1	Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018.
2 3 4 5	Supporting Information
6	Inspired by nature: facile design of nanoclay-organic hydrogel
7	bone sealant with multifunctional properties for robust bone
8	regeneration
9	
10	Chung-Sung Lee, Hee Sook Hwang, Soyon Kim, Jiabing Fan, Tara Aghaloo and Min Lee*
11	
12	Dr. C.S. Lee, Dr. H.S. Hwang, Dr. S. Kim, Dr. J. Fan, Prof. M. Lee
13 14	Division of Advanced Prosthodontics, University of California Los Angeles, CA 90095, USA
15	Prof. T. Aghaloo
16	Division of Diagnostic and Surgical Sciences, University of California Los Angeles, CA
17	90095, USA
18	
19	Prof. M. Lee
20	Department of Bioengineering, University of California Los Angeles, CA 90095, USA
21	
22	* Corresponding author:
23	Min Lee, PhD,
24	Professor
25	Division of Advanced Prosthodontics
26	Department of Bioengineering
27	University of California, Los Angeles
28	Email: leemin@ucla.edu
29	

Figure S1. ¹H NMR spectra of glycol chitosan (GC) and phytochemical conjugated GC (PGC)

32 in D₂O.

38 Figure S3. XRD patterns of nanoclay and SAG-loaded nanoclay.

Figure S4. FT-IR spectra of nanoclay, SAG, and SAG-loaded nanoclay.

Figure S5. Gelation time of hydrogels at various NaIO₄/catechol group ratios and nanoclay

45 contents.

47

- 48 **Figure S6**. Adhesive strength of NoBS, and photography images of hydrogel adhesiveness to
- 49 bone. Statistical analysis was determined by one-way ANOVA with Tukey's post hoc test; *P
- 50 < 0.05.

5152 Figure S7. The measurements of compressive modulus for NoBS after degradation for 2

53 weeks. The hydrogels were incubated in the presence or absence of lysozyme (1 g L^{-1}) to

54 facilitate degradation using lysozyme, a chitosan lytic enzyme.

Figure S8. Time-lapsed release profiles of SAG from oBS and NoBSs.

Figure S9. Viability test of caffeic acid, glycol chitosan and the PGC at various

61 concentrations against *S. aureus* and *E. coli* for 24 h.

- **Figure S10**. Representative image of bacterial colonies formed by **A**) *S. aureus* and **B**) *E. coli*
- 65 with methacrylate chitosan hydrogel placed on the agar petri dish for a day.

Figure S11. Representative image of bacterial colonies formed by S. aureus and E. coli with 68

69 NoBS_1% NC in the presence or absence of SAG placed on the agar petri dish for a day.

71 Figure S12. Gene expression related to osteogenesis was evaluated with qRT-PCR with oBS

- and 1% nanoclay-NoBS in the presence or absence of 0.2 mM H₂O₂. *ALP* and *Runx2* were
- examined at day 4, and OCN was measured at day 14. Error bars indicate standard deviation
- (three independent cultures, n = 3), **p < 0.01, and ***p < 0.001 (ANOVA followed by
- 75 Tukey's post hoc test).

78 Figure S13. In vitro 2D cell proliferation assay of BMSCs incubated with oBS and NoBSs at

- various amounts of nanoclay (0.5 and 1.0%) in the presence or absence of 10 μ M SAG for 7
- 80 days. The value was normalized by blank group of Day 1.
- 81
- 82

85 NoBSs at various amounts of nanoclay (0.5 and 1.0%) in the presence or absence of 10 μ M

86 SAG. The cells were stained with calcein AM (live cells, green fluorescence) and ethidium

- homodimer (dead cells, red fluorescence) at day 1 and day. Scale bar indicates 200 μ m.

Figure S15. Alizarin red S staining of NoBS hydrogels. Relative colorimetric quantification

91 of alizarin red S staining was compared between cell-encapsulating and cell-free groups. Scar

92 bar indicates 2 mm. The concentration of SAG for SAG-containing groups was $10 \,\mu$ M.

94 **Table S1**. Interplanar distances (d_{hkl}) and 2 θ (λ =1.54 Å) of nanoclay and SAG-loaded

Diffraction	Nanoclay		SAG-loaded nanoclay	
plane (<i>hkl</i>)	θ (°)	d (Å) ¹⁾	θ (°)	<i>d</i> (Å)
(001)	7.83	11.29	7.65	11.56
(110, 020)	19.72	4.50	19.61	4.53
(004)	27.71	3.22	27.47	3.25
(130, 200)	35.05	2.56	34.73	2.58
(150, 240, 310)	50.78	1.80	50.36	1.81
(060, 330)	60.84	1.52	60.70	1.53

95 nanoclay determined by XRD data.

96 ¹⁾ The *d*-spacing was calculated by Bragg's equation.

- 98 **Table S2**. Elemental composition of the surface for oBS and NoBSs with various amounts of
- 99 nanoclay (0.5 and 1.0%) in the presence or absence of $10 \mu M$ SAG determined by energy
- 100 dispersive X-ray spectrometry.

A tom %	oBS	NoBS_0.5%	NoBS_1.0%	NoBS_1.0%
Atom 70		NC	NC	NC w/ SAG
С	54.57±1.41	48.59±1.59	47.79±1.48	47.19±1.79
Ν	13.30±4.99	-	-	-
0	32.13±1.59	37.23±1.15	38.33±1.04	38.24±1.25
F	-	1.59±0.51	1.77±0.52	1.99±0.60
Na	-	2.00±0.17	1.72±0.14	1.64±0.20
Mg	-	3.53±0.14	3.48±0.19	3.41±0.23
Si	-	5.89±0.18	5.66±0.22	5.57±0.26
S	-	-	-	0.66±0.11
Cl	-	1.18±0.13	1.25±0.11	1.30±0.13

Primers	Forward	Reverse		
GAPDH	AGGTCGGTGTGAACGGATTTG	TGTAGACCATGTAGTTGAGGTCA		
ALP	GTTGCCAAGCTGGGAAGAACAC	CCCACCCCGCTATTCCAAAC		
Runx2	CGGTCTCCTTCCAGGATGGT	GCTTCCGTCAGCGTCAACA		
OCN	GGGAGACAACAGGGAGGAAAC	CAGGCTTCCTGCCAGTACCT		

GCGTTCCCAAGAAGTGGCTTA

ATGGAGCCGGACAGAAAAGC

CAGGCTTCCTGCCAGTACCT

ACACATTACCAAGAAGCACCG

GGTCCAGCTTACGCATAATCTG

CTTGCCACTCAGGGAAGGA

GACAATGATTCCAGCAGTCCAAG

CAGCTGGTTTTCCCCTTTAAC

102 **Table S3**. Sequences of primers for qPCR assay.

103

GSK-3

β-catenin

PTCH

Gli1