



Supplementary Figure 1. Repair of M32. A. Schematic of two-step allele replacement-based repair of the single G to A substitution at 40 711 (indicated by red line). Recombination between repair plasmid pG4M32repair and pG4209 leads to repair of the indicated mutation and production of pg4209.M32. **B.** HindIII RFLP of three repaired clones, Cl9, Cl10 and Cl12 of G4209.M32. Repair was confirmed by sequence analysis.

Smith	MSPPLLFTIS	LFFALGSRPL	AGYSNLAVWY	SDYENGTYSC	EFVLPRPNNM	PLPFTNCYLP	EKIKSSATVT	PNGTILLHDN 80
AA18D								F 80
C4A								80
C4B								80
C4C					M			
C4D G4								80
K181								80
N07								F 80
N1					M			80
WP15B								
Smith	YLTTKLVEDS	STGKRHRRLS	FRDPEFEKRH	PCLYCERPGD	SMDMERCLMC	KDTTMAVLLK	DLHTPKRRDE	SPMLVRATVE 160
AA18D							S	160
C4A							8	160
C4B							8	160
C4C								
C4D	. .						<u>.</u>	
G4								160
K181								160
N07 N1							8	159
WP15B							8	160
		RERVIPDIOK	LETAWLNDDC		EACAKTASYK			DTODWOLL KT 040
Smith AA18D		RERVIEDIUK		IFGAKIKDPI		KSTREGRIVI	MSAKVKPGDP	240
C4A	0							
C4B	0							
C4C	Q				D			
C4D								
G4	Q							240
K181								240
N07	Q							
N1								
WP15B	Q							240
Smith	DNKYVLMARP	CLTDKRHQEY	IRNVRIVHAL		LVGFAAVRLL		KKMFAVRILP	LPLPLVVVWY 320
AA18D		R						320
C4A		R						320
C4B C4C								
C4D								
G4		R						
K181								
N07		R						
N1		R						319
WP15B		R						320
Smith	VLAAGDTVAV	TDRDGVLAVE	SVLLSGLELG	FNHRSLNASQ	MKLALER* 368	}		
AA18D	T				368	}		
C4A					368	•		
C4B						3		
C4C						,		
C4D G4								
K181					369	}		
N07					366			
N1								
WP15B					368	3		

Supplementary Figure 2. Conservation of m133 sequence in MCMV. The annotated m133 ORF is present in all MCMV strains and is predicted to encode a protein of between 366 and 368 AA. Sequences are highly conserved at the AA level and range from 100% sequence identity (C4A versus C4B) and 97.01% sequence similarity (C4C versus G4).

Supplementary Figure 3. Conservation of m132.1 sequence in MCMV. The annotated gene m132.1 is present in all MCMV strains. Across the sequenced MCMV strains, m132.1 shows sequence length polymorphism with the smallest protein, encoded by C4C, predicted to be 197 AA. Most m132.1 ORFs are predicted to encode a protein of 275 AA. Sequence conservation is most pronounced across the amino terminus of the protein as length variation is due to truncation of the carboxy terminus in AA18D, C4C and NO7. Overall AA sequence similarity remains high from 99.64% (C4A versus C4B and G4 versus WP15B) to 69.45% (C4B versus C4C and C4C versus Smith).

Supplementary Figure 4. Conservation of sgg1.1 sequence in MCMV. The novel two exon sgg1.1 gene is conserved across all MCMV strains sequenced to date, encoding a predicted protein of between 136 to 138 AA. Sequences are highly conserved at the AA level and range from 100% sequence identity (Smith, WP15B, N1, K181, C4D, C4B and C4A) to 96% similarity (e.g. NO7 versus AA18D). Red box denotes boundary of exon 2.

