

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Caesarean section rates analysed using Robson's Ten Group Classification System: A descriptive study at a tertiary hospital in Ethiopia

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-039098
Article Type:	Original research
Date Submitted by the Author:	08-Apr-2020
Complete List of Authors:	Abdo, Abdella; Hawassa University College of Medicine and Health Sciences, Epidemiology Hinderaker, Sven; University of Bergen Centre for International Health, Center for International Health Tekle, Achemyelesh; Hawassa University College of Medicine and Health Sciences, Public Health Lindtjørn, Bernt; University of Bergen, Centre for International Health
Keywords:	PUBLIC HEALTH, Fetal medicine < OBSTETRICS, Maternal medicine < OBSTETRICS, Prenatal diagnosis < OBSTETRICS
	·

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Caesarean section rates analysed using Robson's Ten Group Classification System: A descriptive study at a tertiary hospital in Ethiopia

Abdella Amano Abdo (AAA),^{1,2}, Sven Gudmund Hinderaker (SGH)², Achamyelesh Gebretsedik Tekle (AGT)¹, Bernt Lindtjørn (BL)^{1,2}

E-mail address of the authors:

AAA: <u>a2ay.oro@gmail.com</u>, Correspondent author

SGH: Sven.Hinderaker@uib.no

AGT: achameyelesh9@yahoo.com

BL: <u>bernt.lindtjorn@uib.no</u>

Abstract

Objective: The aim of this study was to assess the Caesarean section (CS) rates using Robson's Ten-Group Classification System among women who gave birth at Hawassa University Referral Hospital in Southern Ethiopia.

Design: Descriptive design analysing CS rates by Robson's categories from a birth registry

Setting: Hawassa University Referral Hospital in South Ethiopia.

Participants: 4004 women who gave birth in Hawassa University Referral Hospital from June 2018 to June 2019.

Results: The 4004 women gave birth to 4165 babies. The overall CS rate was 32.8% (95% CI: 31.4%, 34.3%). The major contributors to the overall CS rates were: Robson Group 1 (nulliparous women with singleton pregnancy at term in spontaneous labour) 22.9%; Group 5 (multiparous women with at least one previous CS) 21.4%, and Group 3 (multiparous women without previous CS, with singleton pregnancy in spontaneous labour) 17.3%. The most commonly reported indications for CS were "foetal compromise" (35.3%) followed by previous CS (20.3%) and obstructed labour (10.7%).

Conclusion: A high proportion of delivering women at this hospital were given a CS, and many of them were in a low risk group. Few had trial of labour. More active use of partogram and auditing the appropriateness of CS indications may help to reduce the CS rate.

Strengths and limitations of this study

- It was the first study that assesses the CS rate using Robson ten group classification system for all labouring mothers in Ethiopia.
- The study used prospective birth registration, hence the risk of incomplete data minimized
- All women who gave birth in study hospital were included, reducing the risk for selection bias
- Since the study was conducted in single-hospital with high referral and most complicated cases, the finding might be less generalizable.
- The study used birth weight for gestational age determination for some mothers and the possibility of misclassification among the Robson group cannot be ruled out.

Introduction

Caesarean section (CS) is a life-saving intervention for both the woman and new-born if a complication occurs during late pregnancy and childbirth. It is the most common surgical intervention in many countries (1). The proportion of births delivered by CS is used by the World Health Organization as an indicator of the provision of lifesaving services for both mothers and newborns (2). WHO suggest that in normal populations CS rates should not exceed 10-15 % (3). However, there is a growing concern about the increasing percentage of CS globally. The CS rates above 15% are not associated with improved maternal and neonatal health (4), and reasons for a CS may be other than medical; in some countries, for example, it may be a cost free option for expecting mothers.

CS performed for women who do not need it can have negative consequences for the mothers as well as their babies, especially when the procedure is done in the absence of adequate facilities, skills and comprehensive care (5). Though CS is effective in reducing maternal and neonatal mortality and morbidity, the procedure is also associated with increased maternal risk of infection, bleeding, blood transfusion, hysterectomy, and death compared to normal delivery (6). Indeed, even small operations carry some risks and must be compared with the risks of not undertaking the procedure. A woman who undergoes a CS will have a slightly increased risk for her subsequent babies to have foetal distress, preterm birth, and stillbirth (7-9).

In 2016, globally, the population-based CS rate varied from 6% to 27.2% (10), and the global rate of CS births had doubled over the last 15 years (11). In Ethiopia, the national population-based CS rate had been the lowest in the world (10), (12), but a national review conducted in 2011 covering 797 facilities indicated a CS rate of 15% in public facilities and 46.1% in privately owned facilities (13). The CS rate at a University hospital in eastern Ethiopia was 25.7% (14). Many of these facility-based CS rates represent a selected population of women, and hence not necessarily representing the CS rate in the population.

Though there is no consensus in defining the optimal CS rate at any level due to lack of reliable and internationally accepted classification system, the Ten-Group Classification System created by Robson has now been accepted and used in many countries (15, 16). This system helps

BMJ Open

institution-specific monitoring and auditing and offers a standardized comparison method for use between institutions, countries, and time points (17).

WHO has been recommending using this system to assess, monitor and compare CS rates since 2015 (2), but it is not yet implemented in Ethiopia. A study on CS was conducted using Robson's classification system at a university hospital in eastern Ethiopia (14) but was limited to women who underwent CS, and was not done according to the Robson implementation manual (18). Therefore, the aim of our study was to determine CS rate using Ten-Group Classification System among all the women who gave birth at Hawassa University Referral Hospital in Southern Ethiopia in 2018/2019.

Materials and Methods:

Study setting:

The study was conducted at Hawassa University Referral Hospital, which is 275 km to the south of Addis Ababa, the capital city of Ethiopia. The hospital provides health care services as both primary health care for Hawassa city and its nearby districts, and as tertiary care services for the region Southern Nation Nationalities and Peoples, including some neighbouring regions. It serves more than 15 million people in the catchment area. According to 2019 Ethiopian Mini Demographic and Health Survey report, 69.4%, 47.6% and 32% of the women had at least one antenatal care (ANC) follow up, health facility delivery and postnatal care follow up, respectively, in Southern Nation Nationalities and Peoples region (19). All pregnant women are encouraged to have a minimum of 4 ANC visit and to deliver at health facilities. Preventive services such as screening for HIV/AIDS, Syphilis, tetanus toxoid vaccination and iron folate supplementation are routinely given for pregnant mothers during their ANC follow up. Hawassa University Referral Hospital is providing both basic and comprehensive management of maternal, new-born and child health services for more than 4500 births annually. The Department of Obstetrics and Gynaecology had 6 obstetricians and gynaecologists, 80 midwives, and 39 nurses, as well as its own operation theatre for obstetrics cases.

Study Design and participants

The design was descriptive and included all deliveries at the hospital between June 2018 and June 2019. A medical birth registry was adapted from the Kilimanjaro Christian Medical Centre in Tanzania (20) and used to collect the data.

Variables

The main outcome variable was the rate of CS, in all deliveries. Other variables were as follows: socio-demographic characteristics (maternal age, residence, educational status, occupational status), maternal characteristics (history of CS, parity, and gravidity), and pregnancy-related information (gestational age, foetal presentation, number of foetuses and onset of labour). For those women who underwent CS, information about the indications of CS was also collected.

The CS rates were categorised by the Robson classification system shown in Box 1 (18) using five delivery parameters: 1) *Foetal presentations* were classified as cephalic, breech or transverse/oblique. Gestational age was categorised as a term (\geq 37 weeks) or preterm (<37 weeks). 2) *Gestational age* was assessed using early prenatal ultrasound or last menstrual period. In the case of no early ultrasound or unknown last menstrual period, a combination of physical examination, third-trimester ultrasound, and estimated foetal weight were used for estimation of gestational age. For cases with undocumented gestational age, we used a birth weight of \geq 2500 grams as a proxy to term pregnancy. 3) The *onset of labour* was categorised as spontaneous, induced or CS before labour. 4) *Parity* was classified as nulliparous or multiparous. 5) The *number of foetuses* was categorised as singleton or multiples. We categorised the need for CS as "Absolute indication" and "Not absolute indication" (21).

Box 1: Robson's 10-group classification

Group	Description
1	Nulliparous, singleton, cephalic, ≥37 weeks' gestation, in spontaneous labour
2	Nulliparous, singleton, cephalic, ≥37 weeks' gestation, induced labour or CS before
	labour
2a	Labour induced
2b	Prelabour CS
3	Multiparous (excluding previous CS), singleton, cephalic, \geq 37 weeks'
	gestation, in spontaneous labour
4	Multiparous without a previous CS, with singleton, cephalic pregnancy, \geq 37 weeks
	gestation, induced or CS before labour
4a	Labour induced
4b	Prelabour CS
5	Previous CS, singleton, cephalic, \geq 37 weeks' gestation
5.1	With one previous CS
5.2	With two or more previous CSs
6	All nulliparous with a single breech
7	All multiparous with a single breech (including previous CS)
8	All multiple pregnancies (including previous CS)
9	All women with a single pregnancy in a transverse or oblique lie (including those
	with previous CS)
10	All singleton, cephalic, <37 weeks' gestation pregnancies (including CS).

Source: WHO. Robson classification. Geneva: WHO, 2017.

Data collection

Data was recorded by three midwives in the maternity ward. Data collectors and supervisors were trained and supervised by the Principal Investigator. Information about the sociodemographic characteristics of delivering mothers was collected through interviews at the time of admission if the women were stable or before discharge from the hospital. Information about CS was retrieved from the operation theatre register and double-checked with the midwives' delivery logbook and the admission and discharge registers. Completeness of data was checked by the Principal Investigator.

Data processing and analysis

All registered data were double entered using EpiData Version 3.1 (EpiData Association, Odense, Denmark) and consistency was checked and any necessary corrections were made before data analysis. Data were analysed using SPSS Version 25 (IBM, Chicago, IL).

Descriptive statistics with frequencies and percentages for categorical data, as well as means and standard deviation for numerical data, were used to summarize the data. The WHO Robson implementation manual was used to interpret the results of this study (18). For determining CS rate, we used those mothers with complete data on Robson's group parameters. Those mothers with missing data were excluded from analysis.

Patient and Public involvement

Patients or public were not involved in the design, or conduct, or reporting, or dissemination plan of our research.

for peer terien only

Results

In the 12-month study period, there were 4031 women coming to deliver at Hawassa Regional Hospital. Of these clients, 27 had incomplete records and were excluded, resulting in 4004 women giving birth to 4165 babies for analysis. The mean age of the women was 26 years. It ranged from 13 to 45 years. Their sociodemographic characteristics are shown in Table 1. We notice that many were urban dwellers and housewives, and most had some basic formal education.

tor per terien ont

3
2
4
5
3 4 5 6 7 8 9
7
8
9
10
11
10 11 12
12 13
13
14
15
16
17
18
19
14 15 16 17 18 19 20
21
22
22 23
23
24
25
26
27
24 25 26 27 28
29
30
31
32
33
34
35 36 37 38
36
37
38
39
40
41
12
43
44
45
46
47
48
49
50
50 51
52
53
54
55
56
57
58
50 59
59

1 2

Table 1: Socio-demographic characteristics of women who gave birth at Hawassa University
Referral Hospital, Ethiopia, 2018.

Variables		Number	Percent
Total		4004	100
Maternal Age (Years)	<20	187	4.7
	20-34	3467	86.6
	35 and above	347	8.7
	Not recorded	2	0.1
Residence	Urban	3669	91.6
	Rural	318	7.9
	Not recorded	17	0.4
Educational level	Cannot read and write	283	7.1
	Primary (1-8)	1741	43.5
	Secondary (9-12)	1233	30.8
	College and above	715	17.9
	Not recorded	32	0.8
Occupational status	Housewife	2834	70.8
	Merchant	307	7.7
	Employer	624	15.6
	Others*	167	4.2
	Not recorded	72	1.8
Marital status	Married	3949	98.6
	Single	29	0.7
	Divorced/Widowed	9	0.2
	Not recorded	17	0.4

*Daily labourer, student, farmer

The obstetric characteristics of the study participants and the outcomes of the deliveries are given in Table 2. Two out of five (41.1%) of the study participants were primigravidae. Almost all of the study participants had had at least one ANC visit during this pregnancy. Of all deliveries, 15.1% were preterm. CS was performed on 1314 (32.8%) women, 165 (12.6%) of them planned.

Variables		Number	Percent	
Age at first marriage	18 years or less	1091	27.2	
	Above 18 years	2861	71.5	
	Not recorded	52	1.3	
Age at first Pregnancy	18 years or less	748	18.7	
	Above 18 years	3205	80.0	
	Not recorded	50	1.3	
Parity	0	1646	41.1	
	1-4	2185	54.6	
	>4	173	4.3	
ANC this pregnancy	Yes	3931	98.2	
	No	57	1.4	
	Not recorded	16	0.4	
Gestational Age	Pre-term (<37 weeks)	606	15.1	
	Term (37-42 weeks)	3253	81.	
	Post-term (>42 weeks)	145	3.6	
Onset of labour	Induced	398	9.9	
	Spontaneous	3441	85.9	
	Pre-labour CS	165	4.2	
Foetal presentation	Cephalic	ohalic 3844		
	Breech	143	3.6	
	Transverse/Oblique	17	0.4	
Mode of Delivery	Spont.Vaginal Delivery	2605	65.1	
	Instrumental delivery	85	2.1	
	CS	1314	32.8	
	CS emergency	1149	87.4	
	CS planned	165	12.6	
Number of foetus at birth	Singleton	3850	92.4	
(n=4165)	Multiple	315	7.6	

Table 2: Obstetrics characteristics of women who gave birth and their outcomes, at Hawassa

Type of multiple births	Twin	292	92.7	
(n=315)	Triplets	19	6.0	
	Quadruplets	4	1.3	
Birth Weight (in grams)	<2500	592	14.2	
(n=4165)	2500-4000	3355	80.6	
	>4000	188	4.5	
	Note recorded	30	0.7	
Previous CS (n=2358)	Yes	438	18.6	
	No	1920	81.4	

Instrumental delivery includes; vacuum and forceps delivery. ANC- antenatal clinic visit, CS caesarean section

Robson Ten Group Classification System

Table 3 shows the classification of women who delivered, according to Robson. We notice that the largest groups were: multiparous women without previous CS; women with a singleton pregnancy in spontaneous labour (group 3); nulliparous women with singleton pregnancy in spontaneous labour (group 1); and women with pre-term birth (group 10).

The overall CS rate in this study was 32.8% (95% CI: 31.4%, 34.3%). The major contributors to the overall CS rate were: Group 1 (nulliparous women with singleton pregnancy in spontaneous labour), group 5 (multiparous women with at least one previous CS) and group 3 (multiparous women without previous CS, with singleton pregnancy in spontaneous labour) (Table 3).

From an obstetrician's perspective, the most common indications for CS were foetal compromise, obstructed labour and previous CS (Figure 1). In this study, 227/1314 (17.3%) CS were performed for absolute maternal indications. For non-absolute indications, CS was performed in 968/1314 (73.7%) of cases, mainly non-reassuring foetal heartbeat pattern (foetal distress). The remaining 9.0% of CS could not be classified in this way, and included post-term pregnancy, premature rupture of membrane, multiple pregnancies, and polyhydramnios/oligohydramnios.

 BMJ Open

Table 3. Robson's Classification system among women who gave birth at Hawassa University Referral Hospital, Hawassa, SouthEthiopia.

Robson Group	CS in	Number	Group	CS in	Absolute	Relative
	Group	in Group	size	group (%)	group	contributio
			(%)		contributi	n of the
					on to	group to
					overall	the overall
					CS rate	CS rate (%)
					(%)	
Group 1 (nulliparous with singleton pregnancy in	301	1094	27.3	27.5	7.5	22.9
spontaneous labour)	6					
Group 2 (nulliparous women with singleton pregnancy who	97	227	5.7	42.7	2.4	7.4
had induced labour or pre-labour CS)		0				
Group 2a (induced labour)	55	185	4.6	29.7	1.4	4.2
Group 2b (pre-labour CS)	42	42	1.1	100.0	1.0	3.2
Group 3 (multiparous women without previous CS, with	227	1356	33.9	16.7	5.7	17.3
singleton pregnancy in spontaneous labour)						
Group 4 (multiparous without previous CS, singleton with	68	158	3.9	43.0	1.7	5.2
induced labour or pre-labour CS)						
Group 4a (induced labour)	33	123	3.1	26.8	0.8	2.5
Group 4b (pre-labour CS)	35	35	0.8	100.0	0.9	2.7

י ר	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14 15 16 17	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30 31	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	

Group 5 (multiparous women with at least one previous CS)	281	362	9.0	77.6	7.0	21.4
Group 5.1 (one previous CS)	214	290	7.2	73.8	5.3	16.3
Group 5.2 (two or more previous CS)	57	72	1.8	79.2	1.4	4.3
Group 6 (nulliparous women with singleton breech)	38	46	1.2	82.6	0.9	2.9
Group 7 (multiparous women with singleton breech)	58	65	1.6	89.2	1.4	4.4
Group 8 (all multiple pregnancies)	91	154	3.9	59.1	2.3	6.9
Group 9 (all women with transverse or oblique lie)	16	16	0.4	100.0	0.4	1.2
Group 10 (all women with pre-term delivery)	137	526	13.1	26.0	3.4	10.4
Total	1314	4004	100.00	32.8	32.8	100.00

Group size (%) =n of women in the group/total number of women delivered in the hospital \times 100.

Group CS rate (%) =n of CS in the group/total number of women in the group \times 100.

Absolute contribution (%) =n of CS in the group/total number of women delivered in the hospital \times 100.

Relative contribution (%) =n of CS in the group/total number of CS in the hospital \times 100.

BMJ Open

Discussion

A high proportion of deliveries in Hawassa University Referral Hospital were CS, almost a third. The major contributors to the overall CS rate were group 1 (nulliparous with singleton pregnancy in spontaneous labour), group 5 (multiparous women with at least one previous CS) and group 3 (multiparous women without previous CS, with singleton pregnancy in spontaneous labour). The most commonly reported indications for CS were a foetal compromise, previous CS and obstructed labour.

In this study we interpreted the findings based on Robson's implementation manual (18): We assessed the quality of the data, the population attending the services (shown in Appendix 1), and we evaluated the proportion of CS in each group (shown in Appendix 2). The evaluation of the CS rates is useful for auditing obstetric services.

Our study had several strengths. To our knowledge, this study is the first study at a major hospital in Ethiopia that assessed the CS rate using Robson's Ten Group Classification System for all labouring mothers. The birth registration was prospective and consecutive; hence the risk of incomplete data was minimized. All women who gave birth in the hospital during the study were included and this may have reduced the risk for selection bias.

The study also had some weaknesses. The study was conducted in a single hospital, and since it is a referral hospital, the selection of participants may be biased to some degree, and for this reason the findings might be less generalizable. However, standardization according to Robson is able to be used in this situation. Its use permits valid and useful comparisons to be done even at different levels of care. Another weakness is that the study used birth weight to determine gestational age for some mothers, and this could lead to a misclassification of some births into a wrong Robson group. We assessed whether this results in misclassification among Robson group according to WHO Robson implementation manual and the risk of misclassification was minimal. A third potential weakness involved inconsistent use of partogram and foetal heartbeat. This makes the criteria for decisions and indications for CS unclear and left much up to individual doctor's discretion.

