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1. Theoretical results

1.1. Consistency of corrected point estimates

Here, we show that µ̂η is consistent for µ; the proof is structured as follows. We first describe
notation and assumptions. We establish a supporting Lemma 1.1, which states that the
inverse-probability weights can be constructed using only the relative publication probability
ratio, η, without specification of the absolute probability of publication for affirmative studies.
In a second supporting Lemma 1.2 and Corollary 1.1, we find the expectations of terms that
will appear in the main theorem and establish a limiting result. We then use these results to
prove the main theorem (Theorem 1.1).

Notation and assumptions For the ith underlying study, define the inverse-probability
weight π∗i = η1{A∗i = 0} + 1{A∗i = 1}. As in the main text, let w∗i denote an additional
unstandardized, common-effects or random-effects inverse-variance weight; for example, for
common-effects meta-analysis, w∗i = (σ∗i )

−2. We consider publication bias that operates based
on a study’s affirmative status (via the indicator D∗i as defined in the main text) and also
potentially based on studies’ standard errors, σ∗i . To the latter end, let F ∗i be an indicator
variable whose success probability is an arbitrary function of σ∗i , subject to the constraints
given in the assumptions below. For example, if studies with smaller σ∗i are more likely
to be published, above and beyond their affirmative statuses, then selection might take a
form similar to F ∗i ∼ Bern

(
1

1+expσ∗i

)
. (This functional form is purely illustrative; as we will

show, selection via F ∗i can be simply be ignored entirely in estimation without specifying a
functional form.) Then, study i is published if and only if D∗i = F ∗i = 1. In the main text,
we had focused on the special case in which publication bias operates only on affirmative
status; this arises simply by setting F ∗i = 1 for all studies and taking study i as published if
and only if D∗i = 1.

The bias-corrected estimator given in the main text, which weights each published study by
its inverse-probability weight π∗i and its usual meta-analytic weight w∗i but ignores selection
via F ∗i (i.e., it does not incorporate weights related to selection on σ∗i ), can therefore be
written as:

µ̂η :=
k∗∑
i=1

D∗iF
∗
i

π∗iw
∗
i∑k∗

i=1D
∗
iF
∗
i π
∗
iw
∗
i

θ̂∗i
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We assume that:

E
[
θ̂∗i | σ∗i

]
= E

[
θ̂∗i
]

(A1)

E
[
D∗iw

∗
i | A∗i , F ∗i

]
= E

[
D∗i | A∗i , F ∗i

]
E
[
w∗i | A∗i , F ∗i

]
(A2)

E
[
D∗iw

∗
i θ̂
∗
i | A∗i , F ∗i

]
= E

[
D∗i | A∗i , F ∗i

]
E
[
w∗i θ̂

∗
i | A∗i , F ∗i

]
(A3)

F ∗i q A∗i | σ∗i (A4)

E
[
θ̂∗i | F ∗i , A∗i , σ∗i

]
= E

[
θ̂∗i | A∗i , σ∗i

]
(A5)

1

k∗

k∗∑
i=1

D∗iF
∗
i P (D∗i = 1 | A∗i )

−1w∗i = E
[
D∗iF

∗
i P (D∗i = 1 | A∗i )

−1w∗i
]

+Op(1/
√
k∗) (A6)

Assumption (A1) is a version of a standard assumption in meta-analysis and states that the
point estimates are mean-independent from their standard errors. Assumptions (A2)-(A3)
regarding uncorrelatedness essentially state that, conditional on a study’s affirmative or
nonaffirmative status and on whether it meets the selection criterion based on σ∗i , selection
on affirmative status does not select further based on the inverse-variance weights nor on
the product of the point estimates with their inverse-variance weights. Assumptions (A4)
and (A5) essentially state that any additional selection criterion based on studies’ standard
errors operates in the same way for affirmative and for nonaffirmative studies (A4) and that,
conditional on a study’s standard error and affirmative status, any selection criterion based
on studies’ standard errors does not also select based on the point estimate (A5). Assumption
(A6) gives a limiting result that is often plausible by a Central Limit Theorem, such as the
Lyapunov variant. Note that these assumptions are generalizations of those in the main text,
which describe only selection based on D∗i , and Assumptions (A4) and (A5) do not appear in
the main text because they are relevant only when there is also selection on F ∗i .

We now establish the first of the two supporting lemmas.