		20		40		60		80	
Smith	MSPPLLFTIS	LFFALGSRPL	AGYSNLAVWY	SDYENGTYSC	EFVLPRPNNM	PLPFTNCYLP	EKIKSSATVT	PNGTILLHDN	YLTTKLVEDS 9
W 18D								F	9
C4A			N						9
C4B									9
C4C					M				9
C4D									8
G4		F						F	9
K181									9
NO7									
N1									8
P15B			N						
	100 I		120 I		140 I		160 I		180 I
									RFRVTPDTQK 1
\18D									
C4A C4B									
C4B C4C									
C4D									
G4									
	vv								
NO7					V .				
N1									
215B									
.05				220		240			
						240		260	
		200 I		ī		i		260 I	
				KSIREGRYVT	MSAKVKPGDP	RTCRVCLLKT	DNKYVLMARP	CLTDKRHQEY	IRNVRIVHAL 2
18D				KS I REGRYVT	MSAKVKPGDP	RTCRVCLLKT	DNKYVLMARP	CLTDKRHQEY	2
18D C4A			V	KSIREGRYVT	MSAKVKPGDP	RTCRVCLLKT	DNKYVLMARP	CLTDKRHQEY	
18D C4A C4B			V	KSIREGRYVT	MSAKVKPGDP	RTCRVCLLKT	DNKYVLMARP 	CLTDKRHQEYRR	
C4A C4B C4C			V	KSIREGRYVT	MSAKVKPGDP	RTCRVCLLKT	DNKYVLMARP	CLTDKRHQEYRRR	
18D C4A C4B C4C C4D			V	KSIREGRYVT	MSAKVKPGDP	RTCRVCLLKT	DNKYVLMARP	CLTDKRHQEYRRR	
C4A C4B C4C C4C C4D G4				KSIREGRYVT	MSAKVKPGDP	RTCRVCLLKT	DNKYVLMARP	CLTDKRHQEYRRRRR	
18D C4A C4B C4C C4D G4 (181			V	KSIREGRYVT	MSAKVKPGDP	RTCRVCLLKT	DNKYVLMARP	CLTDKRHQEYRRRRRRR	
C4A C4B C4C C4D G4 (181 NO7			V	KSIREGRYVT	MSAKVKPGDP	RTCRVCLLKT	DNKYVLMARP	CLTDKRHQEYRRRRRRRR	
C4A C4B C4C C4D G4 (181 NO7			V	KSIREGRYVT	MSAKVKPGDP	RTCRVCLLKT	DNKYVLMARP	CLTDKRHQEYRRRRRRRR	
C4A C4B C4C C4D G4 (181 NO7			D	KSIREGRYVT	MSAKVKPGDP	RTCRVCLLKT	DNKYVLMARP	CLTDKRHQEYRRRRRRRR	
C4A C4B C4C C4D G4 (181 NO7 N1	E		D	KSIREGRYVT	MSAKVKPGDP	RTCRVCLLKT	DNKYVLMARP	CLTDKRHQEYRRRRRRRR	
18D C4A C4B C4C C4D G4 (181 NO7 N1 215B	E	LVGFAAVRLL	VDD	KSIREGRYVT	MSAKVKPGDP	RTCRVCLLKT	DNKYVLMARP	CLTDKRHQEYRRRRRRRR	
18D C4A C4B C4C C4D G4 (181 NO7 N1 P15B	E	LVGFAAVRLL	VDD	KSIREGRYVT	MSAKVKPGDP	RTCRVCLLKT	DNKYVLMARP	CLTDKRHQEYRRRRRRRR	
18D C4A C4B C4C C4D G4 (181 NO7 N1 215B mith (18D C4A	E	LVGFAAVRLL	VDD	KSIREGRYVT	MSAKVKPGDP	RTCRVCLLKT	DNKYVLMARP	CLTDKRHQEYRRRRRRRR	
118D C4A C4B C4C C4D G4 (181 NO7 N1 P15B Smith 118D C4A C4B		LVGFAAVRLL	VDD	KSIREGRYVT	MSAKVKPGDP	RTCRVCLLKT	DNKYVLMARP	CLTDKRHQEYRRRRRRRR	
118D C4A C4B C4C C4D G4 (181 NO7 N1 P15B Smith (18D C4A C4B C4C	280 VISVWAVAIA	LVGFAAVRLL	VDD	KSIREGRYVT	MSAKVKPGDP	RTCRVCLLKT	DNKYVLMARP	CLTDKRHQEYRRRRRRRR	
A18D C4A C4B C4C C4D G4 (181 NO7 N1 P15B GM A18D C4A C4B C4C C4D		LVGFAAVRLL	VDD	KSIREGRYVT	MSAKVKPGDP	RTCRVCLLKT	DNKYVLMARP	CLTDKRHQEYRRRRRRRR	
A18D C4A C4B C4C C4D G4 (181 NO7 N1 P15B Smith A18D C4A C4B C4C C4D G4		LVGFAAVRLL	VDD	KSIREGRYVT	MSAKVKPGDP	RTCRVCLLKT	DNKYVLMARP	CLTDKRHQEYRRRRRRRR	
A18D C4A C4B C4C C4D G4 K181 NO7 N1 P15B C4A C4B C4C C4D G4 K181 K181 K181 K181 K181 K181 K181 K18	E	LVGFAAVRLL	VDD	KSIREGRYVT	MSAKVKPGDP	RTCRVCLLKT	DNKYVLMARP	CLTDKRHQEYRRRRRRRR	
A18D C4A C4B C4C C4D G4 K181 NO7 N1 P15B C4A C4B C4A C4B C4A C4B C4A C4B C4A C4B NO7		LVGFAAVRLL	VDD	KSIREGRYVT	MSAKVKPGDP	RTCRVCLLKT	DNKYVLMARP	CLTDKRHQEYRRRRRRRR	
A18D C4A C4B C4C C4D G4 (181 NO7 N1 P15B C4A C4B C4A C4B C4C C4D G4		LVGFAAVRLL	VDD	KSIREGRYVT	MSAKVKPGDP	RTCRVCLLKT	DNKYVLMARP	CLTDKRHQEYRRRRRRRR	

Supplementary Figure 5. Conservation of sgg1 sequences in MCMV. The canonical two exon sgg1 gene is conserved across all MCMV strains sequenced to date, encoding a predicted protein of 311 or 312 AA. Sequences are highly conserved at the AA level and range from 100% sequence identity (C4A versus C4B) and 97.12% sequence similarity (N1 versus Smith). Red box denotes boundary of exon 2.