The manual for interpretation of CS rates recommends that the size of group 9 (women

with *transverse lie*, singletons pregnancy), should be less than 1% of the total and the CS rate should be 100% for this group (18). In our study, the size of group 9 was 0.4% and the CS rate in this group was 100%, suggesting minimal misclassification in this group, and the size of group 9 was similar to other studies (18, 22, 23)

In our study several indicators were in line with the comparison populations given in Robson's manual; the proportion of women with *breech* pregnancy (group 6 and 7), the ratio of the size of group 1 (nulliparous women with singleton pregnancy in *spontaneous labour*) and group 2 (nulliparous women with singleton pregnancy, who had induced labour or *pre-labour CS*), as well as the ratio of the size of group 3 (multiparous women without *previous CS*, with singleton pregnancy in *spontaneous labour*) and group 4 (multiparous women without *previous CS*, with singleton pregnancy, who had induced labour or *pre-labour CS*) (18, 22, 23). However, the proportion of group 1 (*nulliparous*) women with singleton pregnancy in *spontaneous labour*) and group 2 (nulliparous women with singleton pregnancy, who had induced labour or *pre-labour CS*) was slightly lower than the comparison populations (18, 22, 23). This may be due to the low proportions of nulliparous women in our study. The proportion of group 3 (*multiparous* women without previous CS, with singleton pregnancy in *spontaneous labour*) and group 4 (*multiparous*) women without previous CS, with singleton pregnancy, who had induced labour or pre*labour CS*) was higher than the Robson reference population (18). This may be explained by the fact that we had a high proportion of multiparous women in our study populations. According to Robson, the proportion of group 5 (multiparous women with at least one *previous CS*) should, be about half of all the CS. In our study, the proportion of group 5 represents less than 10% of the total women delivered in the hospital, which may reflect a low CS rate in previous years. The proportion of group 8 (women with multiple pregnancies) and group 10 (women with preterm pregnancy) in our study was similar with the comparison population (18, 22, 23).

The CS rate in Robson group 1 (*nulliparous* women with singleton pregnancy in *spontaneous labour*) was 27.5%, which is much higher than Robson's recommendation of under 10% (18). This may reflect a selection among nullipara, where many normal spontaneous deliveries take place at lower health facilities (health centres and primary

BMJ Open

hospitals), and those who attend this referral hospital are selected, either referred or they decided themselves for unknown reasons to attend the hospital. Alternatively, it may reflect a low "threshold" interpreting criterion for a CS.

The CS rate in group 2 (*nulliparous* women with singleton pregnancy, who had labour induced or *pre-labour CS*) was similar to the comparison populations (22, 23), but higher than Robson's recommendation (18). This may reflect that the threshold for deciding on doing CS is too low, and this may happen at extremely busy labour wards; for example, the ward is so busy that calling a doctor and suggesting a CS in a case of slow progress may be preferred to a time-consuming trial of labour. This "low" CS threshold may explain why group 3 (*multiparous* women without previous CS, with singleton pregnancy in spontaneous labour) also had a higher CS rate (17%) than the comparisons (3-5%) (18, 22, 23). It could also be partly due to some misclassification by including women from group 5 (multiparous women with at least one *previous CS*) in group 3, but this is less likely.

Robson recommends that the CS rate in group 4 (*multiparous* women without a previous CS, with singleton pregnancy, who had induced labour or *pre-labour CS*) should be less than 15%, while in our study this rate was much higher (43%). This may be because of the high CS rate in women who underwent induction of labour (group 4a) (26.8%), which contributed to the high overall CS rate in group 4. Also, it may partly be due to a high proportion of failed inductions, or possible misclassifications by including group 5 (multiparous women with at least one *previous CS*) in group 4.

The CS rate in group 5 (multiparous women with at least one *previous CS*) in our study was 77.6%, which is higher than the Robson reference (50-60%) (18). This indicates that in our study, too few women were offered a trial of labour after having had previous CS.

The CS rate for breech in group 6 (*nulliparous* women with singleton *breech* pregnancy) and group 7 (*multiparous* women with a singleton *breech* pregnancy including previous CS) in our study was similar to comparison populations (18, 22, 23).

Robson recommends that nullipara and women with a previous CS should make up around 66% of CS at the hospital, comprising group 1 (*nulliparous* women with singleton pregnancy in *spontaneous labour*), group 2 (*nulliparas* women with singleton pregnancy, who had induced labour or *pre-labour CS*) and group 5 (*multiparous* women with at least one *previous CS*) (18). In our study, the relative contribution of these three groups (1,2,5) to the overall CS rate was 51.7%. This difference may be that the study area had few nullipara with planned CS, as seen in the low relative contribution of group 2 (*nulliparas* women with singleton pregnancy, who had induced labour or *pre-labour CS*) to the overall CS rate which in our study was (7.38%).

Our study showed that Robson group 1 (*nulliparous* women with singleton pregnancy in *spontaneous labour*), group 5 (multiparous women with at least one *previous CS*) and group 3 (*multiparous* women without previous CS, with singleton pregnancy in *spontaneous labour*) were the major contributors to the overall CS rate. These same groups were the major contributors in the eastern Ethiopia and elsewhere (14, 24-29), though the order was different. The difference in the order of these groups among the studies may because of the variation in study populations and overall CS rate (18). The high contribution of emergency CS in nullipara (group 1, nulliparous women with singleton pregnancy in spontaneous labour) in our study may be related to inappropriate indications of CS delivery in this group in our study hospital. More than one third (35%) of CS performed in this group is due to abnormal foetal heartbeat patterns. This was high, indicating the possibility of misdiagnosis of abnormal foetal heartbeat pattern. A more active use of the partogram as a tool for decision-making would help clinicians and midwives decide more consistently, instead of relying on too heavily health care workers individual assessment in

a busy ward.

The most commonly reported indications for CS were foetal compromise, previous CS and obstructed labour; similar indications have been reported from eastern Ethiopia (14) and elsewhere in Africa, Asia and Australia (27, 29-32).

In conclusion, this study has shown a high overall CS rate at Hawassa University Referral Hospital. Nulliparous women with singleton pregnancy in spontaneous labour (group 1), multiparous women with at least one previous CS (group 5) and multiparous women without previous CS, with singleton pregnancy, in spontaneous labour (group 3) were the major contributors to the overall high CS rates. Foetal compromise, previous CS and obstructed labour were the major indications for performing CS. There was a high CS rate in low-risk groups (group 1 and 3). We recommend that all labouring women be regularly followed with partogram, and that they be given the opportunity for instrumental delivery to decrease the use of primary CS among low risk groups. The reasons for the high CS rate among low-risk groups should be explored and the appropriateness of CS should be evaluated to reduce the overall CS rate, which benefits the health system, in general.

Author affiliations:

¹ School of Public Health, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia.

²Centre for International Health (CIH), University of Bergen, Bergen, Norway

Acknowledgements:

We would like to thank Hawassa University Referral Hospital management and the Head of its Obstetrics Ward for creating a conducive environment in order to accomplish this research. We want to extend our thanks to NORHED-SENUPH project for financial support.

Author Contributions:

AAA and BL conceived the study and analysed the data. AAA wrote the proposal and the first draft of the manuscript. SGH, AGT, and BL supervised and provided mentorship. All authors

contributed to the writing and reviewed the article and approved the final version of the manuscript.

Patient consent: Written consent was obtained from all delivering mothers to participate in this study. The consent was made according to ethical principles of "autonomy" by including statements that give participants the right to decline participation in the study at any time. The consent also included statements of potential risk, benefits and confidentiality.

Ethics approval: This study was approved by Hawassa University College of Medicine and Health Sciences Institutional Review Board (ref.no.IRB/007/10), and Regional Ethical Committee (Rek Vest) (ref.no.2018/595) in Norway.

Funding: Financial support was obtained from NORHED through the SENUPH (Southern Ethiopia Network of University in Public Health) project (ETH-13/0025).

Disclaimer: The funding organisation has no role in the design, execution or decision to publish the study.

Competing interests: None declared

Data sharing statement: Data are available upon reasonable request

BMJ Open

References

1. Biccard BM, Madiba TE, Kluyts HL, Munlemvo DM, Madzimbamuto FD, Basenero A, et al. Perioperative patient outcomes in the African Surgical Outcomes Study: a 7-day prospective observational cohort study. Lancet (London, England). 2018;391(10130):1589-98.

2. WHO Statement on caesarean section rates. Reprod Health Matters. 2015;23(45):149-50.

Appropriate technology for birth. Lancet (London, England). 1985;2(8452):436-7.
 Betran AP, Torloni MR, Zhang J, Ye J, Mikolajczyk R, Deneux-Tharaux C, et al. What is

4. Betran AP, Torloni MR, Zhang J, Ye J, Mikolajczyk R, Deneux-Tharaux C, et al. What i the optimal rate of caesarean section at population level? A systematic review of ecologic studies. Reproductive health. 2015;12:57.

5. Souza JP, Gulmezoglu A, Lumbiganon P, Laopaiboon M, Carroli G, Fawole B, et al. Caesarean section without medical indications is associated with an increased risk of adverse short-term maternal outcomes: the 2004-2008 WHO Global Survey on Maternal and Perinatal Health. BMC Med. 2010;8:71.

6. Villar J, Carroli G, Zavaleta N, Donner A, Wojdyla D, Faundes A, et al. Maternal and neonatal individual risks and benefits associated with caesarean delivery: multicentre prospective study. BMJ (Clinical research ed). 2007;335(7628):1025.

7. Zhang Y, Zhou J, Ma Y, Liu L, Xia Q, Fan D, et al. Mode of delivery and preterm birth in subsequent births: A systematic review and meta-analysis. PloS one. 2019;14(3):e0213784.

8. Kok N, Ruiter L, Hof M, Ravelli A, Mol BW, Pajkrt E, et al. Risk of maternal and neonatal complications in subsequent pregnancy after planned caesarean section in a first birth, compared with emergency caesarean section: a nationwide comparative cohort study. BJOG : an international journal of obstetrics and gynaecology. 2014;121(2):216-23.

9. Huang X, Lei J, Tan H, Walker M, Zhou J, Wen SW. Cesarean delivery for first pregnancy and neonatal morbidity and mortality in second pregnancy. European journal of obstetrics, gynecology, and reproductive biology. 2011;158(2):204-8.

10. Betran AP, Ye J, Moller AB, Zhang J, Gulmezoglu AM, Torloni MR. The Increasing Trend in Caesarean Section Rates: Global, Regional and National Estimates: 1990-2014. PloS one. 2016;11(2):e0148343.

11. Boerma T, Ronsmans C, Melesse DY, Barros AJD, Barros FC, Juan L, et al. Global epidemiology of use of and disparities in caesarean sections. Lancet (London, England). 2018;392(10155):1341-8.

12. Central Statistical Agency (CSA) [Ethiopia] and ICF. Ethiopia Demographic and Health Survey 2016. Addis Ababa, Ethiopia, and Rockville, Maryland, USA. Ethiopia Demographic and Health Survey: CSA and ICF, 2016.

13. Fesseha N, Getachew A, Hiluf M, Gebrehiwot Y, Bailey P. A national review of cesarean delivery in Ethiopia. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics. 2011;115(1):106-11.

14. Tura AK, Pijpers O, de Man M, Cleveringa M, Koopmans I, Gure T, et al. Analysis of caesarean sections using Robson 10-group classification system in a university hospital in eastern Ethiopia: a cross-sectional study. BMJ open. 2018;8(4):e020520.

15. Torloni MR, Betran AP, Souza JP, Widmer M, Allen T, Gulmezoglu M, et al. Classifications for cesarean section: a systematic review. PloS one. 2011;6(1):e14566.

16. Betran AP, Vindevoghel N, Souza JP, Gulmezoglu AM, Torloni MR. A systematic review of the Robson classification for caesarean section: what works, doesn't work and how to improve it. PloS one. 2014;9(6):e97769.

17. Robson M. The Ten Group Classification System (TGCS) - a common starting point for more detailed analysis. BJOG : an international journal of obstetrics and gynaecology. 2015;122(5):701.

18. Robson Classification: Implementation Manual. Geneva: World Health Organization; 2017. Licence: CC BY-NC-SA 3.0IGO. .

19. Ethiopian Public Health Institute (EPHI) [Ethiopia] and ICF. 2019. Ethiopia Mini Demographic and Health Survey 2019: Key Indicators. Rockville, Maryland, USA: EPHI and ICF.

20. Per Bergsjø, Joseph Mlay, Olola Oneko, Shao J. Instructions manual for Registration of deliveries at the KCMC Birth Registry, Revised Edition: Department of Obstetrics and Gynecology KCMC Moshi, Tanzania and Department of Public Health and Primary Health Care University of Bergen Bergen, Norway, 2010.

21. Stanton C, Ronsmans C. Recommendations for routine reporting on indications for cesarean delivery in developing countries. Birth (Berkeley, Calif). 2008;35(3):204-11.

22. Senanayake H, Piccoli M, Valente EP, Businelli C, Mohamed R, Fernando R, et al. Implementation of the WHO manual for Robson classification: an example from Sri Lanka using a local database for developing quality improvement recommendations. BMJ open. 2019;9(2):e027317.

23. Souza JP, Betran AP, Dumont A, de Mucio B, Gibbs Pickens CM, Deneux-Tharaux C, et al. A global reference for caesarean section rates (C-Model): a multicountry cross-sectional study. BJOG : an international journal of obstetrics and gynaecology. 2016;123(3):427-36.

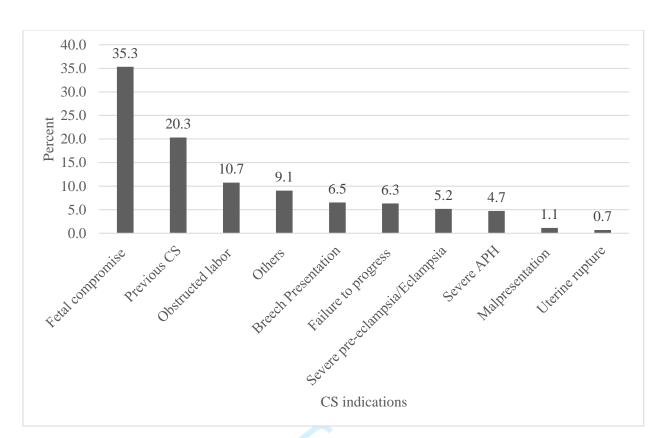
24. Abdel-Aleem H, Shaaban OM, Hassanin AI, Ibraheem AA. Analysis of cesarean delivery at Assiut University Hospital using the Ten Group Classification System. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics. 2013;123(2):119-23.

25. Costa ML, Cecatti JG, Souza JP, Milanez HM, Gulmezoglu MA. Using a Caesarean Section Classification System based on characteristics of the population as a way of monitoring obstetric practice. Reproductive health. 2010;7:13.

26. Litorp H, Kidanto HL, Nystrom L, Darj E, Essen B. Increasing caesarean section rates among low-risk groups: a panel study classifying deliveries according to Robson at a university hospital in Tanzania. BMC pregnancy and childbirth. 2013;13:107.

27. Tapia V, Betran AP, Gonzales GF. Caesarean Section in Peru: Analysis of Trends Using the Robson Classification System. PloS one. 2016;11(2):e0148138.

28. Yadav RG, Maitra N. Examining Cesarean Delivery Rates Using the Robson's Ten-group Classification. J Obstet Gynaecol India. 2016;66(Suppl 1):1-6.


29. Tognon F, Borghero A, Putoto G, Maziku D, Torelli GF, Azzimonti G, et al. Analysis of caesareansection and neonatal outcome using the Robson classification in a rural district hospital in Tanzania: an observational retrospective study. BMJ open. 2019;9(12):e033348.

30. Begum T, Nababan H, Rahman A, Islam MR, Adams A, Anwar I. Monitoring caesarean births using the Robson ten group classification system: A cross-sectional survey of private for-profit facilities in urban Bangladesh. PloS one. 2019;14(8):e0220693.

31. Makhanya V, Govender L, Moodley J. Utility of the Robson Ten Group Classification System to determine appropriateness of caesarean section at a rural regional hospital in KwaZulu-Natal, South Africa. SAMJ. 2015;105(4):292-5.

32. Tanaka K, Mahomed K. The Ten-Group Robson Classification: A Single Centre Approach Identifying Strategies to Optimise Caesarean Section Rates. Obstet Gynecol Int. 2017;2017:5648938.

tor beer terien only

Figure 1. Indications for performing caesarean section (CS) among women who gave birth at Hawassa University Referral Hospital, Ethiopia, 2018-2019.

Foetal compromise = Foetal distress, cord prolapse, and intrauterine growth restriction. Failure to progress = Prolonged labour, cervical arrest, and failed induction. Obstructed labour = Cephalopelvic disproportion, macrosomia, and unspecified disproportions. Malpresentation = Transverse, oblique or brow. Others = Post term pregnancy, premature rupture of membrane, multiple pregnancies and polyhydramnios/oligohydramnios.

APH, antepartum haemorrhage.

Steps for Interpretation	Interpretati on by Robson	Example: MCS Population	Sri Lanka study	Our finding	Additional information from the data	Final Interpretation
Step 1: Size of group1+ 2	35-42%	38.1%	38.1%	32.99%	Nulliparas in our population 41.1%	Rate is lower than all the three references by Robson, MCS and Sri Lanka populations. This might be due to a low proportion of nullipara women in our Hospital. There is also a possibilit of misclassification (group 1 misclassified as group 10) since we determined gestational based new-born birth weight.
Step 2: Size of Group 3+4	30%	46.5%	37.3%	37.81%	Multiparous in our population 58.9%	Rate higher than Robson reference population, in line with Sri Lanka reference population and lower than MCS examples. This may be explained by a high proportion of multiparous women in our population
Step 3: Size of group 5	Half of the total CS rate	7.2%	10.9%	9.04%	-	Lower than half of total CS. This, as suggested by the WHO manual, may be due to relatively low CS rate in the previous years, or to a recently increased CS rate or misclassification.
Step 4 : size of group 6+7	3-4%	2.7%	3.4%	2.77%	-	Rate is in line with Robson, MCS and Sri Lanka reference populations
Step 5: Size of group 8	1.5-2%	0.9%	1.1%	3.85%	36.7% of women delivered in our Hospitals	Rate is higher than Robson, MCS and Sri Lanka reference populations. This may be due to high referral cases in our hospital as suggested by the WHO manual.

Appendix 1: Assessment of the type of Populations among women who gave birth at Hawassa University Referral Hospital, Hawassa.

					were referred cases	
Step 6: Size of group 10	<10%	4.2%	7.8%	13.14%	15.1% of all women who gave birth in our hospital delivered preterm birth.	Rate is higher than Robson, MCS and Sri Lank reference populations. This may be due to high referral cases and high preterm birth in our hospital. The hospital is a tertiary hospital were most high-risk pregnancies referred to. There is also a possibility of misclassification since we determined gestational based new-born birth weight.
Step 7 : Ratio of the size of group 1 versus group 2	Ratio 2 or higher	Ratio 3.3	Ratio 1.5	Ratio 4.8	-	The rate in line with Robson and MCS example reference populations
Step 8: Ratio of size of group 3 versus group 4	>2:1	Ratio 6.3	Ratio 2.6	Ratio 8.6	Vien .	Rate in line with Robson and MCS example refence populations
Step 9: Ratio of size of group 6 versus group 7	Usually 2:1	Ratio 0.8	Ratio 1.2	Ratio 0.7	Multiparous in our population 58.9%	The rate in line with MCS and Sri Lanka reference populations, but lower than Robson references. This may be explained by a high proportion of Multiparous women in our population.

