]oxazepin-11-yl)piperazin-1-yl)(methyl)(oxo)- $\lambda^{6}$ -

#### sulfaneylidene)carbamate (3aj)



Prepared according to General Procedure B. Amoxipine (157 mg, 0.50 mmol, 2.0 equiv) and triethylamine (70  $\mu$ L, 1.00 mmol, 2.0 equiv) were added to a stirred solution of sulfonimidoyl fluoride **2h** (49 mg, 0.25 mmol, 1 equiv) in THF (0.83 mL, 0.3 M) at RT and warmed to 80 °C for 24 h. The solvent was removed under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded sulfonimidamide **3aj** 

(45 mg, 45%) as a colourless oil.  $R_f 0.26$  (5% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>). IR (film)/cm<sup>-1</sup> 2978, 2929, 1669, 1602, 1558, 1472, 1282, 1252, 1162, 954. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.42 (dd, J = 8.7, 2.6 Hz, 1H, Ar–H), 7.31 (d, J = 2.6 Hz, 1H, Ar–H), 7.20 (d, J = 8.6 Hz, 1H, Ar–H), 7.17–7.08 (m, 3H, 3 × Ar–H), 7.06–7.00 (m, 1H, Ar–H), 3.65 (s, 4H, 2 × NCH<sub>2</sub>), 3.45 (s, 4H, 2 × NCH<sub>2</sub>), 3.06 (s, 3H, SCH<sub>3</sub>), 1.49 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>)). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  159.3 (Ar–C<sub>q</sub>), 158.4 (Ar–C<sub>q</sub>), 156.5 (C=O), 151.7(Ar–C<sub>q</sub>), 139.6 (Ar–C<sub>q</sub>), 132.9 (Ar–C), 130.5 (Ar–C<sub>q</sub>), 128.7 (Ar–C), 127.1 (Ar–C), 125.8 (Ar–C), 125.1 (Ar–C), 124.6 (Ar–C<sub>q</sub>), 122.8 (Ar–C), 120.1 (Ar–C), 80.5 (C(CH<sub>3</sub>)<sub>3</sub>), 47.1 (2 × NCH<sub>2</sub>), 45.5 (2 × NCH<sub>2</sub>), 38.4 (SCH<sub>3</sub>), 28.1 (C(CH<sub>3</sub>)<sub>3</sub>). HRMS (ESI) m/z: Calcd for C<sub>23</sub>H<sub>28</sub>N<sub>4</sub>O<sub>4</sub>SCI [M+H]<sup>+</sup>: 491.1520; Found: 491.1511.

# **Experimental Procedures for NBoc-deprotection**

# (*R*)-1-(4-Methylphenylsulfonimidoyl)piperidine ((*R*)-11)

Trifluoroacetic acid (46 µL, 0.6 mmol, 10 equiv) was added to sulfonimidamide (R)-3a (20 mg, O, NH 0.06 mmol, 1 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (0.3 mL, 0.2 M) at 0 °C, and stirred at RT for 4 h. The reaction mixture was guenched with NaHCO<sub>3</sub> (5 mL), water (10 mL) was added and then diluted with CH<sub>2</sub>Cl<sub>2</sub> (10 mL). The aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 20 mL), and the combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered and concentrated under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 30% EtOAc in pentane) afforded NH-sulfonimidamide (R)-11 (12.5 mg, 89%, >99% ee) as a white solid. mp = 83-84 °C. Rf 0.10 (30% EtOAc in pentane). IR (film)/cm<sup>-1</sup> 3280, 2937, 2851, 1595, 1491, 1454, 1252, 1133, 1072, 1043, 977, 917, 816, 701. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.75 (d, J = 8.4 Hz, 2H, 2 × Ar-H), 7.29 (d, J = 8.1 Hz, 2H, 2 × Ar-H), 2.96 (t, J = 5.5 Hz, 4H, 2 × NCH<sub>2</sub>), 2.42 (s, 3H, Ar-CH<sub>3</sub>), 1.66–1.56 (m, 4H, 2 × NCH<sub>2</sub>CH<sub>2</sub>), 1.41–1.31 (m, 2H, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 142.9 (Ar–C<sub>q</sub>), 133.3 (Ar-C<sub>q</sub>), 129.4 (2 × Ar-C), 128.2 (2 × Ar-C), 48.1 (2 × NCH<sub>2</sub>), 25.8 (2 × NCH<sub>2</sub>CH<sub>2</sub>), 23.8 (NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 21.6 (Ar–CH<sub>3</sub>). Characterisation data (NMR) in accordance with literature.<sup>[17]</sup>  $[\alpha]^{23}_{D} = -8$  (c 0.5, CHCl<sub>3</sub>). HPLC Conditions: Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm. (R)-11 retention time: 44 min.

Synthesis of racemic sample for HPLC analysis prepared according to the above procedure to afford sulfonimidamide (rac)-11 as a white solid with characterisation data in accordance with the above. HPLC Conditions: Chiralpak IA column, 95:5 nhexane: iPrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm, (rac)-11 retention times: 28 & 44 min.

Trifluoroacetic acid (54 µL, 0.8 mmol, 10 equiv) was added to sulfonimidamide (R)-3f (23 mg,

#### (R)-N'-Cyclobutyl-4-methylbenzenesulfonimidamide ((R)-12)



0.08 mmol, 1 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (700 µL, 0.1 M) at 0 °C, and stirred at RT for 4 h. The reaction mixture was guenched with NaHCO<sub>3</sub> (5 mL), water (10 mL) was added and then diluted with  $CH_2CI_2$  (10 mL). The aqueous layer was extracted with  $CH_2CI_2$  (3 × 20 mL), and the combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered and concentrated under reduced pressure. Purification by flash column chromatography (SiO<sub>2</sub>, 20% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>) afforded NH-sulfonimidamide (R)-12 (13 mg, 84%, 98% ee) as a colourless oil. R<sub>f</sub> 0.19 (20% Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub>). IR (film)/cm<sup>-1</sup> 3254, 2974, 2944, 2870, 1446, 1244, 1133, 1010, 816. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.86 (d, J = 8.4 Hz, 2H, 2 × Ar–H), 7.28 (d, J = 8.0 Hz, 2H, 2 × Ar–H), 3.84– 3.74 (m, 1H, NCH), 2.42 (s, 3H, ArCH<sub>3</sub>), 2.15–1.97 (m, 2H, 2 × NCHCHH), 1.79–1.51 (m, 4H, 2 × NCHCHH + CH<sub>2</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 142.8 (Ar–Cq), 139.0 (Ar–Cq), 129.5 (2 × Ar–C), 127.2 (2 × Ar–C), 48.6 (NCH), 31.9 (1 × NCHCH<sub>2</sub>), 31.8 (1 × NCHCH<sub>2</sub>), 21.4 (Ar–CH<sub>3</sub>), 15.0 (NCHCH<sub>2</sub>CH<sub>2</sub>). HRMS (ESI) m/z: Calcd for C<sub>11</sub>H<sub>17</sub>N<sub>2</sub>OS [M+H]<sup>+</sup>: 225.1062; Found: 225.1062. [α]<sup>23</sup><sub>D</sub> = -46 (c 0.13, CHCl<sub>3</sub>). HPLC Conditions: Chiralpak IA column, 85:15 nhexane: iPrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm. (R)-12 retention time: 11 min.

