Interplay among p21^{Waf1/Cip1}, MUSASHI-1 and Krüppel-like factor 4 in activation of *Bmi1*-CreER reserve intestinal stem cells after gamma radiation-induced injury

Emilia J. Orzechowska^{1,2}, Takahito Katano^{1,3}, Agnieszka B. Bialkowska^{1*}, Vincent W. Yang^{1,4,*}

¹ Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA

² Department of Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland

³ Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan

⁴ Department of Physiology and Biophysics, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA

* Electronic address: <u>Vincent.Yang@stonybrookmedicine.edu</u> and <u>Agnieszka.Bialkowska@stonybrookmedicine.edu</u>

Supplementary Figure 1. Outline of the experimental design. (A) Eight-to 12-week-old female $Bmi1^{Ctrl}$ and $Bmi1^{\Delta Klf4}$ mice were injected with tamoxifen 2 days prior treatment and sacrificed at 0, 6, 24, 48, 72 or 96 h after irradiation with total dose of 0 Gy (sham group) or 12 Gy (irradiated group) total body irradiation. Mice were injected with EdU 3 h prior to sacrifice. (B) Eight-to 12-week-old female $Bmi1^{Ctrl}$ and $Bmi1^{\Delta Klf4}$ mice were injected with tamoxifen, irradiated at time 0 h with total dose of 0 Gy (sham group) or 12 Gy (irradiated group) total body irradiation and sacrificed at 48, 72 or 96 h after irradiation. Mice were injected with EdU 3 h prior to sacrifice. Mice were injected with EdU 3 h prior to sacrifice at 48, 72 or 96 h after irradiation. Mice were injected with EdU 3 h prior to sacrifice

Bmi1^{Ctrl}

В

Supplementary Figure 2. Time-dependent p21^{Waf1/Cip1} (P21) expression pattern in the YFP⁺ crypts after 0 Gy TBI of the *Bmi1^{Ctr1}*mice treated according to protocol 1 (Supplementary Fig. 1A). (A) Representative IF images of DAPI, YFP, and p21^{Waf1/Cip1} staining in the PSI crypts at 0, 6, 24, 48, 72 and 96 h obtained under a fluorescence microscope. The scale bar represents 20 μ m. (B) Quantification of the percentage of YFP⁺ or p21^{Waf1/Cip1} + cells in the YFP⁺ crypts. Data are represented as the mean \pm SD, 20 YFP⁺ crypts were quantified per mouse, and n = 3 mice per group. * p < 0.05, ** p < 0.01 and *** p < 0.001 by one-way ANOVA.

KLF4 expression patterns in the YFP⁺ crypts after 0 Gy TBI of the Bmil^{Ctrl} mice treated according to protocol 1 (Supplementary Fig. 1A). (A) Representative IF images of DAPI, YFP, MSI1 and KLF4 staining in the PSI crypts at 0, 6, 24, 48, 72 and 96 h obtained under a fluorescence microscope. The scale bar represents 20 µm. (B) Quantification of the percentage of YFP⁺ or MSI1⁺ or KLF4⁺ cells in the YFP⁺ crypts. (C) Quantification of the percentage of YFP⁺ cells co-stained with MSI1, KLF4 or MSI1 and KLF4 together. Data are represented as the mean \pm SD, 20 YFP⁺ crypts were quantified per mouse, and n = 3 mice per group.

* p < 0.05, ** p < 0.01 and *** p < 0.001 by one-way ANOVA.

Supplementary Figure 4. Time-dependent p21^{Waf1/Cip1} (P21) and MSI1 co-expression patterns in YFP⁺ crypts after 0 Gy TBI of the *Bmi1^{Ctrl}* mice treated according to protocol 2 (Supplementary Fig. 1B). (A) Representative IF images of DAPI, YFP, p21^{Waf1/Cip1}, and MSI1 in the PSI crypts at 48, 72 and 96 h after tamoxifen injection obtained under a fluorescence microscope. The scale bar represents 20 μ m. (B) Quantification of the percentage of YFP⁺, p21^{Waf1/Cip1+} or MSI1⁺ cells in the YFP⁺ crypts. (C) Quantification of the percentage of YFP⁺ cells costained with p21^{Waf1/Cip1}, MSI1 or p21^{Waf1/Cip1} and MSI1 together. Data are represented as the mean \pm SD, 20 YFP⁺ crypts were quantified per mouse, and n = 3 mice per group. *** p < 0.001 by one-way ANOVA.

Supplementary Figure 5

8 0 2 4 6 8 per group. ** p < 0.01 and *** p < 0.00% of YFP⁺p21⁺ cells in YFP⁺ crypts^{correlation by Spearman correlation test.}

per group. ** p < 0.01 and *** p < 0.001 by one-way ANOVA. Analysis of

0

0

Β

Bmi1^{∆Klf4}

60

Supplementary Figure 6. Time-dependent MSI1 and KLF4 expression patterns in the YFP⁺ crypts after 0 Gy TBI of the $Bmil^{\Delta Klf4}$ mice treated according to protocol 1 (Supplementary Fig. 1A). (A) Representative IF images of DAPI, YFP, MSI1, and KLF4 in the PSI crypts at 0, 6, 24, 48, 72 and 96 h after irradiation obtained under a fluorescence microscope. The scale bar represents 20 µm. (B) Quantification of the percentage of YFP⁺, MSI1⁺ or KLF4⁺ cells in the YFP⁺ crypts. (C) Quantification of the percentage of YFP⁺ cells costained with MSI1, KLF4 or MSI1 and KLF4 together. Data are represented as the mean \pm SD, 20 YFP⁺ crypts were quantified per mouse, and n = 3 mice per group.