 BMJ Open

Steps for Interpretation	Interpretati on by Robson	Example: MCS Population	Sri Lanka study	Our finding	Additional information from the data	Final Interpretation
Step 1: CS rate in group 1	Under 10% are achievable	9.8%	18.8%	27.5%	35.0% of CS delivery is due to Abnormal foetal heartbeat pattern in our hospital	CS rate is higher than Robson, MCS, and Sri Lanka. This might due to a high ratio of group 1 to group 2 population in our study which indicates a higher CS rate in these groups as suggested by the WHO manual. It might also due to inappropriate indications of CS delivery in our hospital.
Step 2: CS rate in group 2	Consistently around 20%–35%	39.8%	41.0%	42.7%	- Failed induction was an indication in 36.0% of group 2a.	CS rate in line with Sri Lanka, but higher than MCS and Robson references. This may be possibly due to inappropriate indications of CS in the induction of labour and pre-labour CS.
Step 3 : CS rate in Group 3	Not higher than 3.0%.	3.0%	5.2%	16.7%	-Obstructed labour was an indication in 51.5%.	CS rate is higher than Robson, MCS, and Sri Lanka. This may be explained by misclassification (group 5 misclassified as group 3).
Step 4 : CS rate for group 4	It rarely should be higher than 15%	23.7%	16.8%	43.04%	Failed induction was an indication in 24.0% of group 4a.	CS rate is higher than Robson, MCS, and Sri Lanka. There was a high CS rate in group 4a (26.8%) which contributed to the high CS rate in group 4 in our study. The possible explanation may high failed induction or there might be misclassifications (group 5 misclassified as group 4).

Appendix 2: Assessment of CS Rates among women who gave birth at Hawassa University Referral Hospital, Hawassa, South Ethiopia.

Step 5: CS rate	Rates of	74.4%	81.8%	77.6%	Previous CS	CS rate is higher than Robson and MCS examples
in group 5	50%-60%				was the	but lower than the Sri Lanka study. This may be
	are				indication in	due to a high indication of CS due to previous
	considered				72.8%.	CS, low offer of a trial of labour or VBAC
	appropriate				Rate of	(Vaginal birth after CS delivery), women's
					prelabour CS	preference for repeating CS.
					was 33.9%	
Step 6: CS rate	Usually	57.7%	80.9%	59.1%	-	CS rate in line with Robson and MCS example.
for group 8	around 60%					
Step 7: CS rate in group 10	Usually around 30%	25.1%	41.1%	26.05%	-	CS rate in line with Robson and MCS example
Step 8:	Normally	Contributed	63.9%	51.7%	The relative	CS rate lower than Robson, MCS example and
Relative contribution of	contribute to 2/3	to 63.7% of all CS			contribution	Sri Lanka study. This may be due to the relative
groups 1, 2 and	(66%) of all				of group 2 to	contribution of group 2 to the overall CS rate
5 to the overall CS rate	CS				the overall CS	which was low. The size of group 2 may also be
CS rate	performed in most				rate was low	contributed due to the misclassification of the
	hospitals				(7.38%).	pre-term as a term.
Step 9:	NA	Responsible	Absolut	Absolut		The absolute contribution was not indicated in the
Absolute contribution of		for 28.9% of all CS	e contribu	e contribu	-	WHO Robson manual, but our study finding was
group 5 to		all CS	tion:	tion:		lower than the MCS example and Sri Lanka
overall CS rate			8.87% Relative	7.02% Relative		study.
			contribu	contribu		
			tion:	tion:		
			29.59%	21.39%		

STROBE_ Cross sectional Check list

5 6 7 8			Reporting Item	Page Number
9 10	Title and			
11 12	abstract			
13 14 15	Title	<u>#1a</u>	Indicate the study's design with a commonly used	1
16 17			term in the title or the abstract	
18	Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced	1
19 20			summary of what was done and what was found	
21 22 23	Introduction			
24 25	Background /	<u>#2</u>	Explain the scientific background and rationale for	3
26 27	rationale		the investigation being reported	
28 29 30	Objectives	<u>#3</u>	State specific objectives, including any prespecified	4
31 32 33 34			hypotheses	
35 36 37	Methods			
38 39	Study design	<u>#4</u>	Present key elements of study design early in the	4
40			paper	
41 42	G			4
43 44	Setting	<u>#5</u>	Describe the setting, locations, and relevant dates,	4
45 46			including periods of recruitment, exposure, follow-	
47			up, and data collection	
48 49	Eligibility	<u>#6a</u>	Give the eligibility criteria, and the sources and	4
50 51	criteria		methods of selection of participants.	
52				_
53 54		<u>#7</u>	Clearly define all outcomes, exposures, predictors,	5
55 56			potential confounders, and effect modifiers. Give	
57			diagnostic criteria, if applicable	
58 59 60		Fo	r peer review only - http://bmjopen.bmj.com/site/about/guidelines.x	html

BMJ Open

1 2	Data sources /	<u>#8</u>	For each variable of interest give sources of data and	5,6
3	measurement		details of methods of assessment (measurement).	
4 5			Describe comparability of assessment methods if	
6 7			there is more than one group. Give information	
8			separately for for exposed and unexposed groups if	
9 10			applicable.	
11 12	Diag	#0	Describe any offerts to address retartial seconds of	C
13 14	Bias	<u>#9</u>	Describe any efforts to address potential sources of	6
15			bias	
16 17	Study size	<u>#10</u>	Explain how the study size was arrived at	N/A, we have included all
18 19				laboring mothers during the
20				study period.
21 22	Quantitative	#11	Explain how quantitative veriables were handled in	5
23 24	variables	<u>#11</u>	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings	5
25 26	Variables		were chosen, and why	
27			were chosen, and why	
28 29	Statistical	<u>#12a</u>	Describe all statistical methods, including those used	6,7
30 31	methods		to control for confounding	
32 33	Statistical	<u>#12b</u>	Describe any methods used to examine subgroups	N/A, our study was purely
34	methods	<u>m120</u>	and interactions	descriptive
35 36	memous			descriptive
37 38	Statistical	<u>#12c</u>	Explain how missing data were addressed	7
39 40	methods			
41	Statistical	#12d	If applicable, describe analytical methods taking	N/A, our study design
42 43	methods	1124	account of sampling strategy	descriptive and no sampling
44 45				strategy used
46				
47 48	Statistical	<u>#12e</u>	Describe any sensitivity analyses	N/A, we used WHO Robson
49 50	methods			implementation manual to
51 52				assess misclassification
53				among Robson's group
54 55	Results			
56 57				
58 59	Participants	<u>#13a</u>	Report numbers of individuals at each stage of	8
60		Foi	r peer review only - http://bmjopen.bmj.com/site/about/guideling	es.xhtml

Page 31 of 31

BMJ Open

1			study—eg numbers potentially eligible, examined	
2			for eligibility, confirmed eligible, included in the	
3 4			study, completing follow-up, and analysed. Give	
5 6			information separately for for exposed and	
7			unexposed groups if applicable.	
8 9		11.01		0
10 11	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	8
12 13	Participants	<u>#13c</u>	Consider use of a flow diagram	8, we used text description
14				instead of flow diagram
15 16		11.1.4		
17 18	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg	8,9
19			demographic, clinical, social) and information on	
20 21			exposures and potential confounders. Give	
22 23			information separately for exposed and unexposed	
24			groups if applicable.	
25 26	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for	9, 10
27 28			each variable of interest	
29 30				
31	Outcome data	<u>#15</u>	Report numbers of outcome events or summary	9, 10, 11
32 33			measures. Give information separately for exposed	
34 35			and unexposed groups if applicable.	
36 37	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable,	N/A, our study was
38			confounder-adjusted estimates and their precision	descriptive
39 40			(eg, 95% confidence interval). Make clear which	
41 42			confounders were adjusted for and why they were	
43 44			included	
45		11.0		0.10.11
46 47	Main results	<u>#16b</u>	Report category boundaries when continuous	9,10,11
48 49			variables were categorized	
50	Main results	<u>#16c</u>	If relevant, consider translating estimates of relative	N/A, our study was
51 52			risk into absolute risk for a meaningful time period	descriptive
53 54	Other englying	#17	Depart other englyses done as a englyses of	N/A our study was
55 56	Other analyses	<u>#17</u>	Report other analyses done—e.g., analyses of	N/A, our study was
57			subgroups and interactions, and sensitivity analyses	descriptive
58 59				
60		For	r peer review only - http://bmjopen.bmj.com/site/about/guidelines	s.xhtml

1 2	Discussion			
3 4 5 6	Key results	<u>#18</u>	Summarise key results with reference to study objectives	14
7 8 9 10 11 12	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.	14
13 14 15 16 17 18 19 20	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence.	14-18
21 22 23 24 25	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study results	14
26 27	Other			
27 28 29	Information			
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52 53 54 55 56 57	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	19
58 59 60		Fo	r peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

Caesarean section rates analysed using Robson's Ten Group Classification System: A cross-sectional study at a tertiary hospital in Ethiopia

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-039098.R1
Article Type:	Original research
Date Submitted by the Author:	04-Aug-2020
Complete List of Authors:	Abdo, Abdella; Hawassa University College of Medicine and Health Sciences, Epidemiology Hinderaker , Sven ; University of Bergen Centre for International Health, Center for International Health Tekle, Achamyelesh; Hawassa University College of Medicine and Health Sciences, Public Health Lindtjørn , Bernt ; University of Bergen, Centre for International Health
Primary Subject Heading :	Obstetrics and gynaecology
Secondary Subject Heading:	Public health
Keywords:	PUBLIC HEALTH, Fetal medicine < OBSTETRICS, Maternal medicine < OBSTETRICS, Prenatal diagnosis < OBSTETRICS

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Caesarean section rates analysed using Robson's Ten Group Classification System: A cross-sectional study at a tertiary hospital in Ethiopia

Abdella Amano Abdo (AAA)^{1,2}, Sven Gudmund Hinderaker (SGH)², Achamyelesh Gebretsedik Tekle (AGT)¹, Bernt Lindtjørn (BL)^{1,2}

E-mail address of the authors:

AAA: <u>a2ay.oro@gmail.com</u>, Correspondent author

SGH: Sven.Hinderaker@uib.no

AGT: <u>achameyelesh9@yahoo.com</u>

BL: <u>bernt.lindtjorn@uib.no</u>

Abstract

Objective: The aim of this study was to assess the Caesarean section (CS) rates using Robson's Ten-Group Classification System among women who gave birth at Hawassa University Referral Hospital in Southern Ethiopia.

Design: Cross-sectional study design to determine CS rate using Robson's Ten-group classification system.

Setting: Hawassa University Referral Hospital in South Ethiopia.

Participants: 4004 women who gave birth in Hawassa University Referral Hospital from June 2018 to June 2019.

Results: The 4004 women gave birth to 4165 babies. The overall CS rate was 32.8% (95% CI: 31.4%, 34.3%). The major contributors to the overall CS rates were: Robson Group 1 (nulliparous women with singleton pregnancy at term in spontaneous labour) 22.9%; Group 5 (multiparous women with at least one previous CS) 21.4%, and Group 3 (multiparous women without previous CS, with singleton pregnancy in spontaneous labour) 17.3%. The most commonly reported indications for CS were "foetal compromise" (35.3%) followed by previous CS (20.3%) and obstructed labour (10.7%).

Conclusion: A high proportion of women giving birth at this hospital were given a CS, and many of them were in a low risk group. Few had trial of labour. More active use of partogram, improving foetal heartbeat monitoring system and auditing the appropriateness of CS indications may help to reduce the CS rate.

Strengths and limitations of this study

- It was the first study in Ethiopia that assesses the CS rate using Robson ten group classification system for all labouring mothers in a hospital.
- The study used prospective birth registration, hence the risk of incomplete data minimized
- All women who gave birth in study hospital were included, reducing the risk for selection bias
- Since the study was conducted in single-hospital with high referral and most complicated cases, the finding might be less generalizable.
- The study used birth weight for gestational age determination for some mothers and the possibility of misclassification among the Robson group cannot be ruled out.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Introduction

Caesarean section (CS) is a life-saving intervention for both the woman and new-born if a complication occurs during late pregnancy and childbirth. It is the most common surgical intervention in many countries (1). The proportion of women giving birth by CS is used by the World Health Organization as an indicator of the provision of lifesaving services for both mothers and newborns (2). WHO suggest that in normal populations CS rates should not exceed 10-15 % (3). However, there is a growing concern about the increasing percentage of CS globally. The CS rates above 15% are not associated with improved maternal and neonatal health (4), and reasons for a CS may be other than medical; in some countries, for example, it may be a cost free option for expecting mothers (5, 6).

CS performed for women who do not need it can have negative consequences for the mothers as well as their babies, especially when the procedure is done in the absence of adequate facilities, skills and comprehensive care (7). Though CS is effective in reducing maternal and neonatal mortality and morbidity, the procedure is also associated with increased maternal risk of infection, bleeding, blood transfusion, hysterectomy, and death compared to normal delivery (8). Indeed, even small operations carry some risks and must be compared with the risks of not undertaking the procedure. A woman who undergoes a CS will have a slightly increased risk for her subsequent babies to have foetal distress, preterm birth, and stillbirth (9-11).

In 2016, globally, the population-based CS rate varied from 6% to 27.2% (12), and the global rate of CS births had doubled over the last 15 years (13). In Ethiopia, the national population-based CS rate had been the lowest in the world (12), (14), but a national review conducted in 2011 covering 797 facilities indicated a CS rate of 15% in public facilities and 46.1% in privately owned facilities (15). The CS rate at a University hospital in eastern Ethiopia was 25.7% (16). Many of these facility-based CS rates represent a selected population of women, and hence not necessarily representing the CS rate in the population.

Though there is no consensus in defining the optimal CS rate at any level due to lack of reliable and internationally accepted classification system, the Ten-Group Classification System created by Robson has now been accepted and used in many countries (17, 18). This system helps

BMJ Open

institution-specific monitoring and auditing and offers a standardized comparison method for use between institutions, countries, and time points (19).

WHO has been recommending using this system to assess, monitor and compare CS rates since 2015 (2), but it is not yet implemented in Ethiopia. A study on CS was conducted using Robson's classification system at a university hospital in eastern Ethiopia (16) but was limited to women who underwent CS, and was not done according to the Robson implementation manual (20). Therefore, the aim of our study was to determine CS rate using Ten-Group Classification System among all the women who gave birth at Hawassa University Referral Hospital in Southern Ethiopia in 2018/2019.

Materials and Methods:

Study setting:

The study was conducted at Hawassa University Referral Hospital, which is 275 km to the south of Addis Ababa, the capital city of Ethiopia. The hospital provides health care services as both primary health care for Hawassa city and its nearby districts, and as tertiary care services for the region Southern Nation Nationalities and Peoples, including some neighbouring regions. Although it provides tertiary care for a population of 15 million, over 90% of the mothers came from two towns (Shashamanne and Hawassa). According to 2019 Ethiopian Mini Demographic and Health Survey report, 69.4%, 47.6% and 32% of the women had at least one antenatal care (ANC) follow up, health facility delivery and postnatal care follow up, respectively, in Southern Nation Nationalities and Peoples region (21). All pregnant women are encouraged to have a minimum of 4 ANC visit and to deliver at health facilities. Preventive services such as screening for HIV/AIDS, Syphilis, tetanus toxoid vaccination and iron folate supplementation are routinely given for pregnant mothers during their ANC follow up. All services related to delivery, including CS are expected to be given free of charge for delivering mothers at the Hospital. But sometimes the women are requested to buy drugs, intravenous fluids or gloves, when unavailable in the hospital dispensary. No payment (in addition to ordinary salary) is given to the obstetrician for performing CS. Hawassa University Referral Hospital is providing both basic and comprehensive management of maternal, new-born and child health services for more than 4500 births annually. The hospital is also serving as teaching hospital for health science and medical students including residency programs. The Department of Obstetrics and Gynaecology had 6 obstetricians and gynaecologists, 80 midwives, as well as its own operation theatre for obstetrics

cases. According to national guidelines for staffing, the recommended number of obstetrician for specialized hospital is 13 and the number at this hospital is less than recommended (22).

The design was cross-sectional and included all women who gave birth at the hospital between June 2018 and June 2019. A medical birth registry was adapted from the Kilimanjaro Christian Medical Centre in Tanzania (23) and used to collect the data.

Variables

The main outcome variable was the rate of CS, in all deliveries. Other variables were as follows: socio-demographic characteristics (maternal age, residence, educational status, occupational status), maternal characteristics (history of CS and parity), and pregnancy-related information (gestational age, foetal presentation, number of fetuses and onset of labour). For those women who underwent CS, information about the indications of CS was also collected.

The CS rates were categorised by the Robson classification system shown in Box 1 (20) using six obstetric parameters: 1) *Foetal lie and presentations* were classified as cephalic, breech or transverse/oblique. Gestational age was categorised as a term (\geq 37 weeks) or preterm (<37 weeks). 2) *Gestational age* assessment should ideally be done by early ultrasound. But in our study, since most of the women did not have early ultrasound measurement, we used the date of last menstrual period and third trimester ultrasound to assess gestational age. In the case of no third trimester ultrasound or unknown last menstrual period, a combination of physical examination, and estimated foetal weight were used for estimation of gestational age. For cases with undocumented gestational age, we used a birth weight of \geq 2500 grams as a proxy to term pregnancy. 3) The *onset of labour* was categorised as spontaneous, induced or CS before labour. 4) *Parity* was classified as nulliparous or multiparous. 5) The *number of foetuses* was categorised as singleton or multiples. 6) History of previous CS was categorised as one, and two or more.

Foetal compromise was defined as a foetus having one of the following conditions: foetal distress, cord prolapse or intra-uterine growth restriction (IUGR). The hospital has one Cardiotocography (CTG) that was not used. Ultrasound was occasionally used, but in most of the cases the foetal heartbeat was monitored using fetoscope. We categorised the need for CS as "Absolute indication" and "Not absolute indication" (24).

2 3	
4 5 6	
7 8 9	
10 11	
12 13 14	
15 16	
17 18 19	
20 21	
22 23 24	
25 26	
27 28 29	
30 31 32	
33 34	
35 36 37	
38 39 40	
41 42	
43 44 45	
46 47	
48 49 50	
51 52 53	
54 55	
56 57 58	

59

60

Box 1: Robson's 10-group classification

Group	Description
1	Nulliparous, singleton, cephalic, \geq 37 weeks' gestation, in spontaneous labour
2	Nulliparous, singleton, cephalic, \geq 37 weeks' gestation, induced labour or CS before
	labour
2a	Labour induced
2b	Prelabour CS
3	Multiparous (excluding previous CS), singleton, cephalic, ≥37 weeks'
	gestation, in spontaneous labour
4	Multiparous without a previous CS, with singleton, cephalic pregnancy, ≥37 weeks'
	gestation, induced or CS before labour
4a	Labour induced
4b	Prelabour CS
5	Previous CS, singleton, cephalic, \geq 37 weeks' gestation
5.1	With one previous CS
5.2	With two or more previous CSs
6	All nulliparous with a single breech
7	All multiparous with a single breech (including previous CS)
8	All multiple pregnancies (including previous CS)
9	All women with a single pregnancy in a transverse or oblique lie (including those
	with previous CS)
10	All singleton, cephalic, <37 weeks' gestation pregnancies (including CS).

Source: WHO. Robson classification. Geneva: WHO, 2017.

Data collection

Data were recorded by three midwives in the maternity ward. Data collectors and supervisors were trained and supervised by the Principal Investigator. Information about the sociodemographic characteristics of delivering mothers were collected through interviews at the time of admission if the women were stable or before discharge from the hospital. Information about CS was retrieved from the operation theatre register and double-checked with the midwives' delivery logbook and the admission and discharge registers. Completeness of data were checked by the Principal Investigator.

Data processing and analysis

All registered data were double entered using EpiData Version 3.1 (EpiData Association, Odense, Denmark) and consistency were checked and any necessary corrections were made before data analysis. Data were analysed using SPSS Version 25 (IBM, Chicago, IL).

Descriptive statistics with frequencies and percentages for categorical data, as well as means and standard deviation for numerical data were used to summarize the data. The WHO Robson implementation manual was used to interpret the results of this study (20). For determining CS rate, we used those mothers with complete data on Robson's group parameters. Those mothers with missing data were excluded from analysis.