Synthesis of racemic sample for HPLC analysis prepared according to the above procedure to afford sulfonimidamide (rac)-12 as a colourless oil with characterisation data in accordance with the above. HPLC Conditions: Chiralpak IA column, 85:15 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm, (*rac*)-12 retention times: 11 & 16 min.

# X-Ray Crystallography Supplementary Data

| Manuscript: | Synthesis of Highly Enantioenriched Sulfonimidamides by Stereospecific SuFEx |
|-------------|------------------------------------------------------------------------------|
|             | Reaction of Sulfonimidoyl Fluorides with Amines                              |
| Authors:    | Stephanie Greed, Edward L. Briggs, Fahima I.M. Idiris, Andrew J.P. White,    |
|             | Ulrich Lücking, and James A. Bull                                            |

#### The X-ray crystal structure of (R)-3h

*Crystal data for* (*R*)-**3h**: C<sub>14</sub>H<sub>22</sub>N<sub>2</sub>O<sub>3</sub>S, *M* = 298.39, triclinic, *P*1 (no. 1), *a* = 6.2313(4), *b* = 8.2793(5), *c* = 8.8044(6) Å,  $\alpha$  = 117.174(7),  $\beta$  = 100.944(5),  $\gamma$  = 93.245(5)°, *V* = 391.37(5) Å<sup>3</sup>, *Z* = 1, *D*<sub>c</sub> = 1.266 g cm<sup>-3</sup>,  $\mu$ (Cu-K $\alpha$ ) = 1.917 mm<sup>-1</sup>, *T* = 173 K, colourless blocks, Agilent Xcalibur PX Ultra A diffractometer; 2737 independent measured reflections (*R*<sub>int</sub> = 0.0246), *F*<sup>2</sup> refinement,<sup>[X1,X2]</sup> *R*<sub>1</sub>(obs) = 0.0300, *wR*<sub>2</sub>(all) = 0.0798, 2681 independent observed absorption-corrected reflections [|*F*<sub>o</sub>| > 4 $\sigma$ (|*F*<sub>o</sub>|), completeness to  $\theta_{\text{full}}(67.7^{\circ})$  = 99.9%], 188 parameters. The absolute structure of (*R*)-**3h** was unambiguously determined by use of the Flack parameter [*x* = -0.035(17)]. CCDC 1991431.

#### References

[X1] SHELXTL v5.1, Bruker AXS, Madison, WI, 1998.

[X2] SHELX-2013, G.M. Sheldrick, Acta Cryst., 2015, C71, 3-8.

# Figures



Figure S 2: The crystal structure of (R)-3h (50% probability ellipsoids).

#### References

- [1] C. Worch, I. Atodiresei, G. Raabe, C. Bolm, Chem. Eur. J. 2010, 16, 677–683.
- [2] M. Steurer, C. Bolm, J. Org. Chem. 2010, 75, 3301–3310.
- [3] C. B. W. Phippen, J. K. Beattie, C. S. P. McErlean, Chem. Commun. 2010, 46, 8234–8236.
- [4] C. Drago, E.-J. Walker, L. Caggiano, R. F. W. Jackson, Org. Synth. 2009, 86, 121–129.
- [5] C. Drago, L. Caggiano, R. F. W. Jackson, Angew. Chem. Int. Ed. 2005, 44, 7221–7223.
- [6] M. Zenzola, R. Doran, R. Luisi, J. A. Bull, J. Org. Chem. 2015, 80, 6391–6399.
- [7] N. Pemberton, H. Graden, E. Evertsson, E. Bratt, M. Lepistö, P. Johannesson, P. H. Svensson, ACS Med. Chem. Lett. 2012, 3, 574–578.
- [8] C. H. Rosa, M. L. B. Peixoto, G. R. Rosa, B. Godoi, F. Z. Galetto, M. G. M. D'Oca, M. Godoi, *Tetrahedron Lett.* 2017, 58, 3777–3781.
- [9] J. Li, X. Bi, H. Wang, J. Xiao, *Phosphorus, Sulfur Silicon Relat. Elem.* **2014**, *189*, 1873–1881.
- [10] W. Guo, G. Lv, J. Chen, W. Gao, J. Ding, H. Wu, *Tetrahedron* **2010**, 66, 2297–2300.
- [11] F. Rajabi, S. Razavi, R. Luque, Green Chem. 2010, 12, 786–789.
- [12] L. Zong, X. Ban, C. W. Kee, C.-H. Tan, Angew. Chem. Int. Ed. 2014, 53, 11849–11853.
- [13] N. P. Crouch, R. M. Adlington, J. E. Baldwin, M.-H. Lee, C. H. MacKinnon, *Tetrahedron* **1997**, *53*, 6993–7010.
- [14] H. Cui, W. Wei, D. Yang, Y. Zhang, H. Zhao, L. Wang, H. Wang, *Green Chem.* 2017, 19, 3520–3524.
- [15] H. L. Yue, M. Klussmann, Synlett 2016, 27, 2505–2509.
- [16] H. Mukherjee, J. Debreczeni, J. Breed, S. Tentarelli, B. Aquila, J. E. Dowling, A. Whitty, N. P. Grimster, Org. Biomol. Chem. 2017, 15, 9685–9695.
- [17] F. Izzo, M. Schäfer, R. Stockman, U. Lücking, Chem. Eur. J. 2017, 23, 15189–15193.

