Supporting Information

How Many Pnicogen Bonds can be Formed to a Central Atom Simultaneously?

Rafał Wysokiński,*1 Wiktor Zierkiewicz,1 Mariusz Michalczyk,1 and Steve Scheiner*2

¹ Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

² Department of Chemistry and Biochemistry, Utah State University Logan, Utah 84322-0300, United States

*Correspondence to: rafal.wysokinski@pwr.edu.pl, steve.scheiner@usu.edu

	R(Z-F), Å	$\Sigma \theta$ (F-Z-F), degs
PF ₃	1.630	291.2
AsF ₃	1.745	288.2
SbF ₃	1.918	284.5
BiF ₃	2.016	286.6

Table S1. Structural parameters in isolated ZF_3 (Z = P, As, Sb, Bi) calculated at the MP2/aug-ccpVDZ level of theory.

Table S2. Deformation energies (E_{def} , kcal/mol) of ZF₃ complexes with HCN and CN anion calculated at the MP2/aug-cc-pVDZ level of theory.

	ZF ₃	base	total
	HCNZF ₃		
HCN…PF3	0.08	0.00	0.08
HCN···AsF ₃	0.15	0.01	0.16
HCN…SbF ₃	0.26	0.01	0.27
HCN…BiF3	0.26	0.02	0.28
	H ₃ N····ZF ₃		
$H_3N\cdots PF_3$	0.41	0.00	0.41
H ₃ N···AsF ₃	0.92	0.02	0.90
H_3N ···Sb F_3	1.36	0.03	1.39
H ₃ N···BiF ₃	1.09	0.02	1.11
	NC····ZF ₃		
NC ⁻ ···PF ₃	54.68	0.30	54.98
NC-····AsF ₃	46.59	0.27	46.86
NC-···SbF ₃	35.83	0.22	36.05
NCBiF ₃	33.74	0.18	33.92

	interaction	ρ	$\nabla^2 ho$	3	Н	
	HCN···ZF ₃					
HCN…PF3	N····P	0.012	+0.033	0.041	-0.001	
HCN···AsF ₃	N…As	0.016	+0.042	0.035	-0.0004	
HCN…SbF ₃	N…Sb	0.020	+0.049	0.049	0.0003	
HCNBiF ₃	N…Bi	0.022	+0.062	0.040	-0.0003	
		H ₃ N	····ZF ₃			
H ₃ N····PF ₃	N····P	0.022	+0.048	0.044	-0.001	
H ₃ N····AsF ₃	N…As	0.033	+0.062	0.050	+0.003	
H ₃ N···SbF ₃	N…Sb	0.036	+0.083	0.073	+0.004	
H ₃ N····BiF ₃	N…Bi	0.033	+0.095	0.041	+0.001	
	NC ⁻ ···ZF ₃					
NC ⁻ ···PF ₃	N····P	0.131	+0.143	0.097	+0.099	
NC-····AsF ₃	N…As	0.122	+0.063	0.047	+0.075	
NC ⁻ ···SbF ₃	N…Sb	0.090	+0.180	0.040	+0.031	
NCBiF3	N…Bi	0.082	+0.176	0.028	+0.023	

Table S3. AIM descriptors of the neutral and anionic complexes. Bond critical point (BCP) properties: electron density ρ , Laplacian of electron density $\nabla^2 \rho$, ellipticity ε , and total electron energy H, were obtained at the MP2/ aug-cc-pVDZ level. Data in atomic units.

Fig S1. MP2/aug-cc-pVDZ optimized geometries of complexes of CN⁻ anion with ZF₃

Table S4. Electronic and Gibbs free energy differences (ΔE_{el} and ΔG^{a} , in kcal/mol) between indicated geometries and global minimum, calculated at the MP2/aug-cc-pVDZ.

	В	С	D
NCPF ₃	3.93 (3.09)	5.82 (4.60)	11.70 (11.45)
NC-····AsF ₃	3.79 (3.09)	5.82 (4.84)	10.73 (10.38)
NC ⁻ ···SbF ₃	1.75 (1.31)	3.75 (3.05)	7.51 (7.18)
NCBiF ₃	1.50 (0.97)	2.30 (1.32)	8.11 (6.88)

^a Gibbs free energies in parentheses.