Patient and Public involvement

Patients or public were not involved in the design, or conduct, or reporting, or dissemination plan of our research.

to peet eview only

Results

In the 12-month study period, there were 4031 women coming to give birth at Hawassa University Referral Hospital. Of these clients, 27 had incomplete records and were excluded, resulting in 4004 women giving birth to 4165 babies for analysis. The mean age of the women was 26 years. It ranged from 13 to 45 years. Their sociodemographic characteristics are shown in Table 1. We notice that many were urban dwellers and housewives, and most had some basic formal education.

tor oper teries only

2 3	
4	
5	
6	
7	
8	
9 10	
10 11	
12	
13	
14	
15	
16	
17 18	
19	
20	
21	
22	
23 24	
24 25	
26	
27	
28	
29	
30 31	
32	
33	
34	
35	
36 37	
37 38	
39	
40	
41	
42	
43 44	
45	
46	
47	
48	
49 50	
50 51	
52	
53	
54	
55 56	
56 57	
58	
59	
60	

Variables		Number	Percent (%)
Total		4004	100
Maternal Age (Years)	<20	187	4.7
	20-34	3467	86.6
	35 and above	347	8.7
	Not recorded	2	0.1
Residence	Urban	3669	91.6
	Rural	318	7.9
	Not recorded	17	0.4
Educational level	Cannot read and write	283	7.1
	Primary (1-8)	1741	43.5
	Secondary (9-12)	1233	30.8
	College and above	715	17.9
	Not recorded	32	0.8
Occupational status	Housewife	2834	70.8
-	Merchant	307	7.7
	Employer	624	15.6
	Others*	167	4.2
	Not recorded	• 72	1.8
Marital status	Married	3949	98.6
	Single	29	0.7
	Divorced/Widowed	9	0.2
	Not recorded	17	0.4
Referred to give birth	Yes	1468	36.7
	No	2536	63.3

Table 1: Socio-demographic characteristics of women who gave birth at Hawassa UniversityReferral Hospital, Ethiopia, 2018-2019.

*Daily labourer, student, farmer

The obstetric characteristics of the study participants and the outcomes of the women who gave birth are given in Table 2. Two out of five (41.1%) of the study participants were nulliparous. Almost all of the study participants had had at least one ANC visit during this pregnancy. Of all births, 15.1% were preterm. CS was performed on 1314 (32.8%) women, 165 (12.6%) of them planned. The perinatal mortality was 75 perinatal death/1000 live births was based on deaths occurring in the hospital.

Variables		Number	Percent (%
Age at first marriage	18 years or less	1091	27.2
	Above 18 years	2861	71.5
	Not recorded	52	1.3
Age at first Pregnancy	18 years or less	748	18.7
	Above 18 years	3205	80.0
	Not recorded	50	1.3
Parity	0	1646	41.1
	1-4	2185	54.6
	>4	173	4.3
ANC this pregnancy	Yes	3931	98.2
	No	57	1.4
	Not recorded	16	0.4
Gestational Age	Pre-term (<37 weeks)	606	15.1
	Term (37-42 weeks)	3253	81.2
	Post-term (>42 weeks)	145	3.6
Onset of labour	Induced	398	9.9
	Spontaneous	3441	85.9
	Pre-labour CS	165	4.2
Foetal lie and presentation	Cephalic	3844	96.0
	Breech	143	3.6
	Transverse/Oblique	17	0.4
Mode of Delivery	Spont.Vaginal Delivery	2605	65.1
	Instrumental delivery	85	2.1
	CS	1314	32.8
	CS emergency	1149	87.4
	CS planned	165	12.6
Number of fetus at birth	Singleton	3850	92.4
(n=4165)	Multiple	315	7.6

Table 2: Obstetrics characteristics of women who gave birth and their outcomes, at Hawassa

Type of multiple births	Twin	292	92.7	
(n=315)	Triplets	19	6.0	
	Quadruplets	4	1.3	
Birth Weight (in grams)	<2500	592	14.2	
(n=4165)	2500-4000	3355	80.6	
	>4000	188	4.5	
	Not recorded	30	0.7	
Previous CS (n=2358)	Yes	438	18.6	
	No	1920	81.4	

Instrumental delivery includes; vacuum and forceps delivery. ANC- antenatal clinic visit, CS caesarean section

Robson Ten Group Classification System

Table 3 shows the women who gave birth according to Robson classification. We notice that the groups most represented by type of obstetrics population (group size) were: multiparous women without previous CS; women with a singleton pregnancy in spontaneous labour (group 3); nulliparous women with singleton pregnancy in spontaneous labour (group 1); and women with pre-term birth (group 10).

The overall CS rate in this study was 32.8% (95% CI: 31.4%, 34.3%). The major contributors to the overall CS rate were: Group 1 (nulliparous women with singleton pregnancy in spontaneous labour), group 5 (multiparous women with at least one previous CS) and group 3 (multiparous women without previous CS, with singleton pregnancy in spontaneous labour) (Table 3).

From an obstetrician's perspective, the most common indications for CS were foetal compromise, obstructed labour and previous CS (Figure 1: Indications for performing caesarean section (CS) among women who gave birth at Hawassa University Referral Hospital, Ethiopia, 2018-2019). In this study, 227/1314 (17.3%) CS were performed for absolute maternal indications. For non-absolute indications, CS was performed in 968/1314 (73.7%) of cases, mainly non-reassuring foetal heartbeat pattern (foetal distress). The remaining 9.0% of CS could not be classified in this way, and included post-term pregnancy, premature rupture of membrane, multiple pregnancies, and polyhydramnios/oligohydramnios.

 BMJ Open

Table 3. Robson's Classification system among women who gave birth at Hawassa University Referral Hospital, Hawassa, SouthEthiopia, 2018-2019

Robson Group	CS in	Number	Group	CS in	Absolute	Relative
	Group	in Group	size	group (%)	group	contributio
			(%)		contributi	n of the
					on to	group to
					overall	the overall
					CS rate	CS rate (%)
					(%)	
Group 1 (nulliparous with singleton pregnancy in	301	1094	27.3	27.5	7.5	22.9
spontaneous labour)	6					
Group 2 (nulliparous women with singleton pregnancy who	97	227	5.7	42.7	2.4	7.4
had induced labour or pre-labour CS)		$\langle \mathbf{Q}_{i} \rangle$				
Group 2a (induced labour)	55	185	4.6	29.7	1.4	4.2
Group 2b (pre-labour CS)	42	42	1.1	100.0	1.0	3.2
Group 3 (multiparous women without previous CS, with	227	1356	33.9	16.7	5.7	17.3
singleton pregnancy in spontaneous labour)						
Group 4 (multiparous without previous CS, singleton with	68	158	3.9	43.0	1.7	5.2
induced labour or pre-labour CS)						
Group 4a (induced labour)	33	123	3.1	26.8	0.8	2.5
Group 4b (pre-labour CS)	35	35	0.8	100.0	0.9	2.7

2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13	
13 14 15	
15	
16 17	
1/ 10	
18 19	
20	
21	
22	
23	
24	
25	
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	
2/	
28	
30	
31	
32	
33	
34	
35	
36	
37	
38 39	
39 40	
40	
42	
43	
44	
45	
46	
47	

Group 5 (multiparous women with at least one previous CS)	281	362	9.0	77.6	7.0	21.4
Group 5.1 (one previous CS)	214	290	7.2	73.8	5.3	16.3
Group 5.2 (two or more previous CS)	57	72	1.8	79.2	1.4	4.3
Group 6 (nulliparous women with singleton breech)	38	46	1.2	82.6	0.9	2.9
Group 7 (multiparous women with singleton breech)	58	65	1.6	89.2	1.4	4.4
Group 8 (all multiple pregnancies)	91	154	3.9	59.1	2.3	6.9
Group 9 (all women with transverse or oblique lie)	16	16	0.4	100.0	0.4	1.2
Group 10 (all women with pre-term delivery)	137	526	13.1	26.0	3.4	10.4
Total	1314	4004	100.00	32.8	32.8	100.00

Group size (%) =n of women in the group/total number of women who gave birth in the hospital \times 100.

Group CS rate (%) =n of CS in the group/total number of women in the group \times 100.

Absolute contribution (%) =n of CS in the group/total number of women who gave birth in the hospital \times 100.

Relative contribution (%) =n of CS in the group/total number of CS in the hospital \times 100.

BMJ Open

Discussion

A high proportion of women who gave birth in Hawassa University Referral Hospital were through CS, almost a third. The major contributors to the overall CS rate were group 1 (nulliparous with singleton pregnancy in spontaneous labour), group 5 (multiparous women with at least one previous CS) and group 3 (multiparous women without previous CS, with singleton pregnancy in spontaneous labour). The most commonly reported indications for CS were a foetal compromise, previous CS and obstructed labour.

In this study we interpreted the findings based on Robson's implementation manual (20): thus, we assessed the quality of the data, the population attending the services (shown in Appendix 1), and we analysed the proportion of CS in each group (shown in Appendix 2).

Our study had several strengths. To our knowledge, this study is the first study at a major hospital in Ethiopia that assessed the CS rate using Robson's Ten Group Classification System for all labouring mothers. The birth registration was prospective and consecutive; hence the risk of incomplete data were minimized. All women who gave birth in the hospital during the study were included and this may have reduced selection bias.

The study also had some weaknesses. The study was conducted in a single hospital, and since it is a referral hospital, the selection of participants may be biased to some degree, and for this reason the findings might be less generalizable. However, standardization according to Robson is able to be used in such situations. Its use permits valid and useful comparisons to be done even at different levels of care. Another weakness is that the study used birth weight to determine gestational age for some mothers, and this could lead to a misclassification of some births into a wrong Robson group. We assessed whether this results in misclassification among Robson group according to WHO Robson implementation manual and the risk of misclassification was minimal. A third potential weakness involved inconsistent use of partogram and foetal heartbeat. This makes the criteria for decisions and indications for CS unclear and left much up to individual doctor's discretion.

The manual for interpretation of CS rates stated that the size of group 9 (women with *transverse lie*, singletons pregnancy), should be less than 1% of the total and the CS rate

should be 100% for this group (20). In our study, the size of group 9 was 0.4% and the CS rate in this group was 100%, suggesting minimal misclassification in this group, and the size of group 9 was similar to other studies (20, 25, 26)

In our study several indicators were in line with the comparison populations given in Robson's manual; the proportion of women with *breech* pregnancy (group 6 and 7), the ratio of the size of group 1 (nulliparous women with singleton pregnancy in spontaneous labour) and group 2 (nulliparous women with singleton pregnancy, who had induced labour or *pre-labour CS*), as well as the ratio of the size of group 3 (multiparous women without previous CS, with singleton pregnancy in spontaneous labour) and group 4 (multiparous women without *previous CS*, with singleton pregnancy, who had induced labour or *pre-labour CS*) (20, 25, 26). However, the proportion of group 1 (*nulliparous*) women with singleton pregnancy in *spontaneous labour*) and group 2 (nulliparous women with singleton pregnancy, who had induced labour or *pre-labour CS*) was slightly lower than the comparison populations (20, 25, 26). This may be due to the low proportions of nulliparous women in our study. The proportion of group 3 (multiparous women without previous CS, with singleton pregnancy in *spontaneous labour*) and group 4 (*multiparous* women without previous CS, with singleton pregnancy, who had induced labour or pre*labour CS*) was higher than the Robson reference population (20). This may be explained by the fact that we had a high proportion of multiparous women in our study populations. According to Robson, the proportion of group 5 (multiparous women with at least one previous CS) should, be about half of all the CS. In our study, the proportion of group 5 represents less than 10% of the total women delivered in the hospital, which may reflect a low CS rate in previous years. The proportion of group 8 (women with multiple pregnancies) and group 10 (women with preterm pregnancy) in our study was similar with the comparison population (20, 25, 26).

The CS rate in Robson group 1 (*nulliparous* women with singleton pregnancy in *spontaneous labour*) was 27.5%, which is much higher than Robson's examples showing that rates under 10% are achievable (20). This may reflect a selection among nullipara, where many normal spontaneous deliveries take place at lower health facilities (health centres and primary hospitals), and those who attend this referral hospital are selected,

either referred or they decided themselves for unknown reasons to attend the hospital. Alternatively, it may reflect a low "threshold" interpreting criterion for a CS.

The CS rate in group 2 (*nulliparous* women with singleton pregnancy, who had labour induced or *pre-labour CS*) was similar to the comparison populations (25, 26), but higher than Robson's guideline (CS rate between 20-35) (20). This may reflect that the threshold for deciding on doing CS is too low, and this may happen at extremely busy labour wards; for example, the ward is so busy that calling a doctor and suggesting a CS in a case of slow progress may be preferred to a time-consuming trial of labour. This "low" CS threshold may explain why group 3 (*multiparous* women without previous CS, with singleton pregnancy in spontaneous labour) also had a higher CS rate (17%) than the comparisons (3-5%) (20, 25, 26). It could also be partly due to some misclassification by including women from group 5 (multiparous women with at least one *previous CS*) in group 3, but this is less likely.

Robson guideline stated that the CS rate in group 4 (*multiparous* women without a previous CS, with singleton pregnancy, who had induced labour or *pre-labour CS*) is rarely should be higher than 15%, while in our study this rate was much higher (43%). This may be because of the high CS rate in women who underwent induction of labour (group 4a) (26.8%), which contributed to the high overall CS rate in group 4. Also, it may partly be due to a high proportion of failed inductions, or possible misclassifications by including group 5 (multiparous women with at least one *previous CS*) in group 4.

The CS rate in group 5 (multiparous women with at least one *previous CS*) in our study was 77.6%, which is higher than the Robson guideline (50-60%) (20). This indicates that in our study, too few women were offered a trial of labour after having had previous CS.

The CS rate for breech in group 6 (*nulliparous* women with singleton *breech* pregnancy) and group 7 (*multiparous* women with a singleton *breech* pregnancy including previous CS) in our study was similar to comparison populations (20, 25, 26).

The examples given by Robson in his guideline stated that nullipara and women with a previous CS contribute to 66% of CS at the hospital, comprising group 1 (*nulliparous* women with singleton pregnancy in *spontaneous labour*), group 2 (*nulliparas* women with singleton pregnancy, who had induced labour or *pre-labour CS*) and group 5 (*multiparous* women with at least one *previous CS*) (20). In our study, the relative contribution of these three groups (1,2,5) to the overall CS rate was 51.7%. This difference may be that the study area had few nullipara with planned CS, as seen in the low relative contribution of group 2 (*nulliparas* women with singleton pregnancy, who had induced labour or *pre-labour CS*) to the overall CS rate which in our study was (7.38%).

The overall CS rate in our hospital (32.8%) is higher than the WHO recommendation 10-15% (3). The high CS rate in our study may be due to several issues. One probable factor could be that the hospital is a referral hospital where more than a third of women referred to this hospital with different emergency situations that may need emergency management through CS delivery. Another factor could be that Hawassa University referral hospital as a teaching hospital has doctors under specialist training performing CS without following strict indications for performing CS. Another possible driving factors for this high CS rate could be the hospital is a referral hospital where more than a third of women referred to this hospital with different emergency situations that may need emergency management through CS delivery (27). Nearly three-quarters (73.7%) of CS in this study was performed for non-absolute maternal indications, mainly foetal distress, and CS may be performed for some women without clear appropriate indications. Foetal monitoring was not optimal, and this may have contributed to the high prevalence of "foetal distress". Also, a large proportion were urban women (91.6%) who gave birth in the hospital, and urban women are shown to have higher CS rates than the rural women in other settings also (28-30).

Our study showed that Robson group 1 (*nulliparous* women with singleton pregnancy in *spontaneous labour*), group 5 (multiparous women with at least one *previous CS*) and group 3 (*multiparous* women without previous CS, with singleton pregnancy in *spontaneous labour*) were the major contributors to the overall CS rate. These same groups were the major contributors in the eastern Ethiopia and elsewhere (16, 31-36), though the

order was different. The difference in the order of these groups among the studies may because of the variation in study populations and overall CS rate (20). The high contribution of emergency CS in nullipara (group 1, nulliparous women with singleton pregnancy in spontaneous labour) in our study may be related to inappropriate indications of CS delivery in this group in our study hospital. More than one third (35%) of CS performed in this group is due to abnormal foetal heartbeat patterns. This was high, indicating the possibility of misdiagnosis of abnormal foetal heartbeat pattern. A more active use of the partogram as a tool for decision-making would help clinicians and midwives decide more consistently, instead of relying on too heavily health care workers individual assessment in a busy ward.

The most commonly reported indications for CS were foetal compromise, previous CS and obstructed labour; similar indications have been reported from eastern Ethiopia (16) and elsewhere in Africa, Asia and Australia (34, 36-39).

In conclusion, this study has shown a high overall CS rate at Hawassa University Referral Hospital. Nulliparous women with singleton pregnancy in spontaneous labour (group 1), multiparous women with at least one previous CS (group 5) and multiparous women without previous CS, with singleton pregnancy, in spontaneous labour (group 3) were the major contributors to the overall high CS rates. Foetal compromise, previous CS and obstructed labour were the major indications for performing CS. There was a high CS rate in low-risk groups (group 1 and 3). We recommend that all labouring women be regularly followed with partogram, and that they be given the opportunity for instrumental delivery to decrease the use of primary CS among low risk groups. Foetal heartbeat monitoring system should be improved to reduce unnecessary CS that could be done due to misdiagnosis of foetal distress. The reasons for the high CS rate among low-risk groups should be explored and the appropriateness of CS should be evaluated to reduce the overall CS rate, which benefits the health system, in general.

Author affiliations:

¹ School of Public Health, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia.

²Centre for International Health (CIH), University of Bergen, Bergen, Norway

Acknowledgements:

We would like to thank Hawassa University Referral Hospital management and the Head of its Obstetrics Ward for creating a conducive environment in order to accomplish this research. We want to extend our thanks to NORHED-SENUPH project for financial support.

Author Contributions:

AAA and BL conceived the study and analysed the data. AAA wrote the proposal and the first draft of the manuscript. SGH, AGT, and BL supervised and provided mentorship. All authors contributed to the writing and reviewed the article and approved the final version of the manuscript.

Patient consent: Written consent was obtained from all delivering mothers to participate in this study. The interview was conducted at a convenient time for the women; before delivery and after delivery before discharge from the hospital, and no woman declined to participate in the study. Written consent was obtained from illiterate women after data collectors read information described in the consent form in the language they can understand. After they agreed on the information read for them, they signed on the consent form by using their thumb stump (fingerprint).

The consent was made according to ethical principles of "autonomy" by including statements that give participants the right to decline participation in the study at any time. The consent also included statements of potential risk, benefits and confidentiality.

Ethics approval: This study was approved by Hawassa University College of Medicine and Health Sciences Institutional Review Board (ref.no.IRB/007/10), and Regional Ethical Committee (Rek Vest) (ref.no.2018/595) in Norway.

1 2	
3	Funding: Financial support was obtained from NORHED through the SENUPH (Southern
4 5	Ethiopia Network of University in Public Health) project (ETH-13/0025).
6 7	Disclaimer : The funding organisation has no role in the design, execution or decision to publish
8	the study.
9 10	
11	Competing interests: None declared
12 13	Data sharing statement: Data are available upon reasonable request
14 15	
16	
17 18	
19	
20 21	
22	
23 24	
25 26	
27	
28 29	
30	
31 32	
33	
34 35	
36 37	
38	
39 40	
41	
42 43	
44	
45 46	
47 48	
49	
50 51	
52	
53 54	
55	
56 57	
58 59	20
59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

References

1. Biccard BM, Madiba TE, Kluyts HL, Munlemvo DM, Madzimbamuto FD, Basenero A, et al. Perioperative patient outcomes in the African Surgical Outcomes Study: a 7-day prospective observational cohort study. Lancet (London, England). 2018;391(10130):1589-98.