<sup>1</sup>H and <sup>13</sup>C-NMR Spectra

# tert-Butyl (p-tolylsulfinyl)carbamate ((S)-5)



# Sodium (tert-butoxycarbonyl)(p-tolylsulfinyl)amide ((S)-1a)



# *tert*-Butyl (fluoro(oxo)(*p*-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-2a)





# tert-Butyl (oxo(piperidin-1-yl)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-3a)



# *tert*-Butyl (*R*)-((butylamino)(oxo)(*p*-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-3b)



# tert-Butyl (R)-((benzylamino)(oxo)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-3c)



# tert-Butyl (R)-((allylamino)(oxo)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-3d)



# tert-Butyl (R)-(((cyclopropylmethyl)amino)(oxo)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-3e)



# tert-Butyl (R)-((cyclobutylamino)(oxo)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-3f)



# *tert*-Butyl (*R*)-((cyclohexylamino)(oxo)(*p*-tolyl)-λ<sup>6</sup>-sulfaneylidene)carbamate ((*R*)-3g)



tert-Butyl (R)-((dimethylamino)(oxo)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-3h)



# tert-Butyl (R)-((benzyl(methyl)amino)(oxo)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-3i)



tert-Butyl (R)-((3,4-dihydroisoquinolin-2(1H)-yl)(oxo)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-3j)



tert-Butyl (R)-(oxo(pyrrolidin-1-yl)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-3k)



# tert-Butyl (R)-(morpholino(oxo)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-31)



# *tert*-Butyl (*R*)-(oxo(4-oxopiperidin-1-yl)(*p*-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-3m)



tert-Butyl (R)-((4,4-difluoropiperidin-1-yl)(oxo)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-3n)




# *tert*-Butyl (*R*)-((4-hydroxypiperidin-1-yl)(oxo)(*p*-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-30)



# *tert*-Butyl (*R*)-4-(*N*-(*tert*-butoxycarbonyl)-4-methylphenylsulfonimidoyl)piperazine-1-carboxylate ((*R*)-3p)



*tert*-Butyl (*R*)-(oxo(4-(pyrimidin-2-yl)piperazin-1-yl)(*p*-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-3q)



# $\textit{tert-Butyl} \ (R)-((4-(6-fluorobenzo[d]isoxazol-3-yl)piperidin-1-yl)(oxo)(p-tolyl)-\lambda^6-$

# sulfaneylidene)carbamate ((*R*)-3r)





*tert*-Butyl (*R*)-(((3-(10,11-dihydro-5*H*-dibenzo[*b*,*f*]azepin-5-yl)propyl)(methyl)amino)(oxo)(*p*-tolyl)- $\lambda^{6}$ -sulfaneylidene)carbamate ((*R*)-3s)



*tert*-Butyl ((*R*)-oxo(((*S*)-1-phenylethyl)amino)(*p*-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-3t)



tert-Butyl ((R)-oxo(((R)-1-phenylethyl)amino)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-3u)



#### Methyl 3-((4-bromophenyl)thio)propanoate (7)



#### Methyl 3-((4-bromophenyl)sulfinyl)propanoate (8)



## Methyl 3-(4-bromo-N-(tert-butoxycarbonyl)phenylsulfonimidoyl)propanoate ((S)-9)



## Sodium ((4-bromophenyl)sulfinyl)(*tert*-butoxycarbonyl)amide ((S)-1b)



# *tert*-Butyl ((4-bromophenyl)fluoro(oxo)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-2b)





# tert-Butyl (R)-((benzylamino)(4-bromophenyl)( $\infty$ o)- $\lambda$ <sup>6</sup>-sulfaneylidene)carbamate ((R)-3v)



# tert-Butyl (R)-((allylamino)(4-bromophenyl)(oxo)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-3w)



# *tert*-Butyl ((4-bromophenyl)(oxo)(piperidin-1-yl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-3x)



tert-Butyl ((R)-(4-bromophenyl)(methyl((S)-3-(naphthalen-1-yloxy)-3-(thiophen-2-

yl)propyl)amino)(oxo)-\lambda^6-sulfaneylidene)carbamate ((R)-3y)



# *tert*-Butyl (*R*)-([1,1'-biphenyl]-4-yl(oxo)(piperidin-1-yl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-10)



#### Methyl 3-(tolylthio)propanoate (S1a)



#### Methyl 3-(phenylthio)propanoate (S1b)



#### Methyl 3-((4-fluorophenyl)thio)propanoate (S1c)



Greed et al.



## Methyl 3-((4-methoxyphenyl)thio)propanoate (S1d)



#### Methyl 3-(pyridin-2-ylthio)propanoate (S1e)



### Methyl 3-(isopropylthio)propanoate (S1f)



#### Methyl 3-(methylthio)propanoate (S1g)



#### Methyl 3-(p-tolylsulfinyl)propanoate (S2a)



#### Methyl 3-(phenylsulfinyl)propanoate (S2b)









# Methyl 3-(pyridin-2-ylsulfinyl)propanoate (S2e)



#### Methyl 3-(isopropylsulfinyl)propanoate (S2f)



#### Methyl 3-(methanesulfinyl)propanoate (S2g)


### Methyl 3-(N-(tert-butoxycarbonyl)-4-methylphenylsulfonimidoyl)propanoate (S3a)



#### Methyl 3-(N-(tert-butoxycarbonyl)phenylsulfonimidoyl)propanoate (S3b)



## Methyl 3-(N-(tert-butoxycarbonyl)-4-fluorophenylsulfonimidoyl)propanoate (S3c)







#### Methyl 3-(N-(tert-butoxycarbonyl)-4-methoxyphenylsulfonimidoyl)propanoate (S3d)



### Methyl 3-(N-(tert-butoxycarbonyl)pyridine-2-sulfonimidoyl)propanoate (S3e)



## Methyl 3-(N-(tert-butoxycarbonyl)propan-2-ylsulfonimidoyl)propanoate (S3f)



#### Methyl 3-(N-(tert-butoxycarbonyl)-S-methylsulfonimidoyl)propanoate (S3g)



## Sodium (tert-butoxycarbonyl)(phenylsulfinyl)amide (S4b)



### Sodium (tert-butoxycarbonyl)((4-fluorophenyl)sulfinyl)amide S4c



## Sodium (tert-butoxycarbonyl)((4-methoxyphenyl)sulfinyl)amide (S4d)



## Sodium (tert-butoxycarbonyl)(pyridin-2-ylsulfinyl)amide (S4e)



#### Sodium (tert-butoxycarbonyl)(isopropylsulfinyl)amide (S4f)



#### Sodium (tert-butoxycarbonyl)(methylsulfinyl)amide (S4g)



*tert*-Butyl (fluoro(oxo)(phenyl)- $\lambda^6$ -sulfaneylidene)carbamate (2c)