	ZF ₃	base	total
В			
NC ⁻ ···PF ₃	11.13	0.08	11.21
NCAsF3	9.55	0.09	9.64
NC ⁻ ···SbF ₃	7.57	0.09	7.66
NCBiF ₃	5.82	0.06	5.88
C			
CNPF3	6.45	0.01	6.46
CNAsF3	6.36	0.02	6.38
CNSbF3	5.54	0.02	5.56
CNBiF3	4.43	0.01	4.44
D			
CNPF3	52.98	0.11	53.08
CNAsF3	45.23	0.08	45.32
CN-···SbF ₃	34.87	0.07	34.93
CNBiF3	33.39	0.06	33.45

Table S5. Deformation energies (E_{def} , kcal/mol) of ZF_3 complexes with CN⁻ anion calculated at the MP2/aug-cc-pVDZ level of theory.

Table S6. $V_{\text{s,max}}$ of dimers calculated at the MP2/aug-cc-pVDZ level of theory.

Dimer	(Z-F) σ-hole	π-hole		
]	HCN···ZF ₃			
HCN…PF ₃	24.2	-1.7		
HCN···AsF ₃	30.9	-5.9		
HCN…SbF ₃	36.7	-5.4		
HCN···BiF ₃	47.9	-3.4		
	NH ₃ …ZF ₃			
$H_3N\cdots PF_3$	21.7	-4.4		
H_3N ···As F_3	26.3	-11.1		
H_3N Sb F_3	33.4	-10.0		
H ₃ N···BiF ₃	46.9	-6.6		
NC····ZF ₃				
CNPF ₃	-81.1	-86.5		
CNAsF3	-69.9	-76.2		
CNSbF3	-59.1	-64.5		
CNBiF3	-40.7	-47.3		

	E _{tot}	E1	E2	E3	E _{coop}
(HCN) ₂ ···PF ₃	-4.70	-2.93	-2.93	0.78	0.38
(HCN) ₂ ···AsF ₃	-7.51	-4.48	-4.49	0.83	0.63
(HCN) ₂ ···SbF ₃	-11.06	-6.48	-6.48	0.78	1.12
(HCN) ₂ ···BiF ₃	-14.57	-8.16	-8.12	0.80	0.91
$(H_3N)_2 \cdots PF_3$	-8.66	-5.23	-5.22	1.02	0.77
$(H_3N)_2$ ···AsF ₃	-14.88	-8.85	-8.85	1.21	1.61
$(H_3N)_2$ ···SbF ₃	-23.28	-13.71	-13.72	1.15	3.00
$(H_3N)_2$ ···BiF ₃	-27.45	-15.25	-15.22	1.07	1.95
$(CN^{-})_{2}$ SbF ₃	-4.29	-45.30	-45.28	75.64	10.65
$(CN^{-})_2 \cdots BiF_3$	-12.92	-46.69	-46.69	70.18	10.28
E1-I ZE E2-ZE I E2-I I with and I referre to header					

Table S7. Pairwise interaction energies, and energies of cooperativity (E_{coop}) in ZF₃ complexes with two HCN or CN⁻ bases calculated at the MP2/aug-cc-pVDZ level of theory.

 $E1=L_a-ZF_3$, $E2=ZF_3-L_b$, $E3=L_a-L_b$ where L refers to bases

Table S8. AIM descriptors of the neutral and anionic trimers. Bond critical point (BCP) properties: electron density ρ , Laplacian of electron density $\nabla^2 \rho$, ellipticity ε , and total electron energy H, were obtained at the MP2/ aug-cc-pVDZ level. Data in atomic units.