2. WHO Statement on caesarean section rates. Reprod Health Matters. 2015;23(45):149-50.

3. WHO. Appropriate technology for birth. Lancet (London, England). 1985;2(8452):436-7.

4. Betran AP, Torloni MR, Zhang J, Ye J, Mikolajczyk R, Deneux-Tharaux C, et al. What is the optimal rate of caesarean section at population level? A systematic review of ecologic studies. Reproductive health. 2015;12:57.

5. Federal Ministry of Health. Implementationmanual for health care financing reports; 2010. Addis Ababa, Ethiopia.

6. Witter S, Boukhalfa C, Cresswell JA, Daou Z, Filippi V, Ganaba R, et al. Cost and impact of policies to remove and reduce fees for obstetric care in Benin, Burkina Faso, Mali and Morocco. Int J Equity Health. 2016;15(1):123.

7. Souza JP, Gulmezoglu A, Lumbiganon P, Laopaiboon M, Carroli G, Fawole B, et al. Caesarean section without medical indications is associated with an increased risk of adverse short-term maternal outcomes: the 2004-2008 WHO Global Survey on Maternal and Perinatal Health. BMC Med. 2010;8:71.

8. Villar J, Carroli G, Zavaleta N, Donner A, Wojdyla D, Faundes A, et al. Maternal and neonatal individual risks and benefits associated with caesarean delivery: multicentre prospective study. BMJ (Clinical research ed). 2007;335(7628):1025.

9. Zhang Y, Zhou J, Ma Y, Liu L, Xia Q, Fan D, et al. Mode of delivery and preterm birth in subsequent births: A systematic review and meta-analysis. PloS one. 2019;14(3):e0213784.

10. Kok N, Ruiter L, Hof M, Ravelli A, Mol BW, Pajkrt E, et al. Risk of maternal and neonatal complications in subsequent pregnancy after planned caesarean section in a first birth, compared with emergency caesarean section: a nationwide comparative cohort study. BJOG : an international journal of obstetrics and gynaecology. 2014;121(2):216-23.

11. Huang X, Lei J, Tan H, Walker M, Zhou J, Wen SW. Cesarean delivery for first pregnancy and neonatal morbidity and mortality in second pregnancy. European journal of obstetrics, gynecology, and reproductive biology. 2011;158(2):204-8.

12. Betran AP, Ye J, Moller AB, Zhang J, Gulmezoglu AM, Torloni MR. The Increasing Trend in Caesarean Section Rates: Global, Regional and National Estimates: 1990-2014. PloS one. 2016;11(2):e0148343.

13. Boerma T, Ronsmans C, Melesse DY, Barros AJD, Barros FC, Juan L, et al. Global epidemiology of use of and disparities in caesarean sections. Lancet (London, England). 2018;392(10155):1341-8.

14. Central Statistical Agency (CSA) [Ethiopia] and ICF. Ethiopia Demographic and Health Survey 2016. Addis Ababa, Ethiopia, and Rockville, Maryland, USA. Ethiopia Demographic and Health Survey: CSA and ICF, 2016.

15. Fesseha N, Getachew A, Hiluf M, Gebrehiwot Y, Bailey P. A national review of cesarean delivery in Ethiopia. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics. 2011;115(1):106-11.

16. Tura AK, Pijpers O, de Man M, Cleveringa M, Koopmans I, Gure T, et al. Analysis of caesarean sections using Robson 10-group classification system in a university hospital in eastern Ethiopia: a cross-sectional study. BMJ open. 2018;8(4):e020520.

17. Torloni MR, Betran AP, Souza JP, Widmer M, Allen T, Gulmezoglu M, et al. Classifications for cesarean section: a systematic review. PloS one. 2011;6(1):e14566.

18. Betran AP, Vindevoghel N, Souza JP, Gulmezoglu AM, Torloni MR. A systematic review of the Robson classification for caesarean section: what works, doesn't work and how to improve it. PloS one. 2014;9(6):e97769.

19. Robson M. The Ten Group Classification System (TGCS) - a common starting point for more detailed analysis. BJOG : an international journal of obstetrics and gynaecology. 2015;122(5):701.

20. Robson Classification: Implementation Manual. Geneva: World Health Organization; 2017. Licence: CC BY-NC-SA 3.0IGO. .

21. Ethiopian Public Health Institute (EPHI) [Ethiopia] and ICF. 2019. Ethiopia Mini Demographic and Health Survey 2019: Key Indicators. Rockville, Maryland, USA: EPHI and ICF.

22. Federal Ministry of Health. National Health Workforce Update. Human Resource Development Directorate Bulletin 2nd Edition. 2019. Addis Ababa, Ethiopia.

23. Per Bergsjø, Joseph Mlay, Olola Oneko, Shao J. Instructions manual for Registration of deliveries at the KCMC Birth Registry, Revised Edition: Department of Obstetrics and Gynecology KCMC Moshi, Tanzania and Department of Public Health and Primary Health Care University of Bergen Bergen, Norway, 2010.

24. Stanton C, Ronsmans C. Recommendations for routine reporting on indications for cesarean delivery in developing countries. Birth (Berkeley, Calif). 2008;35(3):204-11.

25. Senanayake H, Piccoli M, Valente EP, Businelli C, Mohamed R, Fernando R, et al. Implementation of the WHO manual for Robson classification: an example from Sri Lanka using a local database for developing quality improvement recommendations. BMJ open. 2019;9(2):e027317.

26. Souza JP, Betran AP, Dumont A, de Mucio B, Gibbs Pickens CM, Deneux-Tharaux C, et al. A global reference for caesarean section rates (C-Model): a multicountry cross-sectional study. BJOG : an international journal of obstetrics and gynaecology. 2016;123(3):427-36.

27. Sørbye IK, Vangen S, Oneko O, Sundby J, Bergsjø P. Caesarean section among referred and selfreferred birthing women: a cohort study from a tertiary hospital, northeastern Tanzania. BMC pregnancy and childbirth. 2011;11:55.

28. Amjad A, Amjad U, Zakar R, Usman A, Zakar MZ, Fischer F. Factors associated with caesarean deliveries among child-bearing women in Pakistan: secondary analysis of data from the Demographic and Health Survey, 2012-13. BMC pregnancy and childbirth. 2018;18(1):113.

29. Azene AG, Aragaw AM, Birlie MG. Multilevel modelling of factors associated with caesarean section in Ethiopia: community based cross sectional study. BMC research notes. 2019;12(1):724.

30. de Loenzien M, Schantz C, Luu BN, Dumont A. Magnitude and correlates of caesarean section in urban and rural areas: A multivariate study in Vietnam. PloS one. 2019;14(7):e0213129.

31. Abdel-Aleem H, Shaaban OM, Hassanin AI, Ibraheem AA. Analysis of cesarean delivery at Assiut University Hospital using the Ten Group Classification System. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics. 2013;123(2):119-23.

32. Costa ML, Cecatti JG, Souza JP, Milanez HM, Gulmezoglu MA. Using a Caesarean Section Classification System based on characteristics of the population as a way of monitoring obstetric practice. Reproductive health. 2010;7:13.

33. Litorp H, Kidanto HL, Nystrom L, Darj E, Essen B. Increasing caesarean section rates among lowrisk groups: a panel study classifying deliveries according to Robson at a university hospital in Tanzania. BMC pregnancy and childbirth. 2013;13:107.

34. Tapia V, Betran AP, Gonzales GF. Caesarean Section in Peru: Analysis of Trends Using the Robson Classification System. PloS one. 2016;11(2):e0148138.

35. Yadav RG, Maitra N. Examining Cesarean Delivery Rates Using the Robson's Ten-group Classification. J Obstet Gynaecol India. 2016;66(Suppl 1):1-6.

36. Tognon F, Borghero A, Putoto G, Maziku D, Torelli GF, Azzimonti G, et al. Analysis of caesareansection and neonatal outcome using the Robson classification in a rural district hospital in Tanzania: an observational retrospective study. BMJ open. 2019;9(12):e033348.

37. Begum T, Nababan H, Rahman A, Islam MR, Adams A, Anwar I. Monitoring caesarean births using the Robson ten group classification system: A cross-sectional survey of private for-profit facilities in urban Bangladesh. PloS one. 2019;14(8):e0220693.

n. j9;14(8):ek , Moodley J. U. Jessarean section a. J. in The Ten-Group Robson C primise Caesarean Section Rates. Makhanya V, Govender L, Moodley J. Utility of the Robson Ten Group Classification System to 38. determine appropriateness of caesarean section at a rural regional hospital in KwaZulu-Natal, South Africa. SAMJ. 2015;105(4):292-5.

39. Identifying Strategies to Optimise Caesarean Section Rates. Obstet Gynecol Int. 2017;2017:5648938.

LEGENDS

Figure 1. Indications for performing caesarean section (CS) among women who gave birth at Hawassa University Referral Hospital, Ethiopia, 2018-2019)

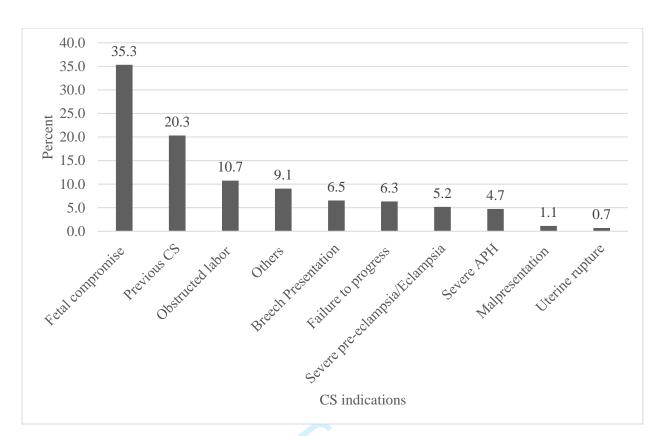

Box 1. Robson's 10-group classification

Table 1. Socio-demographic characteristics of women who gave birth at Hawassa UniversityReferral Hospital, Ethiopia, 2018-2019.

Table 2. Obstetrics characteristics of women who gave birth and their outcomes, at Hawassa

 University Referral Hospital, Ethiopia, 2018-2019

Table 3. Robson's Classification system among women who gave birth at Hawassa University Referral Hospital, Hawassa, South Ethiopia, 2018-2019

Figure 1. Indications for performing caesarean section (CS) among women who gave birth at Hawassa University Referral Hospital, Ethiopia, 2018-2019.

Foetal compromise = Foetal distress, cord prolapse, and intrauterine growth restriction. Failure to progress = Prolonged labour, cervical arrest, and failed induction. Obstructed labour = Cephalopelvic disproportion, macrosomia, and unspecified disproportions. Malpresentation = Transverse, oblique or brow. Others = Post term pregnancy, premature rupture of membrane, multiple pregnancies and polyhydramnios/oligohydramnios.

APH, antepartum haemorrhage.

Steps for Interpretation	Interpretati on by Robson	Example: MCS Population	Sri Lanka study	Our finding	Additional information from the data	Final Interpretation
Step 1: Size of group1+2	35-42%	38.1%	38.1%	32.99%	Nulliparas in our population 41.1%	Rate is lower than all the three references by Robson, MCS and Sri Lanka populations. This might be due to a low proportion of nullipara women in our Hospital. There is also a possibilit of misclassification (group 1 misclassified as group 10) since we determined gestational based new-born birth weight.
Step 2: Size of Group 3+4	30%	46.5%	37.3%	37.81%	Multiparous in our population 58.9%	Rate higher than Robson reference population, in line with Sri Lanka reference population and lower than MCS examples. This may be explained by a high proportion of multiparous women in our population
Step 3: Size of group 5	Half of the total CS rate	7.2%	10.9%	9.04%	-	Lower than half of total CS. This, as suggested to the WHO manual, may be due to relatively low CS rate in the previous years, or to a recently increased CS rate or misclassification.
Step 4 : size of group 6+7	3-4%	2.7%	3.4%	2.77%	-	Rate is in line with Robson, MCS and Sri Lanka reference populations
Step 5: Size of group 8	1.5-2%	0.9%	1.1%	3.85%	36.7% of women delivered in our Hospitals	Rate is higher than Robson, MCS and Sri Lanka reference populations. This may be due to high referral cases in our hospital as suggested by the WHO manual.

Appendix 1: Assessment of the type of Populations among women who gave birth at Hawassa University Referral Hospital, Hawassa

					were referred cases	
Step 6: Size of group 10	<10%	4.2%	7.8%	13.14%	15.1% of all women who gave birth in our hospital delivered preterm birth.	Rate is higher than Robson, MCS and Sri Lank reference populations. This may be due to high referral cases and high preterm birth in our hospital. The hospital is a tertiary hospital were most high-risk pregnancies referred to. There is also a possibility of misclassification since we determined gestational based new-born birth weight.
Step 7 : Ratio of the size of group 1 versus group 2	Ratio 2 or higher	Ratio 3.3	Ratio 1.5	Ratio 4.8	-	The rate in line with Robson and MCS example reference populations
Step 8: Ratio of size of group 3 versus group 4	>2:1	Ratio 6.3	Ratio 2.6	Ratio 8.6	Vien	Rate in line with Robson and MCS example refence populations
Step 9: Ratio of size of group 6 versus group 7	Usually 2:1	Ratio 0.8	Ratio 1.2	Ratio 0.7	Multiparous in our population 58.9%	The rate in line with MCS and Sri Lanka reference populations, but lower than Robson references. This may be explained by a high proportion of Multiparous women in our population.

 BMJ Open

Steps for Interpretation	Interpretati on by Robson	Example: MCS Population	Sri Lanka study	Our finding	Additional information from the data	Final Interpretation
Step 1 : CS rate in group 1	Under 10% are achievable	9.8%		27.5%	35.0% of CS delivery is due to Abnormal foetal heartbeat pattern in our hospital	CS rate is higher than Robson, MCS, and Sri Lanka. This might due to a high ratio of group 1 to group 2 population in our study which indicates a higher CS rate in these groups as suggested by the WHO manual. It might also due to inappropriate indications of CS delivery in our hospital.
Step 2: CS rate in group 2	Consistently around 20%–35%	39.8%	41.0%	42.7%	- Failed induction was an indication in 36.0% of group 2a.	CS rate in line with Sri Lanka, but higher than MCS and Robson references. This may be possibly due to inappropriate indications of CS in the induction of labour and pre-labour CS.
Step 3: CS rate in Group 3	Not higher than 3.0%.	3.0%	5.2%	16.7%	-Obstructed labour was an indication in 51.5%.	CS rate is higher than Robson, MCS, and Sri Lanka. This may be explained by misclassification (group 5 misclassified as group 3).
Step 4 : CS rate for group 4	It rarely should be higher than 15%	23.7%	16.8%	43.04%	Failed induction was an indication in 24.0% of group 4a.	CS rate is higher than Robson, MCS, and Sri Lanka. There was a high CS rate in group 4a (26.8%) which contributed to the high CS rate in group 4 in our study. The possible explanation may high failed induction or there might be misclassifications (group 5 misclassified as grou 4).

Appendix 2: Assessment of CS Rates among women who gave birth at Hawassa University Referral Hospital, Hawassa, South	
Ethiopia.	

Step 5 : CS rate in group 5	Rates of 50%– 60% are considered appropriate	74.4%	81.8%	77.6%	Previous CS was the indication in 72.8%. Rate of prelabour CS was 33.9%	CS rate is higher than Robson and MCS examples but lower than the Sri Lanka study. This may be due to a high indication of CS due to previous CS, low offer of a trial of labour or VBAC (Vaginal birth after CS delivery), women's preference for repeating CS.
Step 6 : CS rate for group 8	Usually around 60%	57.7%	80.9%	59.1%	-	CS rate in line with Robson and MCS example.
Step 7 : CS rate in group 10	Usually around 30%	25.1%	41.1%	26.05%	-	CS rate in line with Robson and MCS example
Step 8: Relative contribution of groups 1, 2 and 5 to the overall CS rate	Normally contribute to 2/3 (66%) of all CS performed in most hospitals	Contributed to 63.7% of all CS	63.9%	51.7%	The relative contribution of group 2 to the overall CS rate was low (7.38%).	CS rate lower than Robson, MCS example and Sri Lanka study. This may be due to the relative contribution of group 2 to the overall CS rate which was low. The size of group 2 may also be contributed due to the misclassification of the pre-term as a term.
Step 9: Absolute contribution of group 5 to overall CS rate	NA	Responsible for 28.9% of all CS	Absolut e contribu tion: 8.87% Relative contribu tion: 29.59%	Absolut e contribu tion: 7.02% Relative contribu tion: 21.39%	-	The absolute contribution was not indicated in the WHO Robson manual, but our study finding was lower than the MCS example and Sri Lanka study.

STROBE_ Cross sectional Check list

2 3				
4 5				
6 7			Reporting Item	Page Number
8 9	Title and			
10 11	abstract			
12 13				
14 15	Title	<u>#1a</u>	Indicate the study's design with a commonly used	1
16			term in the title or the abstract	
17 18	Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced	1
19 20			summary of what was done and what was found	
21 22	Introduction			
23 24	mitoutetion			
25 26	Background /	<u>#2</u>	Explain the scientific background and rationale for	3
27	rationale		the investigation being reported	
28 29	Objectives	<u>#3</u>	State specific objectives, including any prespecified	4
30 31			hypotheses	
32 33				
34 35				
36 37	Methods			
38 39	Study design	<u>#4</u>	Present key elements of study design early in the	4
40			paper	
41 42	C atting a	45	Describe the setting description and selected data	4
43 44	Setting	<u>#5</u>	Describe the setting, locations, and relevant dates,	4
45 46			including periods of recruitment, exposure, follow- up, and data collection	
47 48			up, and data concerton	
49	Eligibility	<u>#6a</u>	Give the eligibility criteria, and the sources and	4
50 51	criteria		methods of selection of participants.	
52 53		<u>#7</u>	Clearly define all outcomes, exposures, predictors,	5
54 55			potential confounders, and effect modifiers. Give	
56 57			diagnostic criteria, if applicable	
58 59				
60		Fo	r peer review only - http://bmjopen.bmj.com/site/about/guidelines.xl	html

1	Data sources /	<u>#8</u>	For each variable of interest give sources of data and	5,6
2 3	measurement		details of methods of assessment (measurement).	
4 5			Describe comparability of assessment methods if	
6 7			there is more than one group. Give information	
8 9			separately for for exposed and unexposed groups if	
10			applicable.	
11 12	Bias	#9	Describe any efforts to address potential sources of	6
13 14			bias	
15 16				
17 18	Study size	<u>#10</u>	Explain how the study size was arrived at	N/A, we have included all
19				laboring mothers during the
20 21				study period.
22 23	Quantitative	<u>#11</u>	Explain how quantitative variables were handled in	5
24 25	variables		the analyses. If applicable, describe which groupings	
26 27			were chosen, and why	
28 29	Statistical	<u>#12a</u>	Describe all statistical methods, including those used	6,7
30	methods		to control for confounding	,
31 32				
33 34	Statistical	<u>#12b</u>	Describe any methods used to examine subgroups	N/A, our study was purely
35 36	methods		and interactions	descriptive
37 38	Statistical	<u>#12c</u>	Explain how missing data were addressed	7
39	methods			
40 41	Statistical	#12d	If applicable, describe analytical methods taking	N/A, our study design
42 43	methods	<u></u>	account of sampling strategy	descriptive and no sampling
44 45				strategy used
46 47				
48	Statistical	<u>#12e</u>	Describe any sensitivity analyses	N/A, we used WHO Robson
49 50	methods			implementation manual to
51 52				assess misclassification
53 54				among Robson's group
55 56	Results			
57 58	Participants	#13a	Report numbers of individuals at each stage of	8
59	- ur		r peer review only - http://bmjopen.bmj.com/site/about/guideline	
60		FÜI	peer review only - http://binjopen.binj.com/site/about/guideline	=3.4110111