Lemma 1.1 (Invariance to absolute probabilities). Weighting by π∗i (that is, using the
selection ratio η) is equivalent to weighting by the absolute probabilities P (D∗i = 1 | A∗i ),
which differ from π∗i only by an unknown scale factor corresponding to the probability for
affirmative studies, P (D∗ = 1 | A∗ = 1). (The study indices “i” are omitted from the term
P (D∗ = 1 | A∗ = 1) because under the assumed model of publication bias, this probability
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conditional on affirmative status is constant across studies.) That is:

µ̂η =
k∗∑
i=1

D∗iF
∗
i

P (D∗i = 1 | A∗i )
−1w∗i∑k∗

i=1 D
∗
iF
∗
i P (D∗i = 1 | A∗i )

−1w∗i
θ̂∗i

Proof. By the construction of π∗i , we have:

P (D∗i = 1 | A∗i )
−1 =

P (D∗ = 1 | A∗ = 1)−1 , A∗i = 1

ηP (D∗ = 1 | A∗ = 1)−1 , A∗i = 0

= P (D∗ = 1 | A∗ = 1)−1 π∗i

Therefore, from the definition of µ̂η:

µ̂η :=
k∗∑
i=1

D∗iF
∗
i

π∗iw
∗
i∑k∗

i=1D
∗
iF
∗
i π
∗
iw
∗
i

θ̂∗i

=
k∗∑
i=1

D∗iF
∗
i

P(D∗i =1 | A∗i )
−1

P (D∗=1 | A∗=1)−1w∗i∑k∗

i=1 D
∗
iF
∗
i

P(D∗i =1 | A∗i )
−1

P (D∗=1 | A∗=1)−1w∗i

θ̂∗i

=
k∗∑
i=1

D∗iF
∗
i

P (D∗i = 1 | A∗i )
−1w∗i∑k∗

i=1 D
∗
iF
∗
i P (D∗i = 1 | A∗i )

−1w∗i
θ̂∗i

as desired. We now establish the second supporting lemma.

Lemma 1.2 (Expectations). We establish the expectations of two related terms that will
appear in the proof of Theorem 1.1:

E
[
D∗iF

∗
i P (D∗i = 1 | A∗i )

−1w∗i θ̂
∗
i

]
= E

[
θ̂∗i
]
Eσ∗i

[
P (F ∗i = 1 | σ∗i )w∗i

]
(1.1)

E
[
D∗iF

∗
i P (D∗i = 1 | A∗i )

−1w∗i
]

= Eσ∗i

[
P (F ∗i = 1 | σ∗i )w∗i

]
(1.2)

Proof. When helpful for clarity, we use subscripts on expectations to indicate the variable(s)
with respect to which the expectation is taken. We use Φ to denote the cumulative distribution
function of the standard normal distribution. Starting from the left-hand side of Equation
1.1 and taking iterated expectations first over (F ∗i , A

∗
i ) and then over σ∗i :

E
[
D∗iF

∗
i P (D∗i = 1 | A∗i )

−1w∗i θ̂
∗
i

]
= Eσ∗i

[
E

[
EF ∗i ,A∗i

[
E
[
D∗iF

∗
i P (D∗i = 1 | A∗i )

−1w∗i θ̂
∗
i | F ∗i , A∗i

]]
| σ∗i

]]
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= Eσ∗i

[
E

[
P (F ∗i = 0, A∗i = 0)× 0 + P (F ∗i = 0, A∗i = 1)× 0

+ P (F ∗i = 1, A∗i = 0)E
[
D∗iF

∗
i P (D∗i = 1 | A∗i )

−1w∗i θ̂
∗
i | F ∗i = 1, A∗i = 0

]
+ P (F ∗i = 1, A∗i = 1)E

[
D∗iF

∗
i P (D∗i = 1 | A∗i )

−1w∗i θ̂
∗
i | F ∗i = 1, A∗i = 1

]

| σ∗i

]]

Conditional on F ∗i and A∗i , both F ∗i and P (D∗i = 1 | A∗i )
−1 are fixed. By Assumption

(A3) and the fact that D∗i depends on A∗i but not F ∗i , we have E
[
D∗iw

∗
i θ̂
∗
i | F ∗i , A∗i

]
=

E
[
D∗i | A∗i

]
E
[
w∗i θ̂

∗
i | F ∗i , A∗i

]
. Therefore:

= Eσ∗i

[
E

[
P (F ∗i = 1)P (A∗i = 0 | F ∗i = 1)

��
���

���
�

E
[
D∗i | A∗i = 0

]
((((

(((
((((

(
P (D∗i = 1 | A∗i = 0)−1×

E
[
w∗i θ̂

∗
i | F ∗i = 1, A∗i = 0

]
+ P (F ∗i = 1)P (A∗i = 1 | F ∗i = 1)