## tert-Butyl (fluoro(4-fluorophenyl)(oxo)- $\lambda^6$ -sulfaneylidene)carbamate (2d)





## tert-Butyl (fluoro(4-methoxyphenyl)(oxo)- $\lambda^6$ -sulfaneylidene)carbamate (2e)





### *tert*-Butyl (fluoro(oxo)(pyridin-2-yl)-λ<sup>6</sup>-sulfaneylidene)carbamate (2f)





## *tert*-Butyl (fluoro(isopropyl)(oxo)- $\lambda^6$ -sulfaneylidene)carbamate (2g)





## *tert*-Butyl (fluoro(methyl)(oxo)- $\lambda^6$ -sulfaneylidene)carbamate (2h)





## tert-Butyl (oxo(phenyl)(piperidin-1-yl)- $\lambda^6$ -sulfaneylidene)carbamate (3z)



# *tert*-Butyl ((4-fluorophenyl)(oxo)(piperidin-1-yl)- $\lambda^6$ -sulfaneylidene)carbamate (3aa)





# *tert*-Butyl ((4-methoxyphenyl)(oxo)(piperidin-1-yl)- $\lambda^6$ -sulfaneylidene)carbamate (3ab)



## *tert*-Butyl (oxo(piperidin-1-yl)(pyridin-2-yl)-λ<sup>6</sup>-sulfaneylidene)carbamate (3ac)



## *tert*-Butyl (isopropyl(oxo)(piperidin-1-yl)- $\lambda^6$ -sulfaneylidene)carbamate (3ad)



## *tert*-Butyl (methyl(oxo)(piperidin-1-yl)-λ<sup>6</sup>-sulfaneylidene)carbamate (3ae)



## tert-Butyl (methyl(morpholino)(oxo)-λ<sup>6</sup>-sulfaneylidene)carbamate (3af)



tert-Butyl 4-(N-(tert-butoxycarbonyl)-S-methylsulfonimidoyl)piperazine-1-carboxylate (3ag)



# tert-Butyl (((4-((6-methoxyquinolin-8-yl)amino)pentyl)amino)(methyl)(oxo)- $\lambda^{6-}$

## sulfaneylidene)carbamate (3ah)


# *tert*-Butyl (((3-(10,11-dihydro-5*H*-dibenzo[*b*,*f*]azepin-5-yl)propyl)(methyl)amino)(methyl)(oxo)- $\lambda^{6}$ -sulfaneylidene)carbamate (3ai)



# tert-Butyl ((4-(2-chlorodibenzo[b,f][1,4]oxazepin-11-yl)piperazin-1-yl)(methyl)(oxo)- $\lambda^6$ -

# sulfaneylidene)carbamate (3aj)



#### (*R*)-1-(4-Methylphenylsulfonimidoyl)piperidine ((*R*)-11)



#### (*R*)-*N*'-Cyclobutyl-4-methylbenzenesulfonimidamide ((*R*)-12)



**HPLC** Data

#### tert-Butyl (p-tolylsulfinyl)carbamate ((S)-5)

**Conditions:** Chiralpak IB column, 98:2 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm.

#### (*rac*)-5



Signal 1: DAD1 A, Sig=250, 10 Ref =360, 100

| Peak<br>#  | RetTime Typ<br>[min]     | e Wi/dth<br>[min]  | Area<br>[mAU*s]            | Height<br>[mAU]        | Ar ea<br>%           |
|------------|--------------------------|--------------------|----------------------------|------------------------|----------------------|
| <br>1<br>2 | 21. 808 BB<br>24. 483 BB | 0. 8231<br>0. 9969 | 1568. 53638<br>1585. 33215 | 27. 10690<br>22. 31392 | 49. 7337<br>50. 2663 |
| Tot al     | s :                      |                    | 3153. 86853                | 49. 42082              |                      |

# (S)-5

```
[\alpha]^{21}_{D} = +80 (c 0.1, CHCl<sub>3</sub>).
```



Signal 1: DAD1 A, Sig=250, 10 Ref =360, 100

| Peak Pet Time Type<br># [min] | Wi/dth<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Ar ea<br>% |
|-------------------------------|-----------------|-----------------|-----------------|------------|
| 1 22.068 BB                   | 0. 9253         | 1221.97766      | 18. 72633       | 100. 0000  |
| Tot al s :                    |                 | 1221.97766      | 18. 72633       |            |

ee > 99%

# tert-Butyl (fluoro(oxo)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-2a)

**Conditions:** Chiralpak IA column, 99:1 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm.

# (*rac*)-2a



# (*R*)-2a

 $[\alpha]^{21}_{D}$  = +9 (c 5.0, CHCl<sub>3</sub>).



# tert-Butyl (R)-(oxo(piperidin-1-yl)(p-tolyl- $\lambda^6$ -sulfaneylidene)carbamate ((R)-3a)

**Conditions:** Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 270 nm.

#### (*rac*)-(3a)



# (*R*)-(3a)

 $[\alpha]^{21}_{D}$  = -18 (c 0.5, CHCl<sub>3</sub>).



Signal 7: DAD1 G, Sig=270,10 Ref=off

| Peak<br>#  | RetTime<br>[min] | Туре         | Width<br>[min]   | Area<br>[mAU*s]       | Height<br>[mAU]        | Area<br>%         |
|------------|------------------|--------------|------------------|-----------------------|------------------------|-------------------|
| <br>1<br>2 | 16.465<br>21.196 | <br>MM<br>BB | 0.3392<br>0.5707 | 5.06887<br>2269.86426 | 2.49059e-1<br>59.28167 | 0.2228<br>99.7772 |
| Total      | s :              |              |                  | 2274.93313            | 59.53072               |                   |

ee > 99%

# tert-Butyl (R)-((butylamino)(oxo)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-3b)

**Conditions:** Chiralpak IA column, 97:3 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 254 nm.

# (*rac*)-(3b)



# (*R*)-(3b)

 $[\alpha]^{21}_{D}$  = +42 (c 1.0, CHCl<sub>3</sub>).



Signal 2: DAD1 B, Sig=254,10 Ref=off

| Peak<br>#  | RetTime<br>[min] | Туре         | Width<br>[min]   | Area<br>[mAU*s]        | Height<br>[mAU]        | Area<br>%         |
|------------|------------------|--------------|------------------|------------------------|------------------------|-------------------|
| <br>1<br>2 | 21.768<br>23.529 | <br>BB<br>MM | 0.5266<br>0.4161 | 1584.74768<br>10.32006 | 45.46916<br>4.13375e-1 | 99.3530<br>0.6470 |
| Total      | s :              |              |                  | 1595.06774             | 45.88253               |                   |

# tert-Butyl (R)-((benzylamino)(oxo)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-3c)

**Conditions:** Chiralpak IA column, 97:3 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm.

#### (rac)-(3c)



# (*R*)-(3c)

 $[\alpha]^{23}$ <sub>D</sub> = +88 (c 0.5, CHCl<sub>3</sub>).



