Supporting Information

Phonon Anharmonicity in Bulk *Td***-MoTe2**

Jaydeep Joshi,¹ Iris Stone,¹ Ryan Beams,² Sergiy Krylyuk,² Irina Kalish,² Albert Davydov,² and Patrick Vora^{1,a)}

1) *Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030, USA.*

2) *Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA*

a) Electronic mail: pvora@gmu.edu

Figure S1 a) Temperature-dependent Raman spectra for Peak 1 normalized by the intensity of Peak 2 as labelled in Figure 1c. Solid black lines represent single Lorentzian fits with a linear background. b) FWHM of Peak 1 extracted from the fits at each temperature. c) Amplitudes of Peak 1, extracted from the fits in (a). 1σ error bars are included.

Raman Mode Assignment

Raman experiments in a backscattering geometry are sensitive to modes with *A^g* and *B^g* symmetry for the *1T*' phase and with A_I and B_I symmetries in the T_d phase.¹ In polarization-dependent Raman

measurements of *1T'*-MoTe2, which will be reported elsewhere, we have determined that Peaks 1- 4 are of A_g symmetry. We now argue that these A_g modes evolve into A_1 modes in T_d -MoTe₂ based upon the similarity of their Raman tensors. The tensors for A_q and $A₁$ symmetry Raman modes are $¹$ </sup>

$$
\overrightarrow{R}_{A_g} = \begin{pmatrix} a & d & 0 \\ d & b & 0 \\ 0 & 0 & c \end{pmatrix} \qquad \overrightarrow{R}_{A_1} = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}.
$$
 (S1)

The Raman cross-section S can be calculated from²

$$
S = |\hat{e}_s \cdot \vec{R} \cdot \hat{e}_t|^2 \tag{S2}
$$

where \hat{e}_i and \hat{e}_s are unit vectors for the polarization of the incident and scattered photons. In our experiment the excitation and collection paths are collinear and perpendicular to the basal plane of MoTe₂ (a backscattering geometry). The laser is polarized at an arbitrary angle θ with respect to the α crystal axis and ϕ is the polarization angle of the scattered light with respect to the same axis. $\phi = \theta$ and $\phi = \theta + \frac{\pi}{2}$ correspond to parallel and perpendicular collection configuration respectively. Therefore,

$$
\hat{e}_t = (\sin \theta \quad 0 \quad \cos \theta), \tag{S3}
$$

$$
\widehat{e_s} = (\sin \phi \quad 0 \quad \cos \phi). \tag{S4}
$$

We now evaluate Eq. S2 for A_g symmetry modes using Eq. S3 and Eq. S4

$$
S_{A_g} = \begin{vmatrix} (\sin \phi & 0 & \cos \phi \end{vmatrix} \begin{pmatrix} a & d & 0 \\ d & b & 0 \\ 0 & 0 & c \end{pmatrix} \begin{pmatrix} \sin \theta \\ 0 \\ \cos \theta \end{pmatrix} \Big|^2 \tag{S5a}
$$

$$
= \begin{vmatrix} (\sin \phi & 0 & \cos \phi) \begin{pmatrix} a \sin \theta \\ d \sin \theta \\ c \cos \theta \end{pmatrix} \end{vmatrix}^2
$$
 (S5b)

$$
= |a\sin\theta\sin\phi + c\cos\theta\cos\phi|^2. \tag{S5c}
$$

We can perform a similar calculation for the A_1 symmetry mode

$$
S_{A_1} = \begin{vmatrix} (\sin \phi & 0 & \cos \phi) \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} \begin{pmatrix} \sin \theta \\ 0 \\ \cos \theta \end{pmatrix} \end{vmatrix}^2
$$
 (S6a)

$$
= \begin{vmatrix} (\sin \phi & 0 & \cos \phi) \begin{pmatrix} a \sin \theta \\ 0 \\ c \cos \theta \end{pmatrix} \end{vmatrix}^2 \tag{S6b}
$$

$$
= |a\sin\theta\sin\phi + c\cos\theta\cos\phi|^2. \tag{S6c}
$$

Equations S5c and S6c are identical which, when combined with the continuous evolution of each mode with temperature, suggests that A_g modes will evolve into $A₁$ modes at low temperature.

A similar analysis can be performed for the B_g and $B₁$ symmetry Raman tensors

$$
\overrightarrow{R}_{B_g} = \begin{pmatrix} 0 & 0 & f \\ 0 & 0 & g \\ f & g & 0 \end{pmatrix} \qquad \overrightarrow{R}_{B_1} = \begin{pmatrix} 0 & 0 & f \\ 0 & 0 & 0 \\ f & 0 & 0 \end{pmatrix}.
$$
 (S7)

Following the same approach, we find

$$
S_{B_g} = \begin{vmatrix} (\sin \phi & 0 & \cos \phi \end{vmatrix} \begin{pmatrix} 0 & 0 & f \\ 0 & 0 & g \\ f & g & 0 \end{pmatrix} \begin{pmatrix} \sin \theta \\ 0 \\ \cos \theta \end{pmatrix}^2 = |f|^2 (\sin(\theta + \phi))^2, \tag{S8}
$$

$$
S_{B_1} = \begin{vmatrix} (\sin \phi & 0 & \cos \phi \end{vmatrix} \begin{pmatrix} 0 & 0 & f \\ 0 & 0 & 0 \\ f & 0 & 0 \end{pmatrix} \begin{pmatrix} \sin \theta \\ 0 \\ \cos \theta \end{pmatrix}^2 = |f|^2 (\sin(\theta + \phi))^2
$$
 (S9)

Equations S8 and S9 are identical which, when combined with the continuous evolution of this mode with temperature, suggests that B_g modes will evolve into $B₁$ modes at low temperature.

Supplementary References

¹ M.I. Aroyo, J.M. Perez-Mato, D. Orobengoa, E. Tasci, G. De La Flor, and A. Kirov, Bulg. Chem. Commun. **43**, 183 (2011).

² H.B. Ribeiro, M.A. Pimenta, C.J.S. De Matos, R.L. Moreira, A.S. Rodin, J.D. Zapata, E.A.T. De Souza, and A.H. Castro Neto, ACS Nano **9**, 4270 (2015).