��
���

���
�

E
[
D∗i | A∗i = 1

]
((((

(((
((((

(
P (D∗i = 1 | A∗i = 1)−1

E
[
w∗i θ̂

∗
i | F ∗i = 1, A∗i = 1

]
| σ∗i

]]

=

∫ ∞
0

P (F ∗i = 1 | σ̃∗i )

{
P (A∗i = 0 | F ∗i = 1, σ̃∗i )E

[
w∗i θ̂

∗
i | F ∗i = 1, A∗i = 0, σ̃∗i

]
+

P (A∗i = 1 | F ∗i = 1, σ̃∗i )E
[
w∗i θ̂

∗
i | F ∗i = 1, A∗i = 1, σ̃∗i

]}
fσ∗i (σ̃∗i ) ∂σ̃

∗
i

Assumption (A4) implies that P (A∗i = 0 | F ∗i = 1, σ̃∗i ) = P (A∗i = 0 | σ̃∗i ), and similarly for
A∗i = 1. Additionally, conditional on σ̃∗i , the inverse-variance weights w∗i are either exactly
fixed (in the case of common-effect meta-analysis) or approximately fixed (in the case of
random-effects meta-analysis with a relatively large number of studies). Therefore, letting
w̃∗i denote the inverse-variance weight calculated using σ̃∗i , we have E

[
w̃∗i θ̂

∗
i | F ∗i , A∗i , σ̃∗i

]
=

w̃∗iE
[
θ̂∗i | F ∗i , A∗i , σ̃∗i

]
, so:

=

∫ ∞
0

P (F ∗i = 1 | σ̃∗i )

{
P (A∗i = 0 | σ̃∗i ) w̃∗iE

[
θ̂∗i | F ∗i = 1, A∗i = 0, σ̃∗i

]
+
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P (A∗i = 1 | σ̃∗i ) w̃∗iE
[
θ̂∗i | F ∗i = 1, A∗i = 1, σ̃∗i

]}
fσ∗i (σ̃∗i ) ∂σ̃

∗
i

By Assumption (A5), E
[
θ̂∗i | F ∗i = 1, A∗i , σ̃

∗
i

]
= E

[
θ̂∗i | A∗i , σ̃∗i

]
. Using this and also rewriting

A∗i in terms of its definition:

=

∫ ∞
0

P (F ∗i = 1 | σ̃∗i )

{
P
(
θ̂∗i ≤ Φ−1(0.975) σ̃∗i | σ̃∗i

)
w̃∗iE

[
θ̂∗i | θ̂∗i ≤ Φ−1(0.975) σ̃∗i , σ̃

∗
i

]
+

P
(
θ̂∗i > Φ−1(0.975) σ̃∗i | σ̃∗i

)
w̃∗iE

[
θ̂∗i | θ̂∗i > Φ−1(0.975) σ̃∗i , σ̃

∗
i

]}
fσ∗i (σ̃∗i ) ∂σ̃

∗
i

Writing out the truncated conditional expectations:

=

∫ ∞
0

P (F ∗i = 1 | σ̃∗i )

{
((((

(((
((((

((((

P
(
θ̂∗i ≤ Φ−1(0.975) σ̃∗i | σ̃∗i

)
w̃∗i

��
���

���
���

���
�1

P
(
θ̂∗i ≤ Φ−1(0.975) σ̃∗i | σ̃∗i

)×
∫ Φ−1(0.975) σ̃∗i

−∞
qfθ̂∗i | σ̃∗i

(q)dq +
((((

((((
(((

((((

P
(
θ̂∗i > Φ−1(0.975) σ̃∗i | σ̃∗i

)
w̃∗i

���
���

���
���

���1

P
(
θ̂∗i > Φ−1(0.975) σ̃∗i | σ̃∗i

)×
∫ ∞

Φ−1(0.975) σ̃∗i

rfθ̂∗i | σ̃∗i
(r)dr

}
fσ∗i (σ̃∗i ) ∂σ̃

∗
i

Combining the two integrals in the brackets:

=

∫ ∞
0

P (F ∗i = 1 | σ̃∗i ) w̃∗i

{∫ ∞
−∞

tfθ̂∗i | σ̃∗i
(t)dt

}
fσ∗i (σ̃∗i ) ∂σ̃

∗
i

The bracketed term is now E
[
θ̂∗i | σ∗i

]
, which is in fact equal to E

[
θ̂∗i
]
by Assumption (A1).