Signal 1: DAD1 A, Sig=250,10 Ref=360,100

| Peak RetTime<br># [min] | Туре         | Width<br>[min] | Area<br>[mAU*s]        | Height<br>[mAU]        | Area<br>% |
|-------------------------|--------------|----------------|------------------------|------------------------|-----------|
| 1 37.971<br>2 41 234    | <br>MM<br>BB | 0.8366         | 33.02581<br>5186.88770 | 6.57922e-1<br>65.16691 | 0.6327    |
| Totals :                | 00           | 1.1700         | 5219.91351             | 65.82483               |           |

# tert-Butyl (R)-((allylamino)(oxo)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-3d)

**Conditions:** Chiralpak IA column, 97:3 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 270 nm.

#### (*rac*)-(3d)



| 1 Oun  |           | po nati | /. 04      | i Si gin  | /• 0u    |
|--------|-----------|---------|------------|-----------|----------|
| #      | [min]     | [min]   | [mAU*s]    | [mAU]     | %        |
|        |           |         |            |           |          |
| 1      | 23.167 BB | 0. 5364 | 338. 05084 | 9. 03798  | 50. 3426 |
| 2      | 25.526 BB | 0. 5708 | 333. 45023 | 8. 09127  | 49. 6574 |
|        |           |         |            |           |          |
| Tot al | s :       |         | 671. 50107 | 17. 12926 |          |

#### (*R*)-(3d)

 $[\alpha]^{23}_{D}$  = +40 (c 0.5, CHCl<sub>3</sub>).



Signal 7: DAD1 G, Sig=270,10 Ref=off

| Peak<br>#  | RetTime<br>[min] | Туре         | Width<br>[min]   | Area<br>[mAU*s]      | Height<br>[mAU]        | Area<br>%         |
|------------|------------------|--------------|------------------|----------------------|------------------------|-------------------|
| <br>1<br>2 | 23.111<br>25.722 | <br>BB<br>MM | 0.5258<br>0.5570 | 684.38165<br>5.77836 | 18.49214<br>1.72910e-1 | 99.1628<br>0.8372 |
| Tota       | s:               |              |                  | 690.16001            | 18.66505               |                   |

ee = 98%

# tert-Butyl (R)-(((cyclopropylmethyl)amino)(oxo)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-3e)

**Conditions:** Chiralpak IA column, 97:3 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 280 nm.

#### (rac)-(3e)



| Peak | Rettime | Туре | Width  | Area       | Height   | Area    |
|------|---------|------|--------|------------|----------|---------|
| #    | [min]   |      | [min]  | [mAU*s]    | [mAU]    | %       |
|      |         |      |        |            |          |         |
| 1    | 25.929  | BB   | 0.6237 | 1115.89270 | 26.91534 | 50.0552 |
| 2    | 27.963  | BB   | 0.6729 | 1113.43213 | 24.46601 | 49.9448 |
|      |         |      |        |            |          |         |
| Tota | s :     |      |        | 2229.32483 | 51.38135 |         |

#### (*R*)-(3e)

 $[\alpha]^{21}_{D}$  = +29 (c 1.0, CHCl<sub>3</sub>).



| Peak | RetTime | Туре | Width  | Area       | Height   | Area    |
|------|---------|------|--------|------------|----------|---------|
| #    | [min]   |      | [min]  | [mAU*s]    | [mAU]    | %       |
|      |         |      |        |            |          |         |
| 1    | 25.715  | BB   | 0.7456 | 2133.07471 | 39.90491 | 97.3256 |
| 2    | 28.469  | MM   | 0.6996 | 58.61450   | 1.39648  | 2.6744  |

# tert-Butyl (R)-((cyclobutylamino)(oxo)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-3f)

**Conditions:** Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 260 nm.

#### (rac)-(3f)



| Totals: | 613. 82529 | 22. 90428 |
|---------|------------|-----------|

# (*R*)-(3f)

 $[\alpha]^{21}_{D}$  = +48 (c 0.8, CHCl<sub>3</sub>).



Signal 6: DAD1 F, Sig=260,10 Ref=off

| Peak<br>#  | RetTime<br>[min] | Туре         | Width<br>[min]   | Area<br>[mAU*s]       | Height<br>[mAU]        | Area<br>%         |
|------------|------------------|--------------|------------------|-----------------------|------------------------|-------------------|
| <br>1<br>2 | 15.256<br>18.350 | <br>BB<br>MM | 0.4059<br>0.3520 | 1500.06885<br>6.12579 | 56.10583<br>2.90021e-1 | 99.5933<br>0.4067 |
| Total      | s :              |              |                  | 1506.19464            | 56.39585               |                   |

ee > 99%

# *tert*-Butyl (*R*)-((cyclohexylamino)(oxo)(*p*-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-3g)

**Conditions:** Chiralpak IF column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 254 nm.

#### (*rac*)-(3g)



Signal 2: DAD1 B, Sig=254,10 Ref=off

| Peak<br># | RetTime<br>[min] | Туре         | Width<br>[min]       | Area<br>[mAU*s] | Height<br>[mAU]        | Area<br>%   |
|-----------|------------------|--------------|----------------------|-----------------|------------------------|-------------|
| 1 2       | 19.708           | <br>BB<br>BB | <br>0.4301<br>0.4724 | 213.50233       | <br>7.23872<br>5.67202 | <br>50.5042 |
| Total     | ls :             | 00           | 0.4724               | 422.74191       | 12.91074               | 49.4998     |

# (*R*)-(3g)

 $[\alpha]^{21}_{D}$  = +42 (c 0.5, CHCl<sub>3</sub>).



Signal 2: DAD1 B, Sig=254,10 Ref=off

| Peak<br># | RetTime<br>[min] | Туре | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% |
|-----------|------------------|------|----------------|-----------------|-----------------|-----------|
|           |                  |      |                |                 |                 |           |
| 1         | 19.616           | MP   | 0.4110         | 10.25777        | 4.15939e-1      | 1.2543    |
| 2         | 24.202           | BB   | 0.5475         | 807.56189       | 21.34123        | 98.7457   |
| Total     | ls :             |      |                | 817.81966       | 21.75717        |           |

ee = 97%

# tert-Butyl (R)-((dimethylamino)(oxo)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-3h)

**Conditions:** Chiralpak IA column, 97:3 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm.

#### (*rac*)-(3h)



# (*R*)-(3h)

 $[\alpha]^{21}_{D} = -28 (c \ 1.0, \ CHCl_3)$ 



ee = 96%

# *tert*-Butyl (*R*)-((benzyl(methyl)amino)(oxo)(*p*-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-3i)

**Conditions:** Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm.

#### (rac)-(3i)



#### (*R*)-(3i)

 $[\alpha]^{23}_{D} = -12$  (c 1, CHCl<sub>3</sub>).



