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1 Web Appendix A

In order to obtain the initial U and V , we apply the singular value decomposition (SVD) to

the log-transformed matrix Ã and obtain the components {U ′, V ′, S ′} (i.e., ln(Ã) = U ′S ′V ′>).

Set V old = V ′ and U old = (s′11u
′
(,1), s

′
22u
′
(,2), . . . , s

′
KKu

′
(,K)), where s′kk is the k-th diagonal

element of S ′. Assuming matrix U old is known, we estimate the loadings v(j,) and shape

parameter τ by fitting a ZIP regression (will be discussed in Section 2.3) with a(,j) as the

response, vector uold(,1), u
old
(,2), · · · , uold(,K) as the covariates and a scaling vector N as an extra

offset parameter. Since A has m columns, we need to fit m GLMs to obtain m rows in V .

However, an important assumption of our model is that the link between pij and λij (i.e., τ)

remains the same across all m different GLMs. To accommodate this, we solve all m models

simultaneously to get a globally best τ value. Here we combine the response, covariates and

offset parameter in m regressions into larger scale matrices A(u), U? old and N (u) and fit a

ZIP regression with A(u) as response variable, columns in U? old as covariates and N (u) as the

offset parameter:

A(u) =



a(,1)

a(,2)
...

a(,m)


, U? old =



U old

U old

. . .

U old


︸ ︷︷ ︸

m times

, N (u) =



N

N

...

N




m times .

The fitted coefficient V s is a combined vector of v(i,) such that V s = (v(1,), v(2,), · · · , v(m,)).

We could obtain the fitted V new by cutting V s to v(i,)’s and rearrange v(i,)’s to matrix V new.

Then update Unew in a similar fashion. The response and covariates are A(v) and every
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columns in V ? new and an offset parameter N (v) is needed as well:

A(v) =



a>(1,)

a>(2,)

...

a>(n,)


, V ? new =



V new

V new

. . .

V new


︸ ︷︷ ︸

n times

, N (v) =

(
N1, · · ·N1︸ ︷︷ ︸
m times

, · · · , Nn, · · · , Nn︸ ︷︷ ︸
m times

)>
.

The fitted coefficient is U s = (u(1,), u(2,), · · · , u(n,)) and thus the Unew is able to be recon-

structed from U s in a similar way like V new.

After U , V are updated, one more step is involved to ensure the uniqueness and or-

thogonality of these updated components. We apply SVD to the UnewV new T and label the

components by {U ′, V ′, S ′}. Set U old = (s′11u
′
(,1), s

′
22u
′
(,2), . . . , s

′
KKu

′
(,K)) and V old = V ′.

We use the updated U , V and τ to obtain the estimates of Λ and P in the current round

of iteration and then calculate the likelihood value L(A):

L(A) =
∏
i,j

L(aij;U, V, τ,N) =
∏
i,j

{
pijI(aij = 0) + (1− pij)

(Niλij)
aije−Niλij

aij!

}
where ln(λij) =

∑K
k=1 uikvjk and logit(pij) = −τ ln(λij).

When the percentage of total likelihood difference between two iterations is less than a

certain small value, the algorithm terminates; Otherwise, we continue to update U , V , τ

until convergence. In ZIP regression step where U , V and τ are updated, we will use the

EM algorithm to estimate the coefficients (see Section 2.3), and thus the likelihood increases

due to the nature of EM algorithm used in regression estimation. The likelihood remains

the same in SVD step. Overall, the algorithm is guaranteed to converge.

2 Web Appendix B

LM algorithm introduces a positive damping parameter µ. If we reduce µ, the LM algorithm

behaves like Newton’s method, which is a good way to get quadratic convergence in the final
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stages of the iteration; while if we enlarge µ, the descent direction in LM algorithm is closer

to the gradient descent method, which is free from the information of second derivative of

the objective function and thus the algorithm still works when the Hessian matrix of the

objective function is ill-conditioned or nearly singular. Such an algorithm could be put into

the trust-region framework and is implemented in many solvers with common programming

languages [Yuan, 1999, Moré and Sorensen, 1983].

B.1 LM Algorithm

We use Levenberg-Marquardt method to solve β and τ . The objective function is Q(β, τ) =

− ln(L) and we want to minimize the objective function. The log likelihood function is:

ln(L) =
n∑
i=1

zi ln(pi) +
n∑
i=1

(1− zi)
{
yi ln(miλi)−miλi − ln(yi!) + ln(1− pi)

}
= −τZXβ −

n∑
i=1

ln(1 + e−τX
>
i β)

+ (1− Z){diag(yi)(Xβ + ln(m))− diag(mi)e
Xβ − ln(Y !)}

where diag(αi) represents a matrix whose diagonal elements are αi; ln is a pointwise operator

on the vector.