Therefore:

= Eσ∗i

[
P (F ∗i = 1 | σ∗i )w∗iE

[
θ̂∗i
]]

= E
[
θ̂∗i
]
Eσ∗i

[
P (F ∗i = 1 | σ∗i )w∗i

]
This proves Equation 1.1. The proof of Equation 1.2 follows nearly identical mechanics except
that, instead of invoking Assumption (A3), we instead invoke Assumption (A2) to write
E
[
D∗iw

∗
i | F ∗i , A∗i

]
as E

[
D∗i | A∗i

]
E
[
w∗i | F ∗i , A∗i

]
.
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Corollary 1.1 (Limiting result).

1

k∗

k∗∑
i=1

D∗iF
∗
i P (D∗i = 1 | A∗i )

−1w∗i = Eσ∗i

[
P (F ∗i = 1 | σ∗i )w∗i

]
+Op(1/

√
k∗)

Proof. This follows immediately from combining the limiting result of Assumption (A6) with
the expectation of Lemma 1.2.

Theorem 1.1 (Consistency of µ̂η). µ̂η is consistent for the mean effect size in the underlying
population:

µ̂η :=
k∗∑
i=1

D∗iF
∗
i

π∗iw
∗
i∑k∗

i=1D
∗
iF
∗
i π
∗
iw
∗
i

θ̂∗i
p−−−−→

k∗→∞
E
[
θ̂∗i
]

= µ

Proof. Taking limits, rewriting µ̂η as in Lemma 1.1, and introducing k∗

k∗
inside the summation:

lim
k∗→∞

k∗∑
i=1

D∗iF
∗
i

P (D∗i = 1 | A∗i )
−1w∗i∑k∗

i=1 D
∗
iF
∗
i P (D∗i = 1 | A∗i )

−1w∗i
θ̂∗i

= lim
k∗→∞

k∗∑
i=1

{
1

1
k∗

∑k∗

i=1 D
∗
iF
∗
i P (D∗i = 1 | A∗i )

−1w∗i
× 1

k∗
D∗iF

∗
i P (D∗i = 1 | A∗i )

−1 w∗i θ̂
∗
i

}

Applying the limiting result of Corollary 1.1 to the denominator term:

= lim
k∗→∞

k∗∑
i=1

{
1

Eσ∗i

[
P (F ∗i = 1 | σ∗i )w∗i

]
+Op(1/

√
k∗)
× 1

k∗
D∗iF

∗
i P (D∗i = 1 | A∗i )

−1 w∗i θ̂
∗
i

}

The term Eσ∗i

[
P (F ∗i = 1 | σ∗i )w∗i

]
+Op(1/

√
k∗) is the same for all i, yielding:

= lim
k∗→∞

1

Eσ∗i

[
P (F ∗i = 1 | σ∗i )w∗i

]
+Op(1/

√
k∗)
× lim

k∗→∞

k∗∑
i=1

1

k∗
D∗iF

∗
i P (D∗i = 1 | A∗i )

−1 w∗i θ̂
∗
i

=
1

Eσ∗i

[
P (F ∗i = 1 | σ∗i )w∗i

]E[D∗iF ∗i P (D∗i = 1 | A∗i )
−1w∗i θ̂

∗
i

]
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= E
[
θ̂∗i
]

The final equality follows from applying Equation 1.1.

Given Theorem 1.1, our subsequent theoretical developments assume without loss of generality
that there is no selection based on the standard errors and describe as “published” all studies
with D∗i = 1.

1.2. Conditions for the assumption of one-tailed selection to be conservative

We now establish conditions under which, when conducting sensitivity analyses for µ̂, assuming
one-tailed selection is conservative compared to assuming two-tailed selection. To this end, we
first establish a lemma establishing the conditions under which the corrected estimate under
the assumption of one-tailed selection, µ̂η, is conservative compared to its counterpart under
the assumption two-tailed selection (Lemma 1.3). Then, by assuming that the conditions
in Lemma 1.3 hold, we establish a lemma showing that when the corrected point estimates
are nondecreasing in η, this indicates that no amount of publication bias could shift the
point estimate to q (or alternatively that the point estimate is already equal to q), which
we term “complete robustness” (Lemma 1.4). Finally, in Theorem 1.2, we show the desired
conservatism result regarding S(µ̂, q). We first consider the common-effect specifications,
later arguing that results for both random-effects specifications follow essentially identical
logic.