# *tert*-Butyl (*R*)-((3,4-dihydroisoquinolin-2(1*H*)-yl)(oxo)(*p*-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-3j)

**Conditions:** Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm.

#### (*rac*)-(3j)



## (*R*)-(3j)

 $[\alpha]^{23}_{D} = 0$  (c 1.0, CHCl<sub>3</sub>).



#### ee = 97%

# tert-Butyl (R)-(oxo(pyrrolidin-1-yl)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-3k)

**Conditions:** Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 260 nm.

#### (rac)-(3k)



# (*R*)-(3k)

 $[\alpha]^{21}_{D}$  = -9 (c 1.0, CHCl<sub>3</sub>).



| # [min]     | [min]  | [mAU*s]    | [mAU]     | %       |
|-------------|--------|------------|-----------|---------|
| 1 19.002 BB | 0.3669 | 74.11945   | 2.85495   | 1.6924  |
| 2 20.045 BB | 0.4906 | 4305.41699 | 131.28296 | 98.3076 |
| Totals :    |        | 4379.53644 | 134.13790 |         |

ee = 97%

# tert-Butyl (R)-(morpholino(oxo)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-3l)

**Conditions:** Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm.

#### (rac)-(3I)



#### (R)-(3I)

 $[\alpha]^{23}_{D} = -11$  (c 1.0, CHCl<sub>3</sub>).



Signal 1: DAD1 A, Sig=250,10 Ref=360,100

| Peak<br># | RetTime<br>[min] | Туре | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% |
|-----------|------------------|------|----------------|-----------------|-----------------|-----------|
|           |                  |      |                |                 |                 |           |
| 1         | 25.638           | MM   | 0.4908         | 11.85784        | 4.02664e-1      | 0.2452    |
| 2         | 31.015           | BB   | 0.7408         | 4824.73779      | 97.24724        | 99.7548   |
|           |                  |      |                |                 |                 |           |
| Total     | s :              |      |                | 4836.59563      | 97.64990        |           |

ee > 99%

# tert-Butyl (R)-(oxo(4-oxopiperidin-1-yl)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-3m)

**Conditions:** Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 254 nm.

# (*rac*)-(3m)



# (*R*)-(3m)

 $[\alpha]^{23}_{D} = 0$  (c 0.2, CHCl<sub>3</sub>).



Totals : 5106.29223 50.56522

# tert-Butyl (R)-((4,4-difluoropiperidin-1-yl)(oxo)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-3n)

**Conditions:** Chiralpak IB column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm.

#### (*rac*)-(3n)



Signal 1: DAD1 A, Sig=250,10 Ref=360,100

| Peak<br># | RetTime<br>[min] | Туре | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% |
|-----------|------------------|------|----------------|-----------------|-----------------|-----------|
|           |                  |      |                |                 |                 |           |
| 1         | 10.193           | BB   | 0.2356         | 460.88104       | 29.60700        | 49.3914   |
| 2         | 12.269           | BB   | 0.2806         | 472.23984       | 25.20912        | 50.6086   |
|           |                  |      |                |                 |                 |           |
| Total     | s :              |      |                | 933.12088       | 54.81612        |           |

#### (*R*)-(3n)

 $[\alpha]^{23}_{D} = -6$  (c 1, CHCl<sub>3</sub>).



Signal 1: DAD1 A, Sig=250,10 Ref=360,100

| Peak<br># | RetTime<br>[min] | Туре           | Width<br>[min]   | Area<br>[mAU*s]        | Height<br>[mAU]      | Area<br>%         |
|-----------|------------------|----------------|------------------|------------------------|----------------------|-------------------|
| 1<br>2    | 10.157<br>12.375 | BB<br>BB<br>BB | 0.2463<br>0.2460 | 2060.77588<br>21.13705 | 126.33929<br>1.08157 | 98.9847<br>1.0153 |
| Total     | ls :             |                |                  | 2081.91293             | 127.42087            |                   |

ee = 98%

# tert-Butyl (R)-((4-hydroxypiperidin-1-yl)(oxo)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-30)

**Conditions:** Chiralpak IA column, 85:15 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 254 nm.

#### (rac)-(3o)



| Totals : | 594,73148 | 26,49714 |
|----------|-----------|----------|

#### (*R*)-(3o)

 $[\alpha]^{23}_{D} = -4$  (c 1, CHCl<sub>3</sub>).



Totals: 1348.15515 56.05337

*tert*-Butyl (*R*)-4-(*N*-(*tert*-butoxycarbonyl)-4-methylphenylsulfonimidoyl)piperazine-1-carboxylate ((*R*)-3p)

**Conditions:** Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm.

# (*rac*)-(3p)



# (*R*)-(3p)

 $[\alpha]^{21}_{D} = -6$  (c 1.0, CHCl<sub>3</sub>).





Peak RetTime Type Width Area Height Area [mAU\*s] # [min] [min] [mAU] % ----|-----|----| ----| . . . . . . . . ----1 27.188 MM 0.7131 29.50145 6.89538e-1 1.6876 2 29.957 BB 0.8091 1718.63159 32.28175 98.3124 Totals : 1748.13304 32.97128

# tert-Butyl (R)-(oxo(4-(pyrimidin-2-yl)piperazin-1-yl)(p-tolyl)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-3q)

**Conditions:** Chiralpak IB column, 97:3 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm.

#### (*rac*)-(3q)



# (*R*)-(3q)

 $[\alpha]^{23}_{D} = 0$  (c 1, CHCl<sub>3</sub>).



ee > 99%

#### Greed et al.

#### S168

# *tert*-Butyl (*R*)-((4-(6-fluorobenzo[*d*]isoxazol-3-yl)piperidin-1-yl)(oxo)(*p*-tolyl)- $\lambda^{6}$ -sulfaneylidene)carbamate ((*R*)-3r)

**Conditions:** Chiralpak IA column, 90:10 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm.

#### (*rac*)-(3r)



Signal 1: DAD1 A, Sig=250,10 Ref=360,100

| Peak<br>#  | RetTime<br>[min] | Туре         | Width<br>[min]   | Area<br>[mAU*s]          | Height<br>[mAU]      | Area<br>%          |
|------------|------------------|--------------|------------------|--------------------------|----------------------|--------------------|
| <br>1<br>2 | 23.011<br>36.371 | <br>BB<br>BB | 0.6102<br>0.9385 | 1826.53259<br>1817.76233 | 45.32460<br>27.38116 | 50.1203<br>49.8797 |
| Tota       | ls :             |              |                  | 3644.29492               | 72.70576             |                    |

#### (*R*)-(3r)

 $[\alpha]^{23}_{D}$  = +20 (c 0.5, CHCl<sub>3</sub>).