Page 33 of 33

BMJ Open

1			study—eg numbers potentially eligible, examined	
2			for eligibility, confirmed eligible, included in the	
3 4			study, completing follow-up, and analysed. Give	
5 6			information separately for for exposed and	
7			unexposed groups if applicable.	
8 9		11.01		0
10 11	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	8
12 13	Participants	<u>#13c</u>	Consider use of a flow diagram	8, we used text description
14				instead of flow diagram
15 16		11.1.4		
17 18	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg	8,9
19			demographic, clinical, social) and information on	
20 21			exposures and potential confounders. Give	
22 23			information separately for exposed and unexposed	
24			groups if applicable.	
25 26	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for	9, 10
27 28			each variable of interest	
29 30				
31	Outcome data	<u>#15</u>	Report numbers of outcome events or summary	9, 10, 11
32 33			measures. Give information separately for exposed	
34 35			and unexposed groups if applicable.	
36 37	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable,	N/A, our study was
38			confounder-adjusted estimates and their precision	descriptive
39 40			(eg, 95% confidence interval). Make clear which	
41 42			confounders were adjusted for and why they were	
43 44			included	
45		11.0		0.10.11
46 47	Main results	<u>#16b</u>	Report category boundaries when continuous	9,10,11
48 49			variables were categorized	
50	Main results	<u>#16c</u>	If relevant, consider translating estimates of relative	N/A, our study was
51 52			risk into absolute risk for a meaningful time period	descriptive
53 54	Other englying	#17	Depart other englyses done as a englyses of	N/A our study was
55 56	Other analyses	<u>#17</u>	Report other analyses done—e.g., analyses of	N/A, our study was
57			subgroups and interactions, and sensitivity analyses	descriptive
58 59				
60		For	r peer review only - http://bmjopen.bmj.com/site/about/guidelines	s.xhtml

1 2	Discussion			
3 4 5 6	Key results	<u>#18</u>	Summarise key results with reference to study objectives	14
7 8 9 10 11 12	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.	14
13 14 15 16 17 18 19 20	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence.	14-18
21 22 23 24 25	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study results	14
26	Other			
27 28 29	Information			
$\begin{array}{c} 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\end{array}$	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	19
59 60		Fo	r peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

Caesarean section rates analysed using Robson's Ten Group Classification System: A cross-sectional study at a tertiary hospital in Ethiopia

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-039098.R2
Article Type:	Original research
Date Submitted by the Author:	07-Oct-2020
Complete List of Authors:	Abdo, Abdella; Hawassa University College of Medicine and Health Sciences, Epidemiology Hinderaker , Sven ; University of Bergen Centre for International Health, Center for International Health Tekle, Achamyelesh; Hawassa University College of Medicine and Health Sciences, Public Health Lindtjørn , Bernt ; University of Bergen, Centre for International Health
Primary Subject Heading :	Obstetrics and gynaecology
Secondary Subject Heading:	Public health
Keywords:	PUBLIC HEALTH, Fetal medicine < OBSTETRICS, Maternal medicine < OBSTETRICS, Prenatal diagnosis < OBSTETRICS

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Caesarean section rates analysed using Robson's Ten Group Classification System: A cross-sectional study at a tertiary hospital in Ethiopia

Abdella Amano Abdo^{1,2}, Sven Gudmund Hinderaker (SGH)², Achamyelesh Gebretsedik Tekle (AGT)¹, Bernt Lindtjørn (BL)^{1,2}

¹ School of Public Health, College of Medicine and Health Sciences, Hawassa University,

Hawassa, Ethiopia.

²Centre for International Health (CIH), University of Bergen, Bergen, Norway

E-mail address of the authors:

AAA: <u>a2ay.oro@gmail.com</u>, Correspondent author

SGH: Sven.Hinderaker@uib.no

AGT: achameyelesh9@yahoo.com

BL: <u>bernt.lindtjorn@uib.no</u>

Abstract

Objective: The aim of this study was to assess the Caesarean section (CS) rates using Robson's Ten-Group Classification System among women who gave birth at Hawassa University Referral Hospital in Southern Ethiopia.

Design: Cross-sectional study design to determine CS rate using Robson's Ten-group classification system.

Setting: Hawassa University Referral Hospital in South Ethiopia.

Participants: 4004 women who gave birth in Hawassa University Referral Hospital from June 2018 to June 2019.

Results: The 4004 women gave birth to 4165 babies. The overall CS rate was 32.8% (95% CI: 31.4%, 34.3%). The major contributors to the overall CS rates were: Robson Group 1 (nulliparous women with singleton pregnancy at term in spontaneous labour) 22.9%; Group 5 (multiparous women with at least one previous CS) 21.4%, and Group 3 (multiparous women without previous CS, with singleton pregnancy in spontaneous labour) 17.3%. The most commonly reported indications for CS were "fetal compromise" (35.3%) followed by previous CS (20.3%) and obstructed labour (10.7%).

Conclusion: A high proportion of women giving birth at this hospital were given a CS, and many of them were in a low risk group. Few had trial of labour. More active use of partogram, improving fetal heartbeat monitoring system, implementing midwife-led care, involving a companion during labour, and auditing the appropriateness of CS indications may help to reduce the CS rate.

Strengths and limitations of this study

- It was the first study in Ethiopia that assesses the CS rate using Robson ten group classification system for all labouring mothers in a hospital.
- The study used prospective birth registration, hence the risk of incomplete data minimized
- All women who gave birth in study hospital were included, reducing the risk for selection bias
- Since the study was conducted in single-hospital with high referral and most complicated cases, the finding might be less generalizable.
- The study used birth weight for gestational age determination for some mothers and the possibility of misclassification among the Robson group cannot be ruled out.

Introduction

Caesarean section (CS) is a life-saving intervention for both the woman and new-born if a complication occurs during late pregnancy and childbirth. It is the most common surgical intervention in many countries (1). The proportion of women giving birth by CS is used by the World Health Organization as an indicator of the provision of lifesaving services for both mothers and newborns (2). WHO suggest that in normal populations CS rates should not exceed 10-15 % (3). However, there is a growing concern about the increasing percentage of CS globally. The CS rates above 15% are not associated with improved maternal and neonatal health (4), and reasons for a CS may be other than medical; in some countries, for example, it may be a cost free option for expecting mothers (5, 6).

CS performed for women who do not need it can have negative consequences for the mothers as well as their babies, especially when the procedure is done in the absence of adequate facilities, skills and comprehensive care (7). Though CS is effective in reducing maternal and neonatal mortality and morbidity, the procedure is also associated with increased maternal risk of infection, bleeding, blood transfusion, hysterectomy, and death compared to normal delivery (8). Indeed, even small operations carry some risks and must be compared with the risks of not undertaking the procedure. A woman who undergoes a CS will have a slightly increased risk for her subsequent babies to have fetal distress, preterm birth, and stillbirth (9-11).

In 2016, globally, the population-based CS rate varied from 6% to 27.2% (12), and the global rate of CS births had doubled over the last 15 years (13). In Ethiopia, the national population-based CS rate had been the lowest in the world (12), (14), but a national review conducted in 2011 covering 797 facilities indicated a CS rate of 15% in public facilities and 46.1% in privately owned facilities (15). The CS rate at a University hospital in eastern Ethiopia was 25.7% (16). Many of these facility-based CS rates represent a selected population of women, and hence not necessarily representing the CS rate in the population.

Though there is no consensus in defining the optimal CS rate at any level due to lack of reliable and internationally accepted classification system, the Ten-Group Classification System created by Robson has now been accepted and used in many countries (17, 18). This system helps

BMJ Open

institution-specific monitoring and auditing and offers a standardized comparison method for use between institutions, countries, and time points (19).

WHO has been recommending using this system to assess, monitor and compare CS rates since 2015 (2), but it is not yet implemented in Ethiopia. A study on CS was conducted using Robson's classification system at a university hospital in eastern Ethiopia (16) but was limited to women who underwent CS, and was not done according to the Robson implementation manual (20). Therefore, the aim of our study was to determine CS rate using Ten-Group Classification System among all the women who gave birth at Hawassa University Referral Hospital in Southern Ethiopia in 2018/2019.

Materials and Methods:

Study setting:

The study was conducted at Hawassa University Referral Hospital, which is 275 km to the south of Addis Ababa, the capital city of Ethiopia. The hospital provides health care services as both primary health care for Hawassa city and its nearby districts, and as tertiary care services for the region Southern Nation Nationalities and Peoples, including some neighbouring regions. Although it provides tertiary care for a population of 15 million, over 90% of the mothers came from two towns (Shashamanne and Hawassa). According to 2019 Ethiopian Mini Demographic and Health Survey report, 69.4%, 47.6% and 32% of the women had at least one antenatal care (ANC) follow up, health facility delivery and postnatal care follow up, respectively, in Southern Nation Nationalities and Peoples region (21). All pregnant women are encouraged to have a minimum of 4 ANC visit and to deliver at health facilities. Preventive services such as screening for HIV/AIDS, Syphilis, tetanus toxoid vaccination and iron folate supplementation are routinely given for pregnant mothers during their ANC follow up. All services related to delivery, including CS are expected to be given free of charge for delivering mothers at the Hospital. But sometimes the women are requested to buy drugs, intravenous fluids or gloves, when unavailable in the hospital dispensary. No payment (in addition to ordinary salary) is given to the obstetrician for performing CS. Hawassa University Referral Hospital is providing both basic and comprehensive management of maternal, new-born and child health services for more than 4500 births annually. The hospital is also serving as teaching hospital for health science and medical students including residency programs. The Department of Obstetrics and Gynaecology had 6 obstetricians and gynaecologists, 80 midwives, as well as its own operation theatre for obstetrics

cases. According to national guidelines for staffing, the recommended number of obstetrician for specialized hospital is 13 and the number at this hospital is less than recommended (22).

The design was cross-sectional and included all women who gave birth at the hospital between June 2018 and June 2019. A medical birth registry was adapted from the Kilimanjaro Christian Medical Centre in Tanzania (23) and used to collect the data.

Variables

The main outcome variable was the rate of CS, in all deliveries. Other variables were as follows: socio-demographic characteristics (maternal age, residence, educational status, occupational status), maternal characteristics (history of CS and parity), and pregnancy-related information (gestational age, fetal presentation, number of fetuses and onset of labour). For those women who underwent CS, information about the indications of CS was also collected.

The CS rates were categorised by the Robson classification system shown in Box 1 (20) using six obstetric parameters: 1) *Fetal lie and presentations* were classified as cephalic, breech or transverse/oblique. Gestational age was categorised as a term (\geq 37 weeks) or preterm (<37 weeks). 2) *Gestational age* assessment should ideally be done by early ultrasound. But in our study, since most of the women did not have early ultrasound measurement, we used the date of last menstrual period and third trimester ultrasound to assess gestational age. In the case of no third trimester ultrasound or unknown last menstrual period, a combination of physical examination, and estimated fetal weight were used for estimation of gestational age. For cases with undocumented gestational age, we used a birth weight of \geq 2500 grams as a proxy to term pregnancy. 3) The *onset of labour* was categorised as spontaneous, induced or CS before labour. 4) *Parity* was classified as nulliparous or multiparous. 5) The *number of fetuses* was categorised as singleton or multiples. 6) History of previous CS was categorised as one, and two or more.

Fetal compromise was defined as a fetus having one of the following conditions: fetal distress, cord prolapse or intra-uterine growth restriction (IUGR). The hospital has one Cardiotocography (CTG) that was not used. Ultrasound was occasionally used, but in most of the cases the fetal heartbeat was monitored using fetoscope. We categorised the need for CS as "Absolute indication" and "Not absolute indication" (24).

2 3	
4 5 6	
7 8 9	
10 11	
12 13 14	
15 16	
17 18 19	
20 21	
22 23 24	
25 26	
27 28 29	
30 31 32	
33 34	
35 36 37	
38 39 40	
41 42	
43 44 45	
46 47	
48 49 50	
51 52 53	
54 55	
56 57 58	

59

60

Box 1: Robson's 10-group classification

Group	Description
1	Nulliparous, singleton, cephalic, \geq 37 weeks' gestation, in spontaneous labour
2	Nulliparous, singleton, cephalic, \geq 37 weeks' gestation, induced labour or CS before
	labour
2a	Labour induced
2b	Prelabour CS
3	Multiparous (excluding previous CS), singleton, cephalic, ≥37 weeks'
	gestation, in spontaneous labour
4	Multiparous without a previous CS, with singleton, cephalic pregnancy, ≥37 weeks'
	gestation, induced or CS before labour
4a	Labour induced
4b	Prelabour CS
5	Previous CS, singleton, cephalic, \geq 37 weeks' gestation
5.1	With one previous CS
5.2	With two or more previous CSs
6	All nulliparous with a single breech
7	All multiparous with a single breech (including previous CS)
8	All multiple pregnancies (including previous CS)
9	All women with a single pregnancy in a transverse or oblique lie (including those
	with previous CS)
10	All singleton, cephalic, <37 weeks' gestation pregnancies (including CS).

Source: WHO. Robson classification. Geneva: WHO, 2017.

Data collection

Data were recorded by three midwives in the maternity ward. Data collectors and supervisors were trained and supervised by the Principal Investigator. Information about the sociodemographic characteristics of delivering mothers were collected through interviews at the time of admission if the women were stable or before discharge from the hospital. Information about CS was retrieved from the operation theatre register and double-checked with the midwives' delivery logbook and the admission and discharge registers. Completeness of data were checked by the Principal Investigator.

Data processing and analysis

All registered data were double entered using EpiData Version 3.1 (EpiData Association, Odense, Denmark) and consistency were checked and any necessary corrections were made before data analysis. Data were analysed using SPSS Version 25 (IBM, Chicago, IL).

Descriptive statistics with frequencies and percentages for categorical data, as well as means and standard deviation for numerical data were used to summarize the data. The WHO Robson implementation manual was used to interpret the results of this study (20). For determining CS rate, we used those mothers with complete data on Robson's group parameters. Those mothers with missing data were excluded from analysis.

Patient and Public involvement

Patients or public were not involved in the design, or conduct, or reporting, or dissemination plan of our research.

to peet eview only

Results

In the 12-month study period, there were 4031 women coming to give birth at Hawassa University Referral Hospital. Of these clients, 27 had incomplete records and were excluded, resulting in 4004 women giving birth to 4165 babies for analysis. The mean age of the women was 26 years. It ranged from 13 to 45 years. Their sociodemographic characteristics are shown in Table 1. We notice that many were urban dwellers and housewives, and most had some basic formal education.

tor oper teries only

2 3	
4	
5	
6	
7	
8	
9	
10 11	
12	
13	
14	
15	
16	
17 18	
19	
20	
21	
22	
23 24	
24 25	
26	
27	
28	
29	
30 31	
32	
33	
34	
35	
36 37	
37 38	
39	
40	
41	
42	
43 44	
45	
46	
47	
48	
49 50	
50 51	
52	
53	
54	
55 56	
56 57	
58	
59	
60	

Variables		Number	Percent (%)
Total		4004	100
Maternal Age (Years)	<20	187	4.7
	20-34	3467	86.6
	35 and above	347	8.7
	Not recorded	2	0.1
Residence	Urban	3669	91.6
	Rural	318	7.9
	Not recorded	17	0.4
Educational level	Cannot read and write	283	7.1
	Primary (1-8)	1741	43.5
	Secondary (9-12)	1233	30.8
	College and above	715	17.9
	Not recorded	32	0.8
Occupational status	Housewife	2834	70.8
-	Merchant	307	7.7
	Employer	624	15.6
	Others*	167	4.2
	Not recorded	• 72	1.8
Marital status	Married	3949	98.6
	Single	29	0.7
	Divorced/Widowed	9	0.2
	Not recorded	17	0.4
Referred to give birth	Yes	1468	36.7
	No	2536	63.3

Table 1: Socio-demographic characteristics of women who gave birth at Hawassa UniversityReferral Hospital, Ethiopia, 2018-2019.

*Daily labourer, student, farmer

The obstetric characteristics of the study participants and the outcomes of the women who gave birth are given in Table 2. Two out of five (41.1%) of the study participants were nulliparous. Almost all of the study participants had had at least one ANC visit during this pregnancy. Of all births, 15.1% were preterm. CS was performed on 1314 (32.8%) women, 165 (12.6%) of them planned. The perinatal mortality was 75 perinatal death/1000 live births was based on deaths occurring in the hospital.

Variables		Number	Percent (%
Age at first marriage	18 years or less	1091	27.2
	Above 18 years	2861	71.5
	Not recorded	52	1.3
Age at first Pregnancy	18 years or less	748	18.7
	Above 18 years	3205	80.0
	Not recorded	50	1.3
Parity	0	1646	41.1
	1-4	2185	54.6
	>4	173	4.3
ANC this pregnancy	Yes	3931	98.2
	No	57	1.4
	Not recorded	16	0.4
Gestational Age	Pre-term (<37 weeks)	606	15.1
	Term (37-42 weeks)	3253	81.2
	Post-term (>42 weeks)	145	3.6
Onset of labour	Induced	398	9.9
	Spontaneous	3441	85.9
	Pre-labour CS	165	4.2
Fetal lie and presentation	Cephalic	3844	96.0
	Breech	143	3.6
	Transverse/Oblique	17	0.4
Mode of Delivery	Spont.Vaginal Delivery	2605	65.1
	Instrumental delivery	85	2.1
	CS	1314	32.8
	CS emergency	1149	87.4
	CS planned	165	12.6
Number of fetus at birth	Singleton	3850	92.4
(n=4165)	Multiple	315	7.6

Table 2: Obstetrics characteristics of women who gave birth and their outcomes, at Hawassa

Type of multiple births	Twin	292	92.7	
(n=315)	Triplets	19	6.0	
	Quadruplets	4	1.3	
Birth Weight (in grams)	<2500	592	14.2	
(n=4165)	2500-4000	3355	80.6	
	>4000	188	4.5	
	Not recorded	30	0.7	
Previous CS (n=2358)	Yes	438	18.6	
	No	1920	81.4	

Instrumental delivery includes; vacuum and forceps delivery. ANC- antenatal clinic visit, CS caesarean section

Robson Ten Group Classification System

Table 3 shows the women who gave birth according to Robson classification. We notice that the groups most represented by type of obstetrics population (group size) were: multiparous women without previous CS; women with a singleton pregnancy in spontaneous labour (group 3); nulliparous women with singleton pregnancy in spontaneous labour (group 1); and women with pre-term birth (group 10).

The overall CS rate in this study was 32.8% (95% CI: 31.4%, 34.3%). The major contributors to the overall CS rate were: Group 1 (nulliparous women with singleton pregnancy in spontaneous labour), group 5 (multiparous women with at least one previous CS) and group 3 (multiparous women without previous CS, with singleton pregnancy in spontaneous labour) (Table 3).

From an obstetrician's perspective, the most common indications for CS were fetal compromise, obstructed labour and previous CS (Figure 1: Indications for performing caesarean section (CS) among women who gave birth at Hawassa University Referral Hospital, Ethiopia, 2018-2019). In this study, 227/1314 (17.3%) CS were performed for absolute maternal indications. For non-absolute indications, CS was performed in 968/1314 (73.7%) of cases, mainly non-reassuring fetal heartbeat pattern (fetal distress). The remaining 9.0% of CS could not be classified in this way, and included post-term pregnancy, premature rupture of membrane, multiple pregnancies, and polyhydramnios/oligohydramnios.