Denote the set of “significant” negative, published studies and the set of “nonsignificant”,
published studies respectively as N− = {i : θ̂i < 0, pi < 0.05} and N 0 = {i : pi ≥ 0.05}, such
that the set of published nonaffirmative studies can be expressed as N = N−

⋃
N 0. We can

rewrite the common-effect µ̂η under the assumption of one-tailed selection, as in the main
text, as:

µ̂η =

∑
i∈N 0

η

σ2
i

θ̂i +
∑
j∈N−

η

σ2
j

θ̂j +
∑
l∈A

1

σ2
l

θ̂l

∑
i∈N 0

η

σ2
i

+
∑
j∈N−

η

σ2
j

+
∑
l∈A

1

σ2
l

−1
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An analog under the assumption of two-tailed selection, defined as µ̂tη, simply removes the
upweighting on studies in N−:

µ̂tη =

∑
i∈N 0

η

σ2
i

θ̂i +
∑
j∈N−

1

σ2
j

θ̂j +
∑
l∈A

1

σ2
l

θ̂l

∑
i∈N 0

η

σ2
i

+
∑
j∈N−

1

σ2
j

+
∑
l∈A

1

σ2
l

−1

= (ηȳN 0 + ȳN− + ȳA) (ηνN 0 + νN− + νA)−1

We now establish the two lemmas and theorem regarding conservatism. Without loss of
generality, we consider the case in which the naïve estimate µ̂ > 0, such that conservatism
holds, by definition, when µ̂η ≤ µ̂tη for all η.

Lemma 1.3 (Equivalent condition and sufficient condition for conservatism of µ̂η). µ̂η ≤ µ̂tη

for all η ≥ 1 if and only if:

ηȳN 0 + ȳA
ηνN 0 + νA

≥ ȳN−

νN−
for all η ≥ 1 (1.3)

This condition states that the inverse-probability-weighted, common-effects mean among only
the “nonsignificant” and affirmative studies must be at least as large as the common-effects
mean among only the “significant” negative studies. Note that since ȳA ≥ 0 and ȳN− ≤ 0, a
sufficient condition for Equation (1.3) to hold is that ȳN 0 ≥ 0.

Proof. Let A = ηȳN 0 + ȳA and B = ηνN 0 + νA > 0. Then, conservatism holds by definition
when, for all η ≥ 1:

µ̂tη ≥ µ̂η

(A+ ȳN−) (B + νN−)−1 ≥ (A+ ηȳN−) (B + ηνN−)−1

(A+ ȳN−) (B + ηνN−) ≥ (A+ ηȳN−) (B + νN−)

��
�AB + AηνN− +BȳN− +((((

(ηνN− ȳN− ≥���AB + AνN− +BηȳN− +((((
(ηνN− ȳN−

AνN−���
�(η − 1) ≥ BȳN−���

�(η − 1)

ηȳN 0 + ȳA
ηνN 0 + νA

≥ ȳN−

νN−

All steps are bidirectional, so the desired claim holds.

9



Supplement

Lemma 1.4 (Complete robustness). Let µ̂−1
η (q) and

(
µ̂tη
)−1

(q) be inverses with respect
to η, taking q to be fixed. Let St(µ̂, q) :=

(
µ̂tη
)−1

(q) denote a two-tailed counterpart to
S(µ̂, q). For both the one-tailed and the two-tailed estimators, if the corrected point estimate
is nondecreasing in η, then we have complete robustness. That is, ∂µ̂η

∂η
≥ 0⇒ S(µ̂, q) ≤ 1 and

∂µ̂tη
∂η
≥ 0⇒ St(µ̂, q) ≤ 1.

Proof. Trivially, we have µ̂η=1 = µ̂tη=1 = µ̂, where µ̂ is the uncorrected point estimate. Since µ̂η
and µ̂tη are nondecreasing in η by assumption, we have for all q < µ̂ that S(µ̂, q) := µ̂−1

η (q) ≤ 1

and St(µ̂, q) :=
(
µ̂tη
)−1

(q) ≤ 1.

Theorem 1.2 (Conservatism of S(µ̂, q)). Assume Lemma 1.3 holds. Then the one-tailed
S(µ̂, q) is conservative compared to its two-tailed counterpart, St(µ̂, q), in the sense that:

S(µ̂, q) ≤ St(µ̂, q), for S(µ̂, q) > 1 and St(µ̂, q) > 1

S(µ̂, q) ≤ 1⇒ St(µ̂, q) ≤ 1

The first line states that when both S(µ̂, q) and St(µ̂, q) indicate some sensitivity to publication
bias rather than complete robustness, the former indicates at least as much sensitivity as the
latter. Excluding the trivial case in which S(µ̂, q) = St(µ̂, q) = 1, the second line states that
when S(µ̂, q) indicates complete robustness to publication bias, then so must St(µ̂, q). That
is, there may be cases in which both S(µ̂, q) and St(µ̂, q) indicate complete robustness and
in which S(µ̂, q) indicates some sensitivity while St(µ̂, q) indicates complete robustness, but
there cannot be cases in which S(µ̂, q) indicates complete robustness while St(µ̂, q) indicates
some sensitivity.