* p < 0.05, ** p < 0.01 and *** p < 0.001 by one-way ANOVA.

Β

Bmi1^{∆Klf4}

Supplementary Figure 7. Time-dependent MSI1 and KLF4 expression patterns in the YFP⁺ crypts after 12 Gy TBI of the $Bmil^{\Delta Klf4}$ mice treated according to protocol 1 (Supplementary Fig. 1A). (A) Representative IF images of DAPI, YFP, MSI1, and KLF4 in the PSI crypts at 0, 6, 24, 48, 72 and 96 h after irradiation obtained under a fluorescence microscope. The scale bar represents 20 µm. (B) Quantification of the percentage of YFP⁺, MSI1⁺ or $KLF4^+$ cells in the YFP⁺ crypts. (C) Quantification of the percentage of YFP^+ cells costained with MSI1, KLF4 or MSI1 and KLF4 together. Data are represented as the mean \pm SD, 20 YFP⁺ crypts were quantified per mouse, and n =3 mice per group. * p < 0.05, ** p < 0.01 and *** p < 0.001 by one-way ANOVA.

Α

YFP⁺

 EdU^{+}

KLF4⁺

YFP⁺

KLF4⁺

 EdU^{+}

Supplementary Figure 8. KLF4 influences the proliferative ability of cells in the YFP⁺ crypts after 0 Gy TBI of the *Bmi1*^{Ctrl} and *Bmi1*^{$\Delta Kl/4$} mice treated according to protocol 1 (Supplementary Fig. 1A). (A) Representative IF images of DAPI, YFP, EdU, and KLF4 in the PSI crypts at 0, 6, 24, 48, 72 and 96 h obtained under a fluorescence microscope. The scale bar represents 20 µm. (B-C) Quantification of the percentage of YFP⁺, EdU⁺ or KLF4⁺ cells in the YFP⁺ crypts of the *Bmi1*^{Ctrl} (B) and *Bmi1*^{$\Delta Kl/4$} (C) mice. (D-E) Quantification of the percentage of YFP⁺ cells costained with EdU, KLF4 or EdU and KLF4 together of the *Bmi1*^{Ctrl} (D) and *Bmi1*^{$\Delta Kl/4$} (E) mice. (F) Comparison of the percentage of YFP⁺EdU⁺ cells in the YFP⁺ crypts of the *Bmi1*^{$\Delta Kl/4$} mice. Data are represented as the mean ± SD, 20 YFP⁺ crypts were quantified per mouse, and n = 3 mice per group. * p < 0.05, ** p < 0.01 and *** p < 0.001 by one-way ANOVA.</sup></sup>

Supplementary Figure 9

Supplementary Figure 9. KLF4 influences the YFP⁺-derived organoid formation and regenerative capability in response to γ radiation-induced injury. (A-C) Representative images of organoids derived from the FACS-sorted YFP⁺ cells isolated from the *Bmi1*^{Ctrl} and *Bmi1*^{ΔKlf4} mice at 0, 6, 24, 48, 72, 96, 120, 144 and 168 h after irradiation exposed to 6 Gy (A), 8 Gy (B) or 12 Gy (C) source of γ irradiation obtained under a fluorescence microscope. The lower panel represents fluorescent images, the upper panel represents merged images of bright-field and fluorescent images. The scale bar represents 500 µm.

Supplementary Figure 10. Quantification of the YFP⁺ crypts survival 72 h and 96 h post-irradiation of the $Bmi1^{Ctrl}$ and $Bmi1^{\Delta Kl/4}$ mice treated according to protocol 1 (Supplementary Fig. 1A) presented as the percentage of the YFP⁺ proliferating crypts after irradiation vs. sham. Data are represented as the mean \pm SD, 200 YFP⁺ crypts were quantified per mouse, and n = 3 mice per group. * p < 0.05 by Student's t-test.

Α

Fig. 3C

HEK293T cells were transfected with 100 ng of pGL3-Basic (lanes 1-4) or pGL3-P21^{Waf1/Cip1}-3'UTR (lanes 5-8). Additionally cells were transfected with 100 ng pReceiver-Lv216 (EV; lanes 1 and 5) or pCDH-CMV-Msi1 100 ng (lanes 2 and 6), 150 ng (lanes 3 and 7), and 200 ng (lanes 4 and 8). Protein ladder was marked.

Fig. 3H

HEK293T cells were irradiated with dose of 12 Gy or remained non-treated and 24 h later MSI1 was expressed using 100 ng of pCMV6-AC-GFP-MSI1 encoding human MSI1. Samples without MSI1 overexpression were transfected with 100 ng of pcDNA3.1 used as an empty vector (EV) control.

Uncropped blots in Fig. 5

HEK293T cells were transfected with 100 ng of pcDNA3.1 (EV, empty vector control, lanes 1 and 3) or 100 ng of pcDNA3.1-Klf4 FL coding mouse full length *Klf4* (lane 2) or pcDNA3.1-Klf4 DZFD coding mouse *Klf4* mutant with deletion of C-terminal DNA-binding domains and encoding aminoacids from 1 to 349 of the full length protein (lane 4).

Fig. 5F

HEK293T cells were transfected with 100 ng of pcDNA3.1 (EV, empty vector control, lanes 1, 2, 4 and 6) or 100 ng of pcDNA3.1-KLF4 FL coding human full length *KLF4* (lanes 3, 5 and 7). For tubulin both shorter and longer expositions are shown.

Fig. 5l

Lane:

- 1. input
- . 2. IgG
- 3. KLF4 Ab 10 μL
- 4. KLF4 Ab 15 μ L