 BMJ Open

Table 3. Robson's Classification system among women who gave birth at Hawassa University Referral Hospital, Hawassa, SouthEthiopia, 2018-2019

Robson Group	CS in	Number	Group	CS in	Absolute	Relative
	Group	in Group	size	group (%)	group	contributio
			(%)		contributi	n of the
					on to	group to
					overall	the overall
					CS rate	CS rate (%)
					(%)	
Group 1 (nulliparous with singleton pregnancy in	301	1094	27.3	27.5	7.5	22.9
spontaneous labour)	6					
Group 2 (nulliparous women with singleton pregnancy who	97	227	5.7	42.7	2.4	7.4
had induced labour or pre-labour CS)		$\langle \mathbf{Q}_{i} \rangle$				
Group 2a (induced labour)	55	185	4.6	29.7	1.4	4.2
Group 2b (pre-labour CS)	42	42	1.1	100.0	1.0	3.2
Group 3 (multiparous women without previous CS, with		1356	33.9	16.7	5.7	17.3
singleton pregnancy in spontaneous labour)						
Group 4 (multiparous without previous CS, singleton with		158	3.9	43.0	1.7	5.2
induced labour or pre-labour CS)						
Group 4a (induced labour)	33	123	3.1	26.8	0.8	2.5
Group 4b (pre-labour CS)	35	35	0.8	100.0	0.9	2.7

2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13	
13 14 15	
15	
16 17	
1/ 10	
18 19	
20	
21	
22	
23	
24	
25	
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	
2/	
28	
30	
31	
32	
33	
34	
35	
36	
37	
38 39	
39 40	
40	
42	
43	
44	
45	
46	
47	

Group 5 (multiparous women with at least one previous CS)	281	362	9.0	77.6	7.0	21.4
Group 5.1 (one previous CS)	214	290	7.2	73.8	5.3	16.3
Group 5.2 (two or more previous CS)	57	72	1.8	79.2	1.4	4.3
Group 6 (nulliparous women with singleton breech)	38	46	1.2	82.6	0.9	2.9
Group 7 (multiparous women with singleton breech)	58	65	1.6	89.2	1.4	4.4
Group 8 (all multiple pregnancies)	91	154	3.9	59.1	2.3	6.9
Group 9 (all women with transverse or oblique lie)	16	16	0.4	100.0	0.4	1.2
Group 10 (all women with pre-term delivery)	137	526	13.1	26.0	3.4	10.4
Total	1314	4004	100.00	32.8	32.8	100.00

Group size (%) =n of women in the group/total number of women who gave birth in the hospital \times 100.

Group CS rate (%) =n of CS in the group/total number of women in the group \times 100.

Absolute contribution (%) =n of CS in the group/total number of women who gave birth in the hospital \times 100.

Relative contribution (%) =n of CS in the group/total number of CS in the hospital \times 100.

Page 15 of 33

1

BMJ Open

2 3	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	
6	
7 8	
9 10	
11 12	
13	
14	
16 17	
18 19	
20 21	
22 23	
24 25	
26	
27	
29 30	
31 32	
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	
35 36	
37 38	
39 40	
41	
42 43	
44 45	
46 47	
48 49	
50 51	
52 53	
54 55	
55 56 57	
58	
59 60	

Discussion 1 2 A high proportion of women who gave birth in Hawassa University Referral Hospital were 3 through CS, almost a third. The major contributors to the overall CS rate were group 1 (nulliparous with singleton pregnancy in spontaneous labour), group 5 (multiparous 4 women with at least one previous CS) and group 3 (multiparous women without previous 5 6 CS, with singleton pregnancy in spontaneous labour). The most commonly reported indications for CS were a fetal compromise, previous CS and obstructed labour. 7 In this study we interpreted the findings based on Robson's implementation manual (20): 8 thus, we assessed the quality of the data, the population attending the services (shown in 9 Appendix 1), and we analysed the proportion of CS in each group (shown in Appendix 2). 10 Our study had several strengths. To our knowledge, this study is the first study at a major 11 12 hospital in Ethiopia that assessed the CS rate using Robson's Ten Group Classification System for all labouring mothers. The birth registration was prospective and consecutive; hence the risk 13 of incomplete data were minimized. All women who gave birth in the hospital during the study 14 were included and this may have reduced selection bias. 15 The study also had some weaknesses. The study was conducted in a single hospital, and since it 16 is a referral hospital, the selection of participants may be biased to some degree, and for this 17 18 reason the findings might be less generalizable. However, standardization according to Robson is able to be used in such situations. Its use permits valid and useful comparisons to be done even at 19 20 different levels of care. Another weakness is that the study used birth weight to determine 21 gestational age for some mothers, and this could lead to a misclassification of some births into a 22 wrong Robson group. We assessed whether this results in misclassification among Robson group according to WHO Robson implementation manual and the risk of misclassification was minimal. 23 24 A third potential weakness involved inconsistent use of partogram and fetal heartbeat. This makes 25 the criteria for decisions and indications for CS unclear and left much up to individual doctor's discretion. 26

The manual for interpretation of CS rates stated that the size of group 9 (women with *transverse lie*, singletons pregnancy), should be less than 1% of the total and the CS rate

BMJ Open

should be 100% for this group (20). In our study, the size of group 9 was 0.4% and the CS
rate in this group was 100%, suggesting minimal misclassification in this group, and the
size of group 9 was similar to other studies (20, 25, 26)

In our study several indicators were in line with the comparison populations given in Robson's manual; the proportion of women with *breech* pregnancy (group 6 and 7), the ratio of the size of group 1 (nulliparous women with singleton pregnancy in spontaneous labour) and group 2 (nulliparous women with singleton pregnancy, who had induced labour or *pre-labour CS*), as well as the ratio of the size of group 3 (multiparous women without previous CS, with singleton pregnancy in spontaneous labour) and group 4 (multiparous women without *previous CS*, with singleton pregnancy, who had induced labour or *pre-labour CS*) (20, 25, 26). However, the proportion of group 1 (*nulliparous*) women with singleton pregnancy in *spontaneous labour*) and group 2 (nulliparous women with singleton pregnancy, who had induced labour or *pre-labour CS*) was slightly lower than the comparison populations (20, 25, 26). This may be due to the low proportions of nulliparous women in our study. The proportion of group 3 (multiparous women without previous CS, with singleton pregnancy in *spontaneous labour*) and group 4 (*multiparous* women without previous CS, with singleton pregnancy, who had induced labour or pre-*labour CS*) was higher than the Robson reference population (20). This may be explained by the fact that we had a high proportion of multiparous women in our study populations. According to Robson, the proportion of group 5 (multiparous women with at least one previous CS) should, be about half of all the CS. In our study, the proportion of group 5 represents less than 10% of the total women delivered in the hospital, which may reflect a low CS rate in previous years. The proportion of group 8 (women with multiple pregnancies) and group 10 (women with preterm pregnancy) in our study was similar with the comparison population (20, 25, 26).

The CS rate in Robson group 1 (nulliparous women with singleton pregnancy in spontaneous labour) was 27.5%, which is much higher than Robson's examples showing that rates under 10% are achievable (20). This may reflect a selection among nullipara, where many normal spontaneous deliveries take place at lower health facilities (health centres and primary hospitals), and those who attend this referral hospital are selected,

BMJ Open

either referred or they decided themselves for unknown reasons to attend the hospital.

Alternatively, it may reflect a low "threshold" interpreting criterion for a CS.

The CS rate in group 2 (*nulliparous* women with singleton pregnancy, who had labour induced or *pre-labour CS*) was similar to the comparison populations (25, 26), but higher than Robson's guideline (CS rate between 20-35) (20). This may reflect that the threshold for deciding on doing CS is too low, and this may happen at extremely busy labour wards; for example, the ward is so busy that calling a doctor and suggesting a CS in a case of slow progress may be preferred to a time-consuming trial of labour. This "low" CS threshold may explain why group 3 (*multiparous* women without previous CS, with singleton pregnancy in spontaneous labour) also had a higher CS rate (17%) than the comparisons (3-5%) (20, 25, 26). It could also be partly due to some misclassification by including women from group 5 (multiparous women with at least one *previous CS*) in group 3, but this is less likely.

Robson guideline stated that the CS rate in group 4 (*multiparous* women without a previous CS, with singleton pregnancy, who had induced labour or *pre-labour CS*) is rarely should be higher than 15%, while in our study this rate was much higher (43%). This may be because of the high CS rate in women who underwent induction of labour (group 4a) (26.8%), which contributed to the high overall CS rate in group 4. Also, it may partly be due to a high proportion of failed inductions, or possible misclassifications by including group 5 (multiparous women with at least one *previous CS*) in group 4.

The CS rate in group 5 (multiparous women with at least one *previous CS*) in our study was 77.6%, which is higher than the Robson guideline (50-60%) (20). This indicates that in our study, too few women were offered a trial of labour after having had previous CS.

study was similar to comparison populations (20, 25, 26).

The CS rate for breech in group 6 (nulliparous women with singleton breech pregnancy) and

group 7 (*multiparous* women with a singleton *breech* pregnancy including previous CS) in our

BMJ Open

The examples given by Robson in his guideline stated that nullipara and women with a previous CS contribute to 66% of CS at the hospital, comprising group 1 (*nulliparous* women with singleton pregnancy in spontaneous labour), group 2 (nulliparas women with singleton pregnancy, who had induced labour or pre-labour CS) and group 5 (multiparous women with at least one previous CS) (20). In our study, the relative contribution of these three groups (1,2,5) to the overall CS rate was 51.7%. This difference may be that the study area had few nullipara with planned CS, as seen in the low relative contribution of group 2 (nulliparas women with singleton pregnancy, who had induced labour or *pre-labour CS*) to the overall CS rate which in our study was (7.38%).

The overall CS rate in our hospital (32.8%) is higher than the WHO recommendation 10-15% (3). The high CS rate in our study may be due to several issues. One probable factor could be that the hospital is a referral hospital where more than a third of women referred to this hospital with different emergency situations that may need emergency management through CS delivery. Another factor could be that Hawassa University referral hospital as a teaching hospital has doctors under specialist training performing CS without following strict indications for performing CS. In our study hospital, there is no one-to-one midwifery-led care, and this may also be a possible reason for the high caesarean section rate in our study. Several studies have shown midwifery-led care to significantly reduce caesarean section rate (27-31). In addition, there was no support of companion during labour in our hospital, and several studies showed that support from a companion during labour and childbirth reduced caesarean section rate and improved maternal and newborn birth outcomes (32-34). Another possible driving factors for this high CS rate could be the hospital is a referral hospital where more than a third of women referred to this hospital with different emergency situations that may need emergency management through CS delivery (35). Nearly three-quarters (73.7%) of CS in this study was performed for non-absolute maternal indications, mainly fetal distress, and CS may be performed for some women without clear appropriate indications. Fetal monitoring was not optimal, and this may have contributed to the high prevalence of "fetal distress". Also, a large proportion were urban women (91.6%) who gave birth in the hospital, and urban women are shown to have higher CS rates than the rural women in other settings also (36-38).

Page 19 of 33

BMJ Open

1	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
23	
24	
25	
26	
27	
28	
20 29	
30	
31	
32	
33	
34	
35	
36	
37	
27	
38	
39	
40	
41	
42	
43	
44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
55	
54	
55	
56	
57	
58	
50	

60

Our study showed that Robson group 1 (*nulliparous* women with singleton pregnancy in 1 2 spontaneous labour), group 5 (multiparous women with at least one previous CS) and 3 group 3 (multiparous women without previous CS, with singleton pregnancy in 4 spontaneous labour) were the major contributors to the overall CS rate. These same groups were the major contributors in the eastern Ethiopia and elsewhere (16, 39-44), though the 5 order was different. The difference in the order of these groups among the studies may 6 because of the variation in study populations and overall CS rate (20). The high contribution 7 of emergency CS in nullipara (group 1, nulliparous women with singleton pregnancy in 8 spontaneous labour) in our study may be related to inappropriate indications of CS delivery 9 in this group in our study hospital. More than one third (35%) of CS performed in this 10 group is due to abnormal fetal heartbeat patterns. This was high, indicating the possibility 11 of misdiagnosis of abnormal fetal heartbeat pattern. A more active use of the partogram as 12 a tool for decision-making would help clinicians and midwives decide more consistently, 13 instead of relying on too heavily health care workers individual assessment in a busy ward. 14

The most commonly reported indications for CS were fetal compromise, previous CS and
obstructed labour; similar indications have been reported from eastern Ethiopia (16) and
elsewhere in Africa, Asia and Australia (42, 44-47).

In conclusion, this study has shown a high overall CS rate at Hawassa University Referral 18 Hospital. Nulliparous women with singleton pregnancy in spontaneous labour (group 1), 19 multiparous women with at least one previous CS (group 5) and multiparous women 20 without previous CS, with singleton pregnancy, in spontaneous labour (group 3) were the 21 22 major contributors to the overall high CS rates. Fetal compromise, previous CS and obstructed labour were the major indications for performing CS. There was a high CS rate 23 24 in low-risk groups (group 1 and 3). We recommend that all labouring women be regularly followed with partogram, and that they be given the opportunity for instrumental delivery 25 26 to decrease the use of primary CS among low risk groups. Fetal heartbeat monitoring system should be improved to reduce unnecessary CS that could be done due to 27 misdiagnosis of fetal distress. The implementation of midwife-led care and involvement of 28 a companion during labour and childbirth should also be considered. The reasons for the 29 30 high CS rate among low-risk groups should be explored and the appropriateness of CS

BMJ Open

2 3		
4	1	should be evaluated to reduce the overall CS rate, which benefits the health system, in
5 6	2	general.
7 8	3	
9 10		
11	4	
12 13	5	Author affiliations:
14 15	c	Colored of Dablie Houlds College of Medicine and Hould Colored House Humanite
16	6	¹ School of Public Health, College of Medicine and Health Sciences, Hawassa University,
17 18	7	Hawassa, Ethiopia.
19 20	8	² Centre for International Health (CIH), University of Bergen, Bergen, Norway
21 22	9	
23	10	Acknowledgements:
24 25	11	We would like to thank Hawassa University Referral Hospital management and the Head of its
26 27	12	Obstetrics Ward for creating a conducive environment in order to accomplish this research. We
28 29	13	want to extend our thanks to NORHED-SENUPH project for financial support.
30	14	
31 32	15	Author Contributions:
33 34	16	AAA and BL conceived the study and analysed the data. AAA wrote the proposal and the first
35 36	17	draft of the manuscript. SGH, AGT, and BL supervised and provided mentorship. All authors
37	18	contributed to the writing and reviewed the article and approved the final version of the
38 39	19	manuscript.
40 41	20	Patient consent: Written consent was obtained from all delivering mothers to participate in this
42 43	21	study. The interview was conducted at a convenient time for the women; before delivery and
44	22	after delivery before discharge from the hospital, and no woman declined to participate in the
45 46	23	study. Written consent was obtained from illiterate women after data collectors read information
47 48	24	described in the consent form in the language they can understand. After they agreed on the
49 50	25	information read for them, they signed on the consent form by using their thumb stump
51	26	(fingerprint).
52 53	27	The consent was made according to ethical principles of "autonomy" by including statements
54 55		
56 57		
58		19
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1 2		
2 3 4	1	that give participants the right to decline participation in the study at any time. The consent also
5	2	included statements of potential risk, benefits and confidentiality.
6 7	3	
8 9	4	Ethics approval: This study was approved by Hawassa University College of Medicine and
10 11	5	Health Sciences Institutional Review Board (ref.no.IRB/007/10), and Regional Ethical
12	6	Committee (Rek Vest) (ref.no.2018/595) in Norway.
13 14	7	
15 16	8	Funding: Financial support was obtained from NORHED through the SENUPH (Southern
17 18	9	Ethiopia Network of University in Public Health) project (ETH-13/0025).
19	10	Disclaimer: The funding organisation has no role in the design, execution or decision to publish
20 21	11	the study.
22 23	12	Competing interests: None declared
24 25	13	Data sharing statement: Data are available upon reasonable request
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57		Data sharing statement: Data are available upon reasonable request

References

1. Biccard BM, Madiba TE, Kluyts HL, Munlemvo DM, Madzimbamuto FD, Basenero A, et al. Perioperative patient outcomes in the African Surgical Outcomes Study: a 7-day prospective observational cohort study. Lancet (London, England). 2018;391(10130):1589-98.

2. WHO Statement on caesarean section rates. Reprod Health Matters. 2015;23(45):149-50.

3. WHO. Appropriate technology for birth. Lancet (London, England). 1985;2(8452):436-7.

4. Betran AP, Torloni MR, Zhang J, Ye J, Mikolajczyk R, Deneux-Tharaux C, et al. What is the optimal rate of caesarean section at population level? A systematic review of ecologic studies. Reproductive health. 2015;12:57.

5. Federal Ministry of Health. Implementationmanual for health care financing reports; 2010. Addis Ababa, Ethiopia.

6. Witter S, Boukhalfa C, Cresswell JA, Daou Z, Filippi V, Ganaba R, et al. Cost and impact of policies to remove and reduce fees for obstetric care in Benin, Burkina Faso, Mali and Morocco. Int J Equity Health. 2016;15(1):123.

7. Souza JP, Gulmezoglu A, Lumbiganon P, Laopaiboon M, Carroli G, Fawole B, et al. Caesarean section without medical indications is associated with an increased risk of adverse short-term maternal outcomes: the 2004-2008 WHO Global Survey on Maternal and Perinatal Health. BMC Med. 2010;8:71.

8. Villar J, Carroli G, Zavaleta N, Donner A, Wojdyla D, Faundes A, et al. Maternal and neonatal individual risks and benefits associated with caesarean delivery: multicentre prospective study. BMJ (Clinical research ed). 2007;335(7628):1025.

9. Zhang Y, Zhou J, Ma Y, Liu L, Xia Q, Fan D, et al. Mode of delivery and preterm birth in subsequent births: A systematic review and meta-analysis. PloS one. 2019;14(3):e0213784.

10. Kok N, Ruiter L, Hof M, Ravelli A, Mol BW, Pajkrt E, et al. Risk of maternal and neonatal complications in subsequent pregnancy after planned caesarean section in a first birth, compared with emergency caesarean section: a nationwide comparative cohort study. BJOG : an international journal of obstetrics and gynaecology. 2014;121(2):216-23.

11. Huang X, Lei J, Tan H, Walker M, Zhou J, Wen SW. Cesarean delivery for first pregnancy and neonatal morbidity and mortality in second pregnancy. European journal of obstetrics, gynecology, and reproductive biology. 2011;158(2):204-8.

12. Betran AP, Ye J, Moller AB, Zhang J, Gulmezoglu AM, Torloni MR. The Increasing Trend in Caesarean Section Rates: Global, Regional and National Estimates: 1990-2014. PloS one. 2016;11(2):e0148343.

13. Boerma T, Ronsmans C, Melesse DY, Barros AJD, Barros FC, Juan L, et al. Global epidemiology of use of and disparities in caesarean sections. Lancet (London, England). 2018;392(10155):1341-8.

14. Central Statistical Agency (CSA) [Ethiopia] and ICF. Ethiopia Demographic and Health Survey 2016. Addis Ababa, Ethiopia, and Rockville, Maryland, USA. Ethiopia Demographic and Health Survey: CSA and ICF, 2016.

15. Fesseha N, Getachew A, Hiluf M, Gebrehiwot Y, Bailey P. A national review of cesarean delivery in Ethiopia. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics. 2011;115(1):106-11.

16. Tura AK, Pijpers O, de Man M, Cleveringa M, Koopmans I, Gure T, et al. Analysis of caesarean sections using Robson 10-group classification system in a university hospital in eastern Ethiopia: a cross-sectional study. BMJ open. 2018;8(4):e020520.

17. Torloni MR, Betran AP, Souza JP, Widmer M, Allen T, Gulmezoglu M, et al. Classifications for cesarean section: a systematic review. PloS one. 2011;6(1):e14566.

BMJ Open

18. Betran AP, Vindevoghel N, Souza JP, Gulmezoglu AM, Torloni MR. A systematic review of the Robson classification for caesarean section: what works, doesn't work and how to improve it. PloS one. 2014;9(6):e97769.

Robson M. The Ten Group Classification System (TGCS) - a common starting point for more detailed analysis. BJOG : an international journal of obstetrics and gynaecology. 2015;122(5):701.
 Robson Classification: Implementation Manual, Geneva: World Health Organization: 2017.