Proof. We ignore the trivial case in which S(µ̂, q) = St(µ̂, q) = 1, such that µ̂ = q already.
For the other cases, we first establish conditions under which µ̂η and µ̂tη are monotonically
decreasing or increasing in η. For µ̂η, we have:

∂µ̂η
∂η

=
ȳNνA − ȳAνN
(ηνN + νA)2 (1.4)

=


< 0, for ȳN

νN
< ȳA

νA

0, for ȳN
νN

= ȳA
νA

> 0, for ȳN
νN

> ȳA
νA

(1.5)
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For µ̂tη, we have:

∂µ̂tη
∂η

=
ȳN 0 (νN− + νA)− (ȳN− + ȳA) νN 0

(ηνN 0 + νN− + νA)2 (1.6)


< 0, for ȳN0

νN0
<

ȳN−+ȳA
νN−+νA

0, for ȳN0

νN0
=

ȳN−+ȳA
νN−+νA

> 0, for ȳN0

νN0
>

ȳN−+ȳA
νN−+νA

(1.7)

We therefore have four cases to consider:

Case 1: ∂µ̂η
∂η

< 0 and ∂µ̂tη
∂η

< 0

By definition, S(µ̂, q) = µ̂−1
η (q) and St(µ̂, q) = µ̂tη

−1(q). Since both µ̂η and µ̂tη are
monotonically decreasing in η and µ̂η ≤ µ̂tη by Lemma 1.3, we have S(µ̂, q) ≤ St(µ̂, q),
so conservatism holds.

Case 2: ∂µ̂η
∂η
≥ 0 and ∂µ̂tη

∂η
≥ 0

In this case, S(µ̂, q) ≤ 1 and St(µ̂, q) ≤ 1 by Lemma 1.4, so both indicate complete
robustness, and the notion of conservatism is not meaningful.

Case 3: ∂µ̂η
∂η

< 0 and ∂µ̂tη
∂η
≥ 0

In this case, St(µ̂, q) ≤ 1 by Lemma 1.4, indicating complete robustness to publication
bias. If we also have S(µ̂, q) ≤ 1, then both estimators indicate complete robustness. If
instead S(µ̂, q) > 1, then conservatism holds.

Case 4: ∂µ̂η
∂η
≥ 0 and ∂µ̂tη

∂η
< 0

Since µ̂η ≤ µ̂tη for η > 1 by Lemma 1.3 and µ̂η = µ̂tη for η = 1, this case is not possible.

Thus, conservatism holds for all cases in which the notion is meaningful.

For both random-effects specifications, the proof is identical upon replacing σ2
i with σ2

i + τ̂ 2
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in the weights for ȳN , νN , and their counterparts for the sets A, N 0, and N−. This works
because τ̂ 2 is held constant between the one- and two-tailed specifications; as described in
the main text, it is treated as a nuisance parameter that is estimated in a naïve initial model
rather than estimated jointly with µ̂η. Note that S(µ̂lb, q), unlike S(µ̂, q), is not necessarily
conservative compared to its two-tailed counterpart, St(µ̂lb, q). This is because µ̂tη upweights
a smaller number of studies than µ̂η, so especially for large η, µ̂tη will typically have a smaller
effective sample size and hence a wider confidence interval than µ̂η. Thus, even if µ̂η < µ̂tη,
we may have µ̂lbη > µ̂t,lbη , such that St(µ̂lb, q) is in fact more conservative with respect to the
confidence interval limit.

1.3. A “fail-safe” number

Lemma 1.5. Let |N | denote the number of published nonaffirmative studies and |N ∗| denote
the total number of nonaffirmative studies in the underlying population, such that (|N ∗| − |N |)
represents the number of unpublished nonaffirmative studies. Then, an approximate lower
bound on the number of unpublished nonaffirmative studies is:

(|N ∗| − |N |) ' |N | × (S (t, q)− 1)

Proof. Using the same notation introduced in Section 1.1 above, we can express the probability
of publication for each nonaffirmative study in the underlying population via Bayes’ Rule:

P (D∗i = 1 | A∗i = 0) =
P (A∗i = 0 | D∗i = 1)P (D∗i = 1)

P (A∗i = 0)

