Supporting Information

Synthesis and Cytotoxic Evaluation of N-Alkyl-2-halophenazin-1-ones

Haruki Kohatsu, Shogo Kamo,[†] Masateru Furuta, Shusuke Tomoshige,[‡] Kouji Kuramochi* Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.

Present address:

[†]Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.

[‡]Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.

Index

¹ H and ¹³ C NMR spectroscopic data	
Figure S1. ¹ H NMR spectrum (400 MHz, DMSO- d_6) of 1b	S 3
Figure S2. ¹³ C{ ¹ H} NMR spectrum (100 MHz, DMSO- d_6) of 1b.	S4
Figure S3. HMBC spectrum of 1b.	S5
Figure S4. HMQC spectrum of 1b.	S6
Figure S5. NOESY spectrum of 1b.	S7
Figure S6. ¹ H NMR spectrum (400 MHz, DMSO- d_6) of 1c.	S8
Figure S7. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, DMSO- d_6) of 1c.	S9
Figure S8. HMBC spectrum of 1c.	S10
Figure S9. HMQC spectrum of 1c.	S11
Figure S10. NOESY spectrum of 1c.	S12
Figure S11. Zoom of NOESY spectrum of 1c.	S13
Figure S12. ¹ H NMR spectrum (400 MHz, CDCl ₃ , TMS) of 2b.	S14
Figure S13. ¹³ C{ ¹ H} NMR spectrum (100 MHz, CDCl ₃) of 2b.	S15
Figure S14. ¹ H NMR spectrum (400 MHz, CDCl ₃ , TMS) of 2c.	S16
Figure S15. ¹³ C{ ¹ H} NMR spectrum (100 MHz, CDCl ₃) of 2c.	S17
Figure S16. HMBC spectrum of 2c.	S18
Figure S17. HMQC spectrum of 2c.	S19
Figure S18. NOESY spectrum of 2c.	S20
Figure S19. Zoom of NOESY spectrum of 2c.	S21

Figure S20. ¹ H NMR spectrum (400 MHz, CD ₃ OD) of 3b .	S22
Figure S21. ¹³ C{ ¹ H} NMR spectrum (100 MHz, CD ₃ OD) of 3b .	S23
Figure S22. ¹ H NMR spectrum (400 MHz, CD ₃ OD) of 3c.	S24
Figure S23. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CD ₃ OD) of 3c.	S25
Figure S24. HMBC spectrum of 3c.	S26
Figure S25. HMQC spectrum of 3c.	S27
Figure S26. NOESY spectrum of 3c.	S28
Figure S27. ¹ H NMR spectrum (400 MHz, CDCl ₃ , TMS) of 7.	S29
Figure S28. ¹³ C{ ¹ H} NMR spectrum (100 MHz, CDCl ₃) of 7.	S30
Figure S29. HMBC spectrum of 7.	S31
Figure S30. HMQC spectrum of 7.	S32
Figure S31. NOESY spectrum of 7.	S33
Figure S32. Zoom of NOESY spectrum of 7 (8.5 ppm -3.0 ppm).	S34
Figure S33. Zoom of NOESY spectrum of 7 (6.6 ppm $-$ 4.0 ppm).	S35
Figure S34. ¹ H NMR spectrum (400 MHz, CDCl ₃ , TMS) of 8.	S36
Figure S35. ¹³ C{ ¹ H} NMR spectrum (100 MHz, CDCl ₃) of 8.	S37
Figure S36. HMBC spectrum of 8.	S38
Figure S37. HMQC spectrum of 8.	S39
Figure S38. NOESY spectrum of 8.	S40
Figure S39. Zoom of NOESY spectrum of 8.	S41

Figure S1. ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of 1b.

Figure S2. ¹³C $\{^{1}H\}$ NMR spectrum (100 MHz, DMSO- d_{6}) of 1b.

Figure S3. HMBC spectrum of 1b.

Figure S4. HMQC spectrum of 1b.

Figure S5. NOESY spectrum of 1b.

Figure S6. ¹H NMR spectrum (400 MHz, DMSO- d_6) of 1c.

Figure S7. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, DMSO- d_6) of 1c.

Figure S8. HMBC spectrum of 1c.

Figure S9. HMQC spectrum of 1c.

Figure S10. NOESY spectrum of 1c.

Figure S12. ¹H NMR spectrum (400 MHz, CDCl₃, TMS) of 2b.

Figure S13. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CDCl₃) of 2b.

Figure S14. ¹H NMR spectrum (400 MHz, CDCl₃, TMS) of 2c.

Figure S15. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CDCl₃) of 2c.

Figure S16. HMBC spectrum of 2c.

Figure S17. HMQC spectrum of 2c.

Figure S18. NOESY spectrum of 2c.

S20

Figure S19. Zoom of NOESY spectrum of 2c.

Figure S20. ¹H NMR spectrum (400 MHz, CD₃OD) of **3b**.

Figure S21. $^{13}C{^{1}H}$ NMR spectrum (100 MHz, CD₃OD) of 3b.

Figure S22. ¹H NMR spectrum (400 MHz, CD₃OD) of 3c.

Figure S23. $^{13}C{^{1}H}$ NMR spectrum (100 MHz, CD₃OD) of 3c.

Figure S24. HMBC spectrum of 3c.

Figure S25. HMQC spectrum of 3c.

Figure S26. NOESY spectrum of 3c.

Figure S27. ¹H NMR spectrum (400 MHz, CDCl₃, TMS) of 7.

4.0694

- 0.0000

Figure S28. $^{13}C\{^{1}H\}$ NMR spectrum (100 MHz, CDCl₃) of 7.

Figure S29. HMBC spectrum of 7.

Figure S30. HMQC spectrum of 7.

Figure S31. NOESY spectrum of 7.

Figure S32. Zoom of NOESY spectrum of 7 (8.5 ppm – 3.0 ppm).

Figure S33. Zoom of NOESY spectrum of 7 (6.6 ppm – 4.0 ppm).

Figure S34. ¹H NMR spectrum (400 MHz, CDCl₃, TMS) of 8.

Figure S35. $^{13}C{^{1}H}$ NMR spectrum (100 MHz, CDCl₃) of 8.

Figure S36. HMBC spectrum of 8.

Figure S37. HMQC spectrum of 8.

Figure S38. NOESY spectrum of 8.