Signal 1: DAD1 A, Sig=250,10 Ref=360,100

| Peak<br>#  | RetTime<br>[min] | Туре         | Width<br>[min]   | Area<br>[mAU*s]      | Height<br>[mAU]        | Area<br>%         |
|------------|------------------|--------------|------------------|----------------------|------------------------|-------------------|
| <br>1<br>2 | 23.255<br>36.375 | <br>MM<br>BB | 0.5510<br>0.8939 | 7.72514<br>943.83289 | 2.33659e-1<br>14.60569 | 0.8118<br>99.1882 |
| Tota       | ls :             |              |                  | 951.55803            | 14.83935               |                   |

ee = 98%

#### Greed et al.

# *tert*-Butyl (*R*)-(((3-(10,11-dihydro-5*H*-dibenzo[*b*,*f*]azepin-5-yl)propyl)(methyl)amino)(oxo)(*p*-tolyl)- $\lambda^{6}$ -sulfaneylidene)carbamate ((*R*)-3s)

**Conditions:** Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 290 nm.

# (*rac*)-(3s)



# (*R*)-(3s)

 $[\alpha]^{23}_{D}$  = +8 (c 1.0, CHCl<sub>3</sub>).



Signal 8: DAD1 H, Sig=290,10 Ref=off

| Peak<br>#  | RetTime<br>[min] | Туре     | Width<br>[min]   | Area<br>[mAU*s]      | Height<br>[mAU]       | Area<br>%         |
|------------|------------------|----------|------------------|----------------------|-----------------------|-------------------|
| <br>1<br>2 | 22.150<br>30.390 | MM<br>BB | 0.5800<br>0.7305 | 5.17081<br>456.44647 | 1.48593e-1<br>8.36694 | 1.1202<br>98.8798 |
| Tota       | ls:              |          |                  | 461.61729            | 8.51553               |                   |

ee = 98%

#### Methyl 3-((4-bromophenyl)sulfinyl)propanoate ((S)-8)

**Conditions:** Chiralpak IA column, 90:10 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm. Retention times: 19 & 21 min.

#### (*rac*)-8



Signal 1: DAD1 A, Sig=250,10 Ref=360,100

| Peak  | RetTime | Туре | Width  | Area       | Height    | Area    |
|-------|---------|------|--------|------------|-----------|---------|
| #     | [min]   |      | [min]  | [mAU*s]    | [mAU]     | %       |
| 1     | 19.053  | BB   | 0.4091 | 1772.47925 | 66.46956  | 49.9404 |
| 2     | 20.705  | BB   | 0.4420 | 1776.70703 | 61.69768  | 50.0596 |
| Total | s :     |      |        | 3549.18628 | 128.16724 |         |

# (S)-(8)

 $[\alpha]^{23}$ <sub>D</sub> = -98 (c 1.0, CHCl<sub>3</sub>)



#### Methyl (S)-3-(4-bromo-N-(tert-butoxycarbonyl)phenylsulfonimidoyl)propanoate ((S)-9)

**Conditions:** Chiralpak IA column, 93:7 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm.

# (*rac*)-9



| 1     | 23.001 | BB | 0.5177 | 292.65317 | 7.17716  | 51.1008 |
|-------|--------|----|--------|-----------|----------|---------|
| 2     | 36.838 | BB | 0.7778 | 280.04456 | 4.25531  | 48.8992 |
| Total |        |    |        | 572 60772 | 11 42247 |         |
| IOTAL | s:     |    |        | 5/2.69//2 | 11.4324/ |         |

# (S)-9

 $[\alpha]^{23}_{D}$  = +44 (c 1.0, CHCl<sub>3</sub>)



Signal 1: DAD1 A, Sig=250,10 Ref=360,100

| Peak R      | etTime<br>[min]      | Туре         | Width<br>[min]       | Area<br>[mAU*s]        | Height<br>[mAU]             | Area<br>%             |
|-------------|----------------------|--------------|----------------------|------------------------|-----------------------------|-----------------------|
| -<br>1<br>2 | <br>22.792<br>37.041 | <br>ВВ<br>ММ | <br>0.6193<br>0.9987 | 6407.31689<br>27.88206 | <br>153.39117<br>4.65299e-1 | <br>99.5667<br>0.4333 |

Totals : 6435.19896 153.85647

#### Sodium (S)-((4-Bromophenyl)sulfinyl)(tert-butoxycarbonyl)amide ((S)-1b)

The ee of the sulfinamide salt was tested by reprotonation to the sulfinamide tert-Butyl (S)-((4-bromophenyl)sulfinyl)carbamate. For experimental conditions see experimental data for (S)-1a.

**Conditions:** Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm.

#### (rac)-tert-Butyl ((4-bromophenyl)sulfinyl)carbamate



#### (S)-tert-Butyl ((4-bromophenyl)sulfinyl)carbamate

 $[\alpha]^{23}_{D}$  = +88 (c 1.0, CDCl<sub>3</sub>)



Totals : 2644.08604 70.69213

# tert-Butyl (R)-((4-bromophenyl)fluoro(oxo)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-2b)

**Conditions:** Chiralpak IA column, 98:2 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm.

#### (*rac*)-2b



# (S)-2b

Totals :

 $[\alpha]^{23}_{D} = -15$  (c 1.7, CDCl<sub>3</sub>)



Signal 1: DAD1 A, Sig=250,10 Ref=360,100

| Peak<br># | RetTime<br>[min] | Туре | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% |
|-----------|------------------|------|----------------|-----------------|-----------------|-----------|
|           |                  |      |                |                 |                 |           |
| 1         | 10.796           | MM   | 0.2715         | 426.70654       | 26.19217        | 4.1100    |
| 2         | 11.663           | MM   | 0.3022         | 9955.47168      | 549.06299       | 95.8900   |
|           |                  |      |                |                 |                 |           |
| Totals :  |                  |      |                | 1.03822e4       | 575.25516       |           |

4455.98828 242.46294

ee = 92%

# tert-Butyl (R)-((benzylamino)(4-bromophenyl)(oxo)- $\lambda^6$ -sulfaneylidene)carbamate ((R)-3v)

**Conditions:** Chiralpak ID column, 90:10 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 254 nm.

#### (*rac*)-3v



# (*R*)-3v

#### $[\alpha]^{23}_{D}$ = +6 (c 0.5, CH<sub>2</sub>Cl<sub>2</sub>)



Totals : 732.68180 24.93698

# tert-Butyl (R)-((allylamino)(4-bromophenyl)( $\infty$ o)- $\lambda$ <sup>6</sup>-sulfaneylidene)carbamate ((R)-3w)

**Conditions:** Chiralpak IA column, 97:3 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm.

#### (*rac*)-3w



Signal 1: DAD1 A, Sig=250,10 Ref=360,100

| Peak<br>#  | RetTime 1<br>[min]   | Гуре W:<br>[I | idth<br>min]   | Area<br>[mAU*s]          | Height<br>[mAU]      | Area<br>%          |
|------------|----------------------|---------------|----------------|--------------------------|----------------------|--------------------|
| <br>1<br>2 | 21.086 E<br>29.582 E | 3B 0<br>3B 0  | .5924<br>.7395 | 1710.61499<br>1660.41260 | 42.06887<br>30.10318 | 50.7446<br>49.2554 |
| Total      | s :                  |               |                | 3371.02759               | 72.17204             |                    |