The left-hand side can be rewritten using the definition of S (t, q) as a ratio of publication
probabilities, such that P (D∗i = 1 | A∗i = 1) /P (D∗i = 1 | A∗i = 0) = S (t, q). For the right-
hand side, note that P (A∗i = 0 | D∗i = 1) = P (Ai = 0 | Di = 1) because all underlying results
with D∗i = 1 are by definition also in the published sample. In turn, P (Ai = 0 | Di = 1) ≈
|N |/k, its sample estimate. Similar sample estimates or proportions in the underlying
population can be substituted for the other terms on the right-hand side. Thus:

P (D∗i = 1 | A∗i = 1)

S (t, q)
≈ (|N |/k) (k/k∗)

(|N ∗|/k∗)

12
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|N ∗| ≈ |N | × S (t, q)

P (D∗i = 1 | A∗i = 1)

Minimizing the right hand side over P (D∗i = 1 | A∗i = 1) by setting P (D∗i = 1 | A∗i = 1) = 1

yields |N |∗ ' |N | × S (t, q), which immediately yields the desired result.

For example, if applying the proposed sensitivity analyses yields S (t, q) = 10, and we observe
|N | = 5 nonaffirmative studies, then we estimate that there would need to be at least
5 × (10− 1) = 45 unpublished nonaffirmative studies in order to shift the estimate t to q.
Under our assumed model of publication bias, these unpublished nonaffirmative studies are
assumed to be comparable to the published nonaffirmative studies as in the assumptions
formalized in Section 1.1. Like a very large value of S (t, q), a very large fail-safe number
provides some reassurance that the meta-analysis results are robust to even severe publication
bias. Our proposed fail-safe number is conceptually related to previous methods (e.g., Orwin
(1983); Rosenthal (1979)), but relaxes those methods’ assumption of homogeneous population
effects. Additionally, by treating the published nonaffirmative studies as representative of
the underlying population of nonaffirmative studies, the present fail-safe number does not
require specifying the mean of the unpublished studies.

The fail-safe number is an approximate lower bound, reflecting the fact that the minimum
number of unobserved nonaffirmative studies for any given relative probability of publication,
S (t, q), is attained when the affirmative studies’ absolute probability of publication is max-
imized. If affirmative results have a publication probability less than 1, then (|N ∗| − |N |)
would increase yet further. When interpreting the fail-safe number as a metric of robustness,
it is important to recall that the underlying population technically comprises all conducted
hypothesis tests that would, if published, have been included in the meta-analysis. Thus,
(|N ∗| − |N |) counts not only papers written but never accepted for publication, but also
potentially multiple hypothesis tests on independent samples conducted for any given paper.

1.4. A parametric specification

As an alternative to the robust independent specification presented in the main text, it
would be possible to conduct maximum-likelihood sensitivity analyses under the standard
parametric, independent random-effects model, invoking the additional assumptions that,
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in the published studies, γi ∼iid N(0, τ 2) and εi ∼iid N(0, σ2
i ) (e.g., Brockwell & Gordon

(2001); Viechtbauer (2005)). We considered this approach for several reasons. First, when
correctly specified, the parametric score approach would likely be more efficient than the
robust independent specification. Second, unlike the robust independent specification, the
parametric approach enables direct estimation of τ 2; this estimate is both informative in its
own right and could in principle be used to construct more efficient weights for the robust
specifications. In direct analog to inverse-probability weighting for survey sampling or missing
data for general M-estimators (Wooldridge, 2007), the approach we consider here weights the
score contributions of each observation. Under the parametric random-effects specification,
we have θ̂i ∼ N(µ, τ 2 + σ2

i ), leading to the following log-likelihood (Brockwell & Gordon,
2001; Veroniki et al., 2015):

logL(µ, τ 2) = −1

2

k∑
i=1

log
(
2π
(
τ 2 + σ2

i

))
− 1

2

k∑
i=1

(
θ̂i − µ

)2

τ 2 + σ2
i

, τ 2 ≥ 0

Letting Li denote the contribution of the ith study to the likelihood, the score contributions
are:

∂ logLi
∂µ

= − 1

2 (τ 2 + σ2
i )
× 2

(
θ̂i − µ

)
× (−1)

=
θ̂i − µ
τ 2 + σ2

i

∂ logLi
∂τ 2

= −1

2

2π

2π (τ 2 + σ2
i )
−
(

1

2

(
θ̂i − µ

)2

×
[
−
(
τ 2 + σ2

i

)−2
])

= − 1

2 (τ 2 + σ2
i )

+

(
θ̂i − µ

)2

2 (τ 2 + σ2
i )

2

=

(
θ̂i − µ

)2

− (τ 2 + σ2
i )

2 (τ 2 + σ2
i )