The first and second derivative of ln(L) are:

Jβ =
∂ ln(L)

∂β>
= (−τZ + τW + (1− Z)U)X

Jτ =
∂ ln(L)

∂τ
= (W − Z)Xβ

Hββ =
∂2 ln(L)

∂β∂β>
= X>RX

Hττ =
∂2 ln(L)

∂τ 2
= −

n∑
i=1

(X>i β)2eτX
>
i β

(eτX
>
i β + 1)2

Hτβ =
∂2 ln(L)

∂τ∂β>
= (V − Z)X

where W =
(
(eτX1β + 1)−1, . . . , (eτXnβ + 1)−1

)
,
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U = diag
(
yi −mie

X>
i β
)

,

R = diag
(
− τ2eτX

>
i β

(eτX
>
i
β+1)2

− (1− zi)(mie
X>
i β)
)

,

V =
(
eτX1β−τX1βeτX1β+1

(eτX1β+1)2
, . . . , e

τXnβ−τXnβeτXnβ+1
(eτXnβ+1)2

)
.

In addition, diag(αi) represents a matrix whose diagonal elements are αi; ln is a pointwise

operator on the vector.

Correspondingly, the Jacobian (J) and Hessian (H) matrix of objective functionQ(β, τ)are:

J(β, τ) = −

J>β
Jτ

 H(β, τ) = −

Hββ H>τβ

Hβτ Hττ


Initialize:

Step 1: Set initial β0 and τ0, which is discussed in Section 2.3. Then we calculate J0 with

these initial values.

Step 2: Set initial damping parameter µ:

µ = ρ · Jm

where ρ is user specified and the default value is 1 × 10−5; Jm is the maximum element in

matrix J>0 J0.

Iterating:

Step 3: Multiply µ by 2 until (H(β, τ) + µI) is positive definite.

Step 4: Obtain the descent direction h by solving equation:

(H(β, τ) + µI)h = −J(β, τ).

Step 5: Define and compute the gain ratio δ:

δ = − Q(β, τ)−Q((β, τ) + h)

h>J(β, τ) + 1
2
h>(H(β, τ) + µI)h

.

Step 6: If δ > 0.001, we obtain better lnL(β, τ) value, so we update β, τ , µ by:βk+1

τk+1

 =

βk
τk

+ h, µ = µ ·max

{
1

3
, 1− (2δ − 1)3

}
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If δ ≤ 0.001, do not update β, τ . Update µ = 2µ.

Step 7: Repeat from step 3 to step 6 until the algorithm converges. The convergence

criterion is discussed in Section 2.3.

B.2 Initial Values

Similar to many fitting algorithms, the LM algorithm only finds a local extremum, which

requires us to provide a reasonable initial τ0 and β0. Fitted β from Poisson regression could

be used as the initial value in the first iteration of the EM algorithm. For initial value of τ0,

we have to estimate p first. Assuming that all yi from the Poisson distribution are not zero,

estimate p under such an assumption:

p =
# yi’s that are zeros

n

Obviously, this expression will overestimate the p, because zeros from the Poisson distribution

are wrongly regraded and counted as a part of true zeros, especially when the estimated p

is relatively low. However, such a estimator is usually accurate enough to help the fitting

algorithm to converge. Then we are able to estimate the initial τ0 at beginning of each round

by the following expression (the derivation is at end of Web Appendix B):

τ0 = − n logit(p)∑n
i=1X

>
i β

(1)

In practice, if the model is stable and the algorithm converges successfully with all initial

parameters (τ and β) in the previous iteration, we tend to use the fitted the parameters in

the previous iteration, for which will accelerate the convergency speed. Only if using the

previous parameters as the initial parameter causes divergence, we will then turn to the

estimation of β0 and τ0 mentioned above.

Derivation of equation (1):
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Since we have the relationship between pi and λi:

logit(pi) = −τ ln(λi)

Plug ln(λi) = X>i β into the expression above:

logit(pi) = −τX>i β

We use logit(p) to present the mean value on the left hand side, and take the average of Xiβ:

logit(p) = −τ
n

n∑
i=1

X>i β

Correspondingly, the estimation of τ0 is:

τ0 = − n logit(p)∑n
i=1X

>
i β

3 Web Appendix C

We generate rank-3 synthetic NGS data of 200 samples (n = 200) and 100 taxa (m = 100)

according to the assumption in our paper. The Poisson logarithmic rate matrix Λ = UV >,

where U ∈ Rm×3 is a left singular vector matrix, and V ∈ Rn×3 is a right singular vector

matrix. We consider three different clustering patterns in the samples as depicted in U . To

generate U , we create a 200-by-3 matrix U such that:

U(36 : 80, 1) = 2.0, U(81 : 140, 1) = 1.7

U(1 : 35, 2) = 1.8, U(36 : 80, 2) = 0.9

U(36 : 200, 3) = 1.7

with all the other entries being 0, and then jitter all the entries by adding random numbers

generated from N(0, 0.062). Similarly, To generate V , we create a 100-by-3 matrix V such
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that:

V (61 : 100, 1) = 1.7

V (36 : 60, 2) = 1.7, V (61 : 100, 2) = 1.0

V (1 : 25, 3) = 1.7, V (26 : 100, 3) = 0.9

with all the other entries being 0, and then jitter all the entries by adding random numbers

generated from N(0, 0.052). The three columns of U and V are plotted in the columns of

Web Figure 1(a) and the true ln(λ) matrix is plotted in Web Figure 1(b). Each row in U

corresponds to one sample and each row in V indicates one taxon profile. In Web Figure 1(c)

& (d), we applied complete linkage hierarchical clustering to U , V [Eisen et al., 1998]. It is

clear that both taxa and samples could be clustered into 4 groups.

4 Web Appendix D

As an example, Web Figure 2 shows a typical case that how the fitted distribution changes

in setting (1) as inflated zeros percentages go from 0% to 40%. All methods work well

when inflated zeros do not exist. When the true zero percentage goes higher (20%), the

estimated distribution from log-SVD shifts to the left to capture the excessive zeros. When

true zero percentage continues growing to 40%, our method is the only method that could

keep the right clustering of both samples and taxa. log-SVD fails to recover the underlying

Poisson rate distribution under such a high true zero percentage. PSVDOS performs better

to some extent, but also fails to capture the right taxa clustering just like log-SVD. GOMMS

successfully clusters the taxa, but the sample clustering is not reflected because it assigns

each taxon a single probability of true zero and this might limit the heterogeneity between

samples.
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Web Figure. 1: Plots of simulation parameters. (a) True left singular vectors U and true
right singular vector V , indicating taxon clusters. (b) Heatmap of true ln(λ) matrix. (c)(d)
The factor values for each sample/taxa. They could be clustered into 4 groups.
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Web Figure. 2: Heatmap of Û V̂ > from different methods in setting 1. Blue histogram shows
the distribution of fitted Û V̂ >; Phylogenetic tree on the top and left shows clustering of taxa
and samples.
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Web Figure. 5: Absolute taxa loadings on the two most significant factors. Each point is a
loading coordinate of a taxon on these two factors. Blue or red dots are clinically meaningful
taxa in other literature. (a) Loadings on factor 2, 3 of our proposed ZIPFA. (b) Loadings
on factor 2, 4 of log-SVD. (c) Loadings on factor 1, 4 of PSVDOS. (d) Loadings on factor 1,
2 of GOMMS
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Web Table. 2: The loading values and ranks of potentially clinically meaningful taxa in
ZIPFA and log-SVD

ZIPFA log-SVD
taxa rank loading taxa rank loading

Actinomyces HOT 169 1 -0.245 Eubacterium[11][G-3] spp. 10 0.114
Streptococcus mutans 3 -0.187 Fretibacterium spp. HOT 360 11 0.113
Eubacterium[11][G-5] spp. 5 0.172 Fretibacterium spp. 14 0.111
Treponema spp. 7 0.171 Eubacterium[11][G-5] spp. 29 0.088
Bacteroidetes[G-5] HOT 511 10 0.140 Eubacterium[11][G-6] spp. 37 0.083
Porphyromonas gingivalis 11 0.123 TM7[G-1] spp. 38 0.083
TM7[G-1] spp. 15 0.113 TM7 spp. 44 0.079
Porphyromonas spp. 21 0.101 Filifactor spp. 58 0.068
Filifactor spp. 25 0.097 Treponema spp. 60 0.066
Eubacterium[11][G-6] spp. 26 0.092 Bacteroidetes[G-5] HOT 511 67 0.060
TM7 spp. 41 0.071 Porphyromonas gingivalis 82 0.053
Fretibacterium spp. 42 0.071 Porphyromonas spp. 84 0.053
Fretibacterium spp. HOT 360 43 0.071 Prevotella intermedia 89 0.051
Actinomyces HOT 175 58 -0.062 Actinomyces naeslundii 122 -0.034
Prevotella intermedia 108 0.037 Actinomyces HOT 170 123 -0.034
Eubacterium[11][G-3] spp. 134 0.025 Actinomyces HOT 169 140 -0.028
Actinomyces naeslundii 142 -0.023 Streptococcus mutans 147 -0.026
Actinomyces HOT 170 161 0.019 Actinomyces HOT 175 195 -0.011
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