	interaction	ρ	$ abla^2 ho$	3	Н
		(HCN)	2····ZF3	1	
$(HCN)_2 \cdots PF_3$	N…P	0.011	+0.031	0.049	+0.001
(HCN) ₂ ···AsF ₃	N…As	0.014	+0.038	0.042	+0.001
(HCN) ₂ ···SbF ₃	N…Sb	0.017	+0.042	0.055	+0.000
(HCN) ₂ ···BiF ₃	N…Bi	0.020	+0.057	0.047	+0.000
		(H ₃ N) ₂	···ZF ₃	-	-
$(H_3N)_2 \cdots PF_3$	N…P	0.017	+0.041	0.058	0.0002
$(H_3N)_2$ ···AsF ₃	N…As	0.025	+0.051	0.053	-0.001
$(H_3N)_2$ ···SbF ₃	N···Sb	0.030	+0.067	0.072	-0.002
$(H_3N)_2$ ···BiF ₃	N…Bi	0.030	+0.084	0.040	-0.001
	F…N	0.014	+0.063	10.820	0.001
(NC ⁻)2····ZF3					
$(NC^{-})_2$ SbF ₃	N…Sb	0.047	+0.071	0.067	+0.009
$(NC^{-})_2 \cdots BiF_3$	N…Bi	0.037	+0.074	0.034	+0.003

Isolated molecule	$V_{S,max}$ (Z-F) σ -hole	$V_{S,max}$ π -hole		
(HCl	$N)_2 \cdots ZF_3$			
(HCN) ₂ ···PF ₃	14.2	-11.6		
(HCN) ₂ ···AsF ₃	20.3	-16.5		
(HCN) ₂ ···SbF ₃	25.8	-17.3		
(HCN) ₂ ···BiF ₃	27.7	-15.2		
(H ₃ N	$V_2 \cdots ZF_3$			
(NH ₃) ₂ PF ₃	13.2	-12.9		
$(NH_3)_2 \cdots AsF_3$	16.1	-21.3		
$(NH_3)_2 \cdots SbF_3$	16.1	-24.9		
$(NH_3)_2 \cdots BiF_3$	34.6	-21.7		
(NC ⁻) ₂ …ZF ₃				
$(CN)_2$ ···SbF ₃	-147.3	-195.6		
(CN) ₂ ···BiF ₃	-119.7	-178.7		

Table S9. $V_{s,max}$ of trimers calculated at the MP2/aug-cc-pVDZ level of theory.

Fig S2. Three minima located on the potential energy surface of $(NH_3)_2$...ZF₃.

Fig S3. AIM molecular diagrams of MP2/aug-cc-pVDZ optimized structures of (HCN)₃…ZF₃. Green dots represent bond critical points. Numbers refers to electron densities at BCPs (in a.u.)

Fig S4. AIM molecular diagrams of MP2/aug-cc-pVDZ optimized structures of $(H_3N)_3 \cdots ZF_3$. Green dots represent bond critical points.

Table S10. AIM descriptors of the tetramers containing ZF₃ and 3 NH₃ molecules. Bond critical point (BCP) properties: electron density ρ , Laplacian of electron density $\nabla^2 \rho$, ellipticity ε , and total electron energy H, were obtained at the MP2/ aug-cc-pVDZ level. Data in atomic units.

	interaction	ρ	$\nabla^2 ho$	3	Н
(NH ₃) ₃ PF ₃	N…P	0.015	+0.038	0.050	+0.0004
(NH ₃) ₃ ···AsF ₃	N…As	0.021	+0.046	0.035	-0.0006
$(NH_3)_3 \cdots SbF_3$	N…Sb	0.026	+0.053	0.051	-0.002
$(NH_3)_3 \cdots BiF_3$	N…Bi	0.027	+0.075	0.036	-0.001

Fig S5. AIM molecular diagram of (NH₃)₄...BiF₃.

	ASCTMA ^[82] R(N···As)= 2.287 Å
	MEWXOB ^[83] R(N…P)= 1.978 Å
5 14 120 13 12 14 15 15 15 16 16 16 16 16 16 16 16 16 16	SAVFAX ^[84] R(N···Sb)= 2.596 Å
P1 02 05 02 00 00 00 00 00 00 00 00 00 00 00 00	RIFLOJ ^[85] R(N…Sb)= 2.171, 2.375 Å

Fig S6. Crystal structures of tetra and penta-coordinated Z (Z=P, As, Sb) atoms in complexes with various organic ligands acquired from CSD.

	TANVUB ^[86] R(N···Sb)= 2.076, 2.260 Å
	XEXDEJ ^[87] R(N…P)= 1.650, 1.783 Å
	YUXPUC ^[88] R(N···Sb)= 2.470, 2.470 Å
	ZARMEN ^[89] R(N…Sb)= 2.465, 2.484 Å