2

The usual maximum likelihood estimators without correction for publication bias are therefore
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(Brockwell & Gordon, 2001; Viechtbauer, 2005):

µ̂ =

∑k
i=1

1
τ̂2+σ2

i
θ̂i∑k

i=1
1

τ̂2+σ2
i

τ̂ 2 = max

0,

∑k
i=1

(
1

τ̂2+σ2
i

)2
((

θ̂i − µ̂
)2

− σ2
i

)
∑k

i=1

(
1

τ̂2+σ2
i

)2


The publication bias-corrected score contributions are:

∂ logLi
∂µ

=
πi

(
θ̂i − µ

)
τ 2 + σ2

i

∂ logLi
∂τ 2

=
πi

[ (
θ̂i − µ

)2

− (τ 2 + σ2
i )
]

2 (τ 2 + σ2
i )

2

Upon setting the summed bias-corrected score contributions equal to 0, the maximum
likelihood estimates can be obtained in the usual iterative manner, and their asymptotic
variances can be estimated as a function of the unweighted Hessian and bias-corrected
score contributions per Wooldridge (2007)’s Equation (3.10). Our code is publicly available
(https://osf.io/7wc2t/). We next describe the empirical behavior of this estimation
approach.

We assessed the bias and efficiency of the bias-corrected score specification using a similar
simulation study as that described in the main text, considering only scenarios with normal
population effects and no selection on the standard error. We were primarily interested in
assessing the method’s performance for the scenarios without clustering (i.e., Var(ζ) = 0), for
which the bias-corrected score specification is correctly specified. Additionally, for scenarios
with clustering (Var(ζ) = 0.5), we investigated the impact on efficiency of weighting the
robust clustered model using an estimate τ̂ 2 from the bias-corrected score model instead
of from the naïve parametric model. As expected, Figure S1 shows that, when correctly
specified, the bias-corrected score model had nominal coverage when η = 1 regardless of
sample size. However, its coverage sharply declined with increasing η unless the number of
studies was large (bottom row). Considering all scenarios clustering, weighting the robust
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clustered model by the bias-corrected τ̂ 2 versus the naïve estimate made little difference
in coverage or efficiency. We speculate that the latter finding regarding efficiency reflects
our observation that the bias-corrected τ̂ 2 was in fact quite biased except with very small
η or unrealistically large k. Given the overall poor performance of the bias-corrected score
model in realistic scenarios, we did not pursue this approach and do not recommend its use
in practice.
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Figure S1: Mean coverage in scenarios without clustering. “Robust (score)”: Robust independent
model in which τ̂2 is chosen by first fitting the weighted score model. “Robust indepen-
dent”: Robust independent model as in the main text, in which τ̂2 is chosen by first
fitting the naïve parametric model. “Wtd. score”: Weighted score model.
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Figure S2: Median width of confidence interval for µ̂η in scenarios without clustering. “Robust
(score)”: Robust independent model in which τ̂2 is chosen by first fitting the weighted
score model. “Robust independent”: Robust independent model as in the main text, in
which τ̂2 is chosen by first fitting the naïve parametric model. “Wtd. score”: Weighted
score model. The y-axis is presented on the log-10 scale with numerical labels on the
untransformed scale.
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Figure S3: Mean coverage in scenarios with clustering. “Robust (score)”: Robust clustered model in
which τ̂2 is chosen by first fitting the weighted score model. “Robust clustered”: Robust
clustered model as in the main text, in which τ̂2 is chosen by first fitting the naïve
parametric model. “Wtd. score”: Weighted score model.
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Figure S4: Median width of confidence interval for µ̂η in scenarios with clustering. “Robust (score)”:
Robust clustered model in which τ̂2 is chosen by first fitting the weighted score model.
“Robust clustered”: Robust clustered model as in the main text, in which τ̂2 is chosen
by first fitting the naïve parametric model. “Wtd. score”: Weighted score model. The
y-axis is presented on the log-10 scale with numerical labels on the untransformed scale.
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2. Introduction to the R package PublicationBias

Here we briefly summarize the functions contained in the package PublicationBias; details
and examples are available in the standard R documentation. For a fixed selection ratio η,
the function corrected_meta estimates a publication bias-corrected pooled point estimate
and confidence interval for the common-effect, robust independent, or robust clustered specifi-
cations. The function svalue estimates S (t, q) for the point estimate and confidence interval
limit for a chosen threshold q; it uses analytical results for the common-effect specification
and a grid search for the robust specifications. The function significance_funnel creates
a significance funnel plot. The function pval_plot plots studies’ one-tailed p-values to help
verify assumptions as described in the main text.
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