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Figure S1 a) Temperature-dependent Raman spectra for Peak 1 normalized by the intensity of Peak 2 as labelled in
Figure 1c. Solid black lines represent single Lorentzian fits with a linear background. b) FWHM of Peak 1 extracted
from the fits at each temperature. ¢) Amplitudes of Peak 1, extracted from the fits in (a). 1o error bars are included.

Raman Mode Assignment

Raman experiments in a backscattering geometry are sensitive to modes with Ag and By symmetry
for the 17’ phase and with A; and B1 symmetries in the Tq phase.! In polarization-dependent Raman

measurements of /7’-MoTe>, which will be reported elsewhere, we have determined that Peaks 1-
4 are of A; symmetry. We now argue that these A, modes evolve into A; modes in T4-MoTe>
based upon the similarity of their Raman tensors. The tensors for A; and A; symmetry Raman

modes are!
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The Raman cross-section S can be calculated from?

s=le-R-a| (s2)

where &, and é; are unit vectors for the polarization of the incident and scattered photons. In our
experiment the excitation and collection paths are collinear and perpendicular to the basal plane of
MoTe:> (a backscattering geometry). The laser is polarized at an arbitrary angle 8 with respect to
the a crystal axis and ¢ is the polarization angle of the scattered light with respect to the same axis.

$=6 and ¢=0 + g correspond to parallel and perpendicular collection configuration respectively.
Therefore,

é,= (sin 0 cos8), (S3)
é; = (singp 0 coso). (S4)
We now evaluate Eq. S2 for A, symmetry modes using Eq. S3 and Eq. S4
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We can perform a similar calculation for the A; symmetry mode
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Equations S5c and S6c are identical which, when combined with the continuous evolution of each
mode with temperature, suggests that A, modes will evolve into A; modes at low temperature.

A similar analysis can be performed for the B; and B; symmetry Raman tensors
0 0 f 0 0 f
f g 0 f 00

Following the same approach, we find
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Sp, = |(sing 0 cos¢) (O 0 0)( 0 ) = |f]1?(sin(8 + ¢)).2 (S9)
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Equations S8 and S9 are identical which, when combined with the continuous evolution of this
mode with temperature, suggests that B; modes will evolve into B; modes at low temperature.
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