#### (R)-3w

#### $[\alpha]^{23}_{D}$ = +8 (c 0.5, CH<sub>2</sub>Cl<sub>2</sub>)



Signal 1: DAD1 A, Sig=250,10 Ref=360,100

| Peak<br># | RetTime<br>[min] | Туре | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% |
|-----------|------------------|------|----------------|-----------------|-----------------|-----------|
|           |                  |      |                |                 |                 |           |
| 1         | 20.922           | BB   | 0.5810         | 3122.61719      | 77.67725        | 94.8143   |
| 2         | 29.492           | MM   | 0.9223         | 170.78593       | 3.08615         | 5.1857    |
|           |                  |      |                |                 |                 |           |
| Tota]     | ls :             |      |                | 3293.40312      | 80.76340        |           |

ee = 90%

# *tert*-Butyl (*R*)-((4-bromophenyl)(oxo)(piperidin-1-yl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-3x)

**Conditions:** Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm.

#### (*rac*)-3x



Signal 1: DAD1 A, Sig=250,10 Ref=360,100

| Peak<br>#  | RetTime<br>[min] | Туре     | Width<br>[min]   | Area<br>[mAU*s]          | Height<br>[mAU]      | Area<br>%          |
|------------|------------------|----------|------------------|--------------------------|----------------------|--------------------|
| <br>1<br>2 | 16.040<br>24.784 | BB<br>BB | 0.4242<br>0.6478 | 2639.59253<br>2633.33691 | 95.57035<br>60.26088 | 50.0593<br>49.9407 |
| Totals :   |                  |          |                  | 5272.92944               | 155.83123            |                    |

#### (R)-3x

 $[\alpha]^{23}_{D} = -8 (c \ 0.5, \ CH_2Cl_2)$ 



Signal 1: DAD1 A, Sig=250,10 Ref=360,100

| Peak<br># | RetTime<br>[min] | Туре | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% |
|-----------|------------------|------|----------------|-----------------|-----------------|-----------|
|           |                  |      |                |                 |                 |           |
| 1         | 16.207           | MM   | 0.4393         | 155.29939       | 5.89220         | 4.9157    |
| 2         | 24.968           | BB   | 0.6367         | 3003.94165      | 68.35349        | 95.0843   |
|           |                  |      |                |                 |                 |           |
| Total     | ls :             |      |                | 3159.24104      | 74.24569        |           |

ee = 90%

# *tert*-Butyl (*R*)-([1,1'-biphenyl]-4-yl(oxo)(piperidin-1-yl)- $\lambda^6$ -sulfaneylidene)carbamate ((*R*)-10)

**Conditions:** Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm.

#### (*rac*)-10



| Peak<br># | RetTime<br>[min] | Туре | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% |
|-----------|------------------|------|----------------|-----------------|-----------------|-----------|
|           |                  |      |                |                 |                 |           |
| 1         | 26.894           | BB   | 0.7426         | 3461.90698      | 68.61781        | 49.9489   |
| 2         | 32.744           | BB   | 0.8816         | 3468.99438      | 57.19546        | 50.0511   |
|           |                  |      |                |                 |                 |           |
| Tota      | ls :             |      |                | 6930.90137      | 125.81327       |           |

#### (*R*)-10

 $[\alpha]^{23}_{D} = -7$  (c 1.0, CDCl<sub>3</sub>).



```
Signal 1: DAD1 A, Sig=250,10 Ref=360,100
```

| Peak     | RetTime | Туре | Width  | Area      | Height    | Area    |
|----------|---------|------|--------|-----------|-----------|---------|
| #        | [min]   |      | [min]  | [mAU*s]   | [mAU]     | %       |
| 1        | 27.045  | BB   | 0.6254 | 763.23010 | 15.26192  | 4.1086  |
| 2        | 32.483  | MM   | 1.0390 | 1.78133e4 | 285.74695 | 95.8914 |
| Totals : |         |      |        | 1.85765e4 | 301.00886 |         |

ee = 92%

#### 1-(4-Methylphenylsulfonimidoyl)piperidine ((*R*)-11)

**Conditions:** Chiralpak IA column, 95:5 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm.

#### (*rac*)-11



# (*R*)-11

 $[\alpha]^{23}_{D} = -8$  (c 0.5, CHCl<sub>3</sub>).



Signal 1: DAD1 A, Sig=250,10 Ref=360,100

| Peak<br>#  | RetTime<br>[min] | Туре         | Width<br>[min]   | Area<br>[mAU*s]        | Height<br>[mAU]        | Area<br>%         |
|------------|------------------|--------------|------------------|------------------------|------------------------|-------------------|
| <br>1<br>2 | 28.456<br>43.921 | <br>MM<br>BB | 0.4303<br>1.0525 | 10.69019<br>5011.75488 | 4.14060e-1<br>65.80835 | 0.2128<br>99.7872 |
| Total      | s :              |              |                  | 5022.44507             | 66.22241               |                   |

ee > 99%

#### (R)-N'-Cyclobutyl-4-methylbenzenesulfonimidamide ((R)-12)

**Conditions:** Chiralpak IA column, 85:15 *n*hexane:*i*PrOH, flow rate: 1 mL min<sup>-1</sup>, 35 °C, UV detection wavelength: 250 nm.

#### (rac)-12



#### (*R*)-12

 $[\alpha]^{23}$ <sub>D</sub> = -46 (c 0.13, CHCl<sub>3</sub>).



Signal 1: DAD1 A, Sig=250,10 Ref=360,100

| Peak  | RetTime | Type | Width  | Area       | Height     | Area    |
|-------|---------|------|--------|------------|------------|---------|
| #     | [min]   |      | [min]  | [mAU*s]    | [mAU]      | %       |
| 1     | 11.376  | BB   | 0.3356 | 2437.28149 | 107.06171  | 99.1757 |
| 2     | 16.693  | MM   | 0.5273 | 20.25801   | 6.40252e-1 | 0.8243  |
| Total | ls :    |      |        | 2457.53950 | 107.70197  |         |

ee = 98%