20. Robson Classification: Implementation Manual. Geneva: World Health Organization; 2017. Licence: CC BY-NC-SA 3.0IGO. .

21. Ethiopian Public Health Institute (EPHI) [Ethiopia] and ICF. 2019. Ethiopia Mini Demographic and Health Survey 2019: Key Indicators. Rockville, Maryland, USA: EPHI and ICF.

22. Federal Ministry of Health. National Health Workforce Update. Human Resource Development Directorate Bulletin 2nd Edition. 2019. Addis Ababa, Ethiopia.

23. Per Bergsjø, Joseph Mlay, Olola Oneko, Shao J. Instructions manual for Registration of deliveries at the KCMC Birth Registry, Revised Edition: Department of Obstetrics and Gynecology KCMC Moshi, Tanzania and Department of Public Health and Primary Health Care University of Bergen Bergen, Norway, 2010.

24. Stanton C, Ronsmans C. Recommendations for routine reporting on indications for cesarean delivery in developing countries. Birth (Berkeley, Calif). 2008;35(3):204-11.

25. Senanayake H, Piccoli M, Valente EP, Businelli C, Mohamed R, Fernando R, et al. Implementation of the WHO manual for Robson classification: an example from Sri Lanka using a local database for developing quality improvement recommendations. BMJ open. 2019;9(2):e027317.

26. Souza JP, Betran AP, Dumont A, de Mucio B, Gibbs Pickens CM, Deneux-Tharaux C, et al. A global reference for caesarean section rates (C-Model): a multicountry cross-sectional study. BJOG : an international journal of obstetrics and gynaecology. 2016;123(3):427-36.

27. Bartuseviciene E, Kacerauskiene J, Bartusevicius A, Paulionyte M, Nadisauskiene RJ, Kliucinskas M, et al. Comparison of midwife-led and obstetrician-led care in Lithuania: A retrospective cohort study. Midwifery. 2018;65:67-71.

28. Jiang XM, Chen QY, Guo SB, Jin LZ, Huang XX, Liu XW, et al. Effect of midwife-led care on birth outcomes of primiparas. Int J Nurs Pract. 2018;24(6):e12686.

29. McLachlan HL, Forster DA, Davey MA, Farrell T, Gold L, Biro MA, et al. Effects of continuity of care by a primary midwife (caseload midwifery) on caesarean section rates in women of low obstetric risk: the COSMOS randomised controlled trial. BJOG : an international journal of obstetrics and gynaecology. 2012;119(12):1483-92.

30. Sandall J, Devane D, Soltani H, Hatem M, Gates S. Improving quality and safety in maternity care: the contribution of midwife-led care. J Midwifery Womens Health. 2010;55(3):255-61.

31. Tracy SK, Hartz DL, Tracy MB, Allen J, Forti A, Hall B, et al. Caseload midwifery care versus standard maternity care for women of any risk: M@NGO, a randomised controlled trial. Lancet (London, England). 2013;382(9906):1723-32.

32. Bohren MA, Hofmeyr GJ, Sakala C, Fukuzawa RK, Cuthbert A. Continuous support for women during childbirth. The Cochrane database of systematic reviews. 2017;7(7):Cd003766.

33. Hodnett ED, Gates S, Hofmeyr GJ, Sakala C. Continuous support for women during childbirth. The Cochrane database of systematic reviews. 2012;10:Cd003766.

34. Kadour-Peero E, Miller N, Vitner D, Bleicher I, Said S, Dashkovsky M, et al. Who may accompany the parturient to the delivery room? Arch Gynecol Obstet. 2019;300(2):293-7.

35. Sørbye IK, Vangen S, Oneko O, Sundby J, Bergsjø P. Caesarean section among referred and selfreferred birthing women: a cohort study from a tertiary hospital, northeastern Tanzania. BMC pregnancy and childbirth. 2011;11:55. **BMJ** Open

36. Amjad A, Amjad U, Zakar R, Usman A, Zakar MZ, Fischer F. Factors associated with caesarean deliveries among child-bearing women in Pakistan: secondary analysis of data from the Demographic and Health Survey, 2012-13. BMC pregnancy and childbirth. 2018;18(1):113.

37. Azene AG, Aragaw AM, Birlie MG. Multilevel modelling of factors associated with caesarean section in Ethiopia: community based cross sectional study. BMC research notes. 2019;12(1):724.

38. de Loenzien M, Schantz C, Luu BN, Dumont A. Magnitude and correlates of caesarean section in urban and rural areas: A multivariate study in Vietnam. PloS one. 2019;14(7):e0213129.

39. Abdel-Aleem H, Shaaban OM, Hassanin AI, Ibraheem AA. Analysis of cesarean delivery at Assiut University Hospital using the Ten Group Classification System. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics. 2013;123(2):119-23.

40. Costa ML, Cecatti JG, Souza JP, Milanez HM, Gulmezoglu MA. Using a Caesarean Section Classification System based on characteristics of the population as a way of monitoring obstetric practice. Reproductive health. 2010;7:13.

41. Litorp H, Kidanto HL, Nystrom L, Darj E, Essen B. Increasing caesarean section rates among lowrisk groups: a panel study classifying deliveries according to Robson at a university hospital in Tanzania. BMC pregnancy and childbirth. 2013;13:107.

42. Tapia V, Betran AP, Gonzales GF. Caesarean Section in Peru: Analysis of Trends Using the Robson Classification System. PloS one. 2016;11(2):e0148138.

43. Yadav RG, Maitra N. Examining Cesarean Delivery Rates Using the Robson's Ten-group Classification. J Obstet Gynaecol India. 2016;66(Suppl 1):1-6.

44. Tognon F, Borghero A, Putoto G, Maziku D, Torelli GF, Azzimonti G, et al. Analysis of caesareansection and neonatal outcome using the Robson classification in a rural district hospital in Tanzania: an observational retrospective study. BMJ open. 2019;9(12):e033348.

45. Begum T, Nababan H, Rahman A, Islam MR, Adams A, Anwar I. Monitoring caesarean births using the Robson ten group classification system: A cross-sectional survey of private for-profit facilities in urban Bangladesh. PloS one. 2019;14(8):e0220693.

46. Makhanya V, Govender L, Moodley J. Utility of the Robson Ten Group Classification System to determine appropriateness of caesarean section at a rural regional hospital in KwaZulu-Natal, South Africa. SAMJ. 2015;105(4):292-5.

47. Tanaka K, Mahomed K. The Ten-Group Robson Classification: A Single Centre Approach Identifying Strategies to Optimise Caesarean Section Rates. Obstet Gynecol Int. 2017;2017:5648938.

LEGENDS

Figure 1. Indications for performing caesarean section (CS) among women who gave birth at Hawassa University Referral Hospital, Ethiopia, 2018-2019)

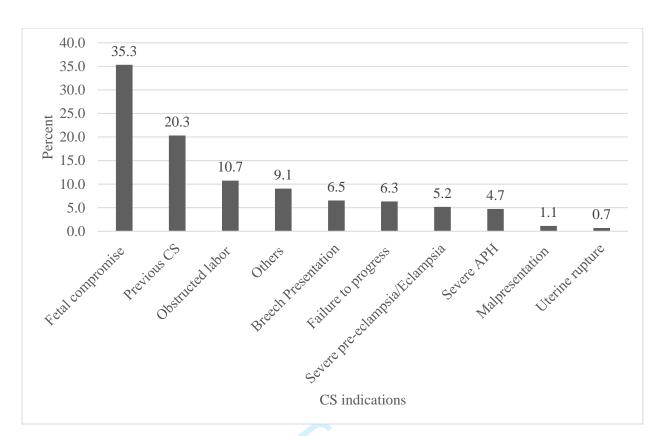

Box 1. Robson's 10-group classification

Table 1. Socio-demographic characteristics of women who gave birth at Hawassa UniversityReferral Hospital, Ethiopia, 2018-2019.

Table 2. Obstetrics characteristics of women who gave birth and their outcomes, at Hawassa

 University Referral Hospital, Ethiopia, 2018-2019

Table 3. Robson's Classification system among women who gave birth at Hawassa University Referral Hospital, Hawassa, South Ethiopia, 2018-2019

Figure 1. Indications for performing caesarean section (CS) among women who gave birth at Hawassa University Referral Hospital, Ethiopia, 2018-2019.

Foetal compromise = Foetal distress, cord prolapse, and intrauterine growth restriction. Failure to progress = Prolonged labour, cervical arrest, and failed induction. Obstructed labour = Cephalopelvic disproportion, macrosomia, and unspecified disproportions. Malpresentation = Transverse, oblique or brow. Others = Post term pregnancy, premature rupture of membrane, multiple pregnancies and polyhydramnios/oligohydramnios.

APH, antepartum haemorrhage.

Steps for Interpretation	Interpretati on by Robson	Example: MCS Population	Sri Lanka study	Our finding	Additional information from the data	Final Interpretation
Step 1: Size of group1+ 2	35-42%	38.1%	38.1%	32.99%	Nulliparas in our population 41.1%	Rate is lower than all the three references by Robson, MCS and Sri Lanka populations. This might be due to a low proportion of nullipara women in our Hospital. There is also a possibilit of misclassification (group 1 misclassified as group 10) since we determined gestational based new-born birth weight.
Step 2: Size of Group 3+4	30%	46.5%	37.3%	37.81%	Multiparous in our population 58.9%	Rate higher than Robson reference population, in line with Sri Lanka reference population and lower than MCS examples. This may be explained by a high proportion of multiparous women in our population
Step 3: Size of group 5	Half of the total CS rate	7.2%	10.9%	9.04%	-	Lower than half of total CS. This, as suggested by the WHO manual, may be due to relatively low CS rate in the previous years, or to a recently increased CS rate or misclassification.
Step 4 : size of group 6+7	3-4%	2.7%	3.4%	2.77%	-	Rate is in line with Robson, MCS and Sri Lanka reference populations
Step 5: Size of group 8	1.5-2%	0.9%	1.1%	3.85%	36.7% of women delivered in our Hospitals	Rate is higher than Robson, MCS and Sri Lanka reference populations. This may be due to high referral cases in our hospital as suggested by the WHO manual.

Appendix 1: Assessment of the type of Populations among women who gave birth at Hawassa University Referral Hospital, Hawassa.

					were referred cases	
Step 6: Size of group 10	<10%	4.2%	7.8%	13.14%	15.1% of all women who gave birth in our hospital delivered preterm birth.	Rate is higher than Robson, MCS and Sri Lank reference populations. This may be due to high referral cases and high preterm birth in our hospital. The hospital is a tertiary hospital were most high-risk pregnancies referred to. There is also a possibility of misclassification since we determined gestational based new-born birth weight.
Step 7 : Ratio of the size of group 1 versus group 2	Ratio 2 or higher	Ratio 3.3	Ratio 1.5	Ratio 4.8	-	The rate in line with Robson and MCS example reference populations
Step 8 : Ratio of size of group 3 versus group 4	>2:1	Ratio 6.3	Ratio 2.6	Ratio 8.6	Vien	Rate in line with Robson and MCS example refence populations
Step 9: Ratio of size of group 6 versus group 7	Usually 2:1	Ratio 0.8	Ratio 1.2	Ratio 0.7	Multiparous in our population 58.9%	The rate in line with MCS and Sri Lanka reference populations, but lower than Robson references. This may be explained by a high proportion of Multiparous women in our population.

 BMJ Open

Steps for Interpretation	Interpretati on by Robson	Example: MCS Population	Sri Lanka study	Our finding	Additional information from the data	Final Interpretation
Step 1 : CS rate in group 1	Under 10% are achievable	9.8%		27.5%	35.0% of CS delivery is due to Abnormal foetal heartbeat pattern in our hospital	CS rate is higher than Robson, MCS, and Sri Lanka. This might due to a high ratio of group 1 to group 2 population in our study which indicates a higher CS rate in these groups as suggested by the WHO manual. It might also due to inappropriate indications of CS delivery in our hospital.
Step 2: CS rate in group 2	Consistently around 20%–35%	39.8%	41.0%	42.7%	- Failed induction was an indication in 36.0% of group 2a.	CS rate in line with Sri Lanka, but higher than MCS and Robson references. This may be possibly due to inappropriate indications of CS in the induction of labour and pre-labour CS.
Step 3: CS rate in Group 3	Not higher than 3.0%.	3.0%	5.2%	16.7%	-Obstructed labour was an indication in 51.5%.	CS rate is higher than Robson, MCS, and Sri Lanka. This may be explained by misclassification (group 5 misclassified as group 3).
Step 4 : CS rate for group 4	It rarely should be higher than 15%	23.7%	16.8%	43.04%	Failed induction was an indication in 24.0% of group 4a.	CS rate is higher than Robson, MCS, and Sri Lanka. There was a high CS rate in group 4a (26.8%) which contributed to the high CS rate in group 4 in our study. The possible explanation may high failed induction or there might be misclassifications (group 5 misclassified as group 4).

Appendix 2: Assessment of CS Rates among women who gave birth at Hawassa University Referral Hospital, Hawassa, South
Ethiopia.

Step 5 : CS rate in group 5	Rates of 50%– 60% are considered appropriate	74.4%	81.8%	77.6%	Previous CS was the indication in 72.8%. Rate of prelabour CS was 33.9%	CS rate is higher than Robson and MCS examples but lower than the Sri Lanka study. This may be due to a high indication of CS due to previous CS, low offer of a trial of labour or VBAC (Vaginal birth after CS delivery), women's preference for repeating CS.
Step 6 : CS rate for group 8	Usually around 60%	57.7%	80.9%	59.1%	-	CS rate in line with Robson and MCS example.
Step 7 : CS rate in group 10	Usually around 30%	25.1%	41.1%	26.05%	-	CS rate in line with Robson and MCS example
Step 8: Relative contribution of groups 1, 2 and 5 to the overall CS rate	Normally contribute to 2/3 (66%) of all CS performed in most hospitals	Contributed to 63.7% of all CS	63.9%	51.7%	The relative contribution of group 2 to the overall CS rate was low (7.38%).	CS rate lower than Robson, MCS example and Sri Lanka study. This may be due to the relative contribution of group 2 to the overall CS rate which was low. The size of group 2 may also be contributed due to the misclassification of the pre-term as a term.
Step 9: Absolute contribution of group 5 to overall CS rate	NA	Responsible for 28.9% of all CS	Absolut e contribu tion: 8.87% Relative contribu tion: 29.59%	Absolut e contribu tion: 7.02% Relative contribu tion: 21.39%	-	The absolute contribution was not indicated in the WHO Robson manual, but our study finding was lower than the MCS example and Sri Lanka study.

STROBE_ Cross sectional Check list

2 3				
4 5				
6 7			Reporting Item	Page Number
8 9	Title and			
10 11	abstract			
12 13				
14 15	Title	<u>#1a</u>	Indicate the study's design with a commonly used	1
16			term in the title or the abstract	
17 18	Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced	1
19 20			summary of what was done and what was found	
21 22	Introduction			
23 24	mitoutetion			
25 26	Background /	<u>#2</u>	Explain the scientific background and rationale for	3
27	rationale		the investigation being reported	
28 29	Objectives	<u>#3</u>	State specific objectives, including any prespecified	4
30 31			hypotheses	
32 33				
34 35				
36 37	Methods			
38 39	Study design	<u>#4</u>	Present key elements of study design early in the	4
40			paper	
41 42	C atting a	45	Describe the setting description and selected data	4
43 44	Setting	<u>#5</u>	Describe the setting, locations, and relevant dates,	4
45 46			including periods of recruitment, exposure, follow- up, and data collection	
47 48			up, and data concerton	
49	Eligibility	<u>#6a</u>	Give the eligibility criteria, and the sources and	4
50 51	criteria		methods of selection of participants.	
52 53		<u>#7</u>	Clearly define all outcomes, exposures, predictors,	5
54 55			potential confounders, and effect modifiers. Give	
56 57			diagnostic criteria, if applicable	
58 59				
60		Fo	r peer review only - http://bmjopen.bmj.com/site/about/guidelines.xl	html

BMJ Open

1	Data sources /	<u>#8</u>	For each variable of interest give sources of data and	5,6
2 3	measurement		details of methods of assessment (measurement).	
4 5			Describe comparability of assessment methods if	
6 7			there is more than one group. Give information	
8 9			separately for for exposed and unexposed groups if	
10			applicable.	
11 12	Bias	#9	Describe any efforts to address potential sources of	6
13 14			bias	
15 16				
17 18	Study size	<u>#10</u>	Explain how the study size was arrived at	N/A, we have included all
19				laboring mothers during the
20 21				study period.
22 23	Quantitative	<u>#11</u>	Explain how quantitative variables were handled in	5
24 25	variables		the analyses. If applicable, describe which groupings	
26 27			were chosen, and why	
28 29	Statistical	<u>#12a</u>	Describe all statistical methods, including those used	6,7
30	methods		to control for confounding	,
31 32				
33 34	Statistical	<u>#12b</u>	Describe any methods used to examine subgroups	N/A, our study was purely
35 36	methods		and interactions	descriptive
37 38	Statistical	<u>#12c</u>	Explain how missing data were addressed	7
39	methods			
40 41	Statistical	#12d	If applicable, describe analytical methods taking	N/A, our study design
42 43	methods	<u></u>	account of sampling strategy	descriptive and no sampling
44 45				strategy used
46 47				
48	Statistical	<u>#12e</u>	Describe any sensitivity analyses	N/A, we used WHO Robson
49 50	methods			implementation manual to
51 52				assess misclassification
53 54				among Robson's group
55 56	Results			
57 58	Participants	#13a	Report numbers of individuals at each stage of	8
59	- un norpunto		r peer review only - http://bmjopen.bmj.com/site/about/guideline	
60		FÜI	peer review only - http://binjopen.binj.com/site/about/guideline	=3.4110111

Page 33 of 33

BMJ Open

1			study—eg numbers potentially eligible, examined	
2			for eligibility, confirmed eligible, included in the	
3 4			study, completing follow-up, and analysed. Give	
5 6			information separately for for exposed and	
7			unexposed groups if applicable.	
8 9		11.01		0
10 11	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	8
12 13	Participants	<u>#13c</u>	Consider use of a flow diagram	8, we used text description
14				instead of flow diagram
15 16		11.1 4		
17 18	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg	8,9
19			demographic, clinical, social) and information on	
20 21			exposures and potential confounders. Give	
22 23			information separately for exposed and unexposed	
24			groups if applicable.	
25 26	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for	9, 10
27 28			each variable of interest	
29 30				
31	Outcome data	<u>#15</u>	Report numbers of outcome events or summary	9, 10, 11
32 33			measures. Give information separately for exposed	
34 35			and unexposed groups if applicable.	
36 37	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable,	N/A, our study was
38			confounder-adjusted estimates and their precision	descriptive
39 40			(eg, 95% confidence interval). Make clear which	
41 42			confounders were adjusted for and why they were	
43 44			included	
45		11.0		0.10.11
46 47	Main results	<u>#16b</u>	Report category boundaries when continuous	9,10,11
48 49			variables were categorized	
50	Main results	<u>#16c</u>	If relevant, consider translating estimates of relative	N/A, our study was
51 52			risk into absolute risk for a meaningful time period	descriptive
53 54	Other englyses	#17	Depart other englyses done as a englyses of	N/A our study was
55 56	Other analyses	<u>#17</u>	Report other analyses done—e.g., analyses of	N/A, our study was
57			subgroups and interactions, and sensitivity analyses	descriptive
58 59				
60		For	r peer review only - http://bmjopen.bmj.com/site/about/guidelines	s.xhtml

1 2	Discussion			
3 4 5 6	Key results	<u>#18</u>	Summarise key results with reference to study objectives	14
7 8 9 10 11 12	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.	14
13 14 15 16 17 18 19 20	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence.	14-18
21 22 23 24 25	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study results	14
26	Other			
27 28 29	Information			
$\begin{array}{c} 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\end{array}$	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	19
59 60		Fo	r peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	