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Supplemental Methods 

Datasets assembly 

Published microarray datasets containing transcriptomic data from AML patient samples were 

downloaded from the Gene Expression Omnibus (GEO) database, which was queried for the 

following terms: “AML”, “Acute Myeloid Leukemia”, “Leukemia”, “Bone marrow” and 

“hematopoietic”. AffymetrixTM GeneChip Human Genome U133 Plus 2.0 Array data were used 

in this study. AffymetrixTM data were downloaded as raw CEL files from the GEO database. 

Samples were annotated using Supplemental annotation files available on the GEO database and 

using detailed annotation files published in corresponding articles. To increase robustness and 

reduce unknown covariate effects during data analysis, we excluded: (1) datasets with less than 20 

samples; (2) samples with undefined tissue of origin, cell type or cytogenetic abnormality; (3) 

samples corresponding to sorted cells; and (4) Refractory anemia with excess blasts (RAEB) 

samples. 

 

Quality control and normalization 

The R/Bioconductor1,2 Simpleaffy and arrayQualityMetrics packages were used to extract quality 

measurement of microarrays.3,4 RNA degradation was evaluated by assessing 3’ to 5’ ratio of 

GAPDH and beta-actin transcripts, where a cutoff of 1 and 3 were set, respectively. Hybridization 

quality was examined using hybridization spike-in controls (BioB, BioC, BioD and Crex) and 

percent present values. Samples were excluded due to low quality, which was defined according 

to the recommendations of Affymetrix, based on different criteria including scale factor, 

hybridization quality (bioB), RNA degradation, Normalized Unscaled Standard Error (NUSE) and 

Relative Log Expression (RLE). Samples with array-intensity beyond 3-folds, as compared to the 

median intensity across arrays, were referred to as “technical” outliers and hence excluded 5. High 

quality AML samples (N=1534), retained after quality control (Supplemental tables 1-2), were 

background corrected and RMA normalized using RMAexpress software 

(http://rmaexpress.bmbolstad.com/).  

 

 

http://rmaexpress.bmbolstad.com/
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Differential gene expression and enrichment analyses 

Pairwise comparisons between each of the 10 main AML karyotypes and the normal control 

samples were performed using Statistical Analysis of Microarrays (SAM)6 after global batch 

adjustment of all samples.7 A cutoff with log2-fold change (FC) >1.5 and Q value <.05 was applied 

for differential gene expression analysis. To identify genes with robust differential expression, the 

list of commonly deregulated genes (CODEG) was narrowed down to those that also passed the 

cutoff, 1) in the absence of batch adjustment and 2) after pairwise batch adjustment between each 

karyotype and control samples. Batch adjustment was performed using supervised algorithm 

implemented in ComBat R/Bioconductor package by including samples karyotype as covariate of 

interest in the equation.8,9 Cytogenetic groups with less than 5 samples were eliminated from 

comparisons. 

Enrichment analysis on gene ontology biological processes (GO BP) was conducted in 

R environment using the Bioconductor’s topGO package.10 Only genes that are mapped to 

AffymetrixTM plus 2 platform were used as a background reference. GO terms with less than 10 

genes were removed from the analysis. Terms were considered significant when 5 or more 

enriched genes with weighted-Fisher P value below .05. Significant terms were ranked by fold-

enrichment, and up to 20 terms were visualized with circos plots using Circlize package in R 

environment 11. Protein-protein interaction (PPI) scores were extracted from STRING database.12 

PPI and GO networks were built using Cytoscape software.13 

Normalized GSE76009, GSE65625, GSE83533 and GSE24759 datasets were downloaded from 

the GEO database, and the probeset with the highest average intensity was selected for each gene. 

For GSE76009 and GSE65625 datasets. Gene Set Enrichment Analysis (GSEA)14,15, was 

performed using default settings with 1000 phenotype permutations, whereas for GSE24759 

dataset, which has a small number of samples per phenotype, analysis was performed with 1000 

gene set permutations. Comparisons with nominal P value <.05 and FDR <.05 were considered 

significant. Of note, among the 330 differentially expressed genes, a total of 256, 320 and 305 

were detected in GSE24759, GSE76009 and GSE65625 datasets, respectively. 

 

Methylation and gene mutation analysis 
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Methylation (HM450) beta-values, RNA sequencing expression levels (RNA Seq V2 RSEM, 

Illumina GA-IIX), and mutation data from whole exome or genome sequencing for genes of 

interest were downloaded from the AML TCGA dataset using cbioportal’s cgdsr package in R 

environment.16,17 

 

Validation datasets 

Microarray analysis 

The score was validated on five independent cohorts from four microarray datasets, GSE689118, 

GSE1035819, GSE1241720, and ALFA-0701.21 Clinical annotations and treatment protocols are 

described in corresponding publications. Raw AffymetrixTM CEL files for these datasets were 

downloaded from the GEO database and individually normalized using RMA algorithm22. For 

each dataset, a representative probeset with the highest average intensity was selected for each 

gene. The CODEG22 score calculation and patient stratification were performed as described 

above. For GSE6891 dataset, clinical annotations for 279 patients were collected from the 

Leukemia-Gene-Atlas website (http://www.leukemia-gene-atlas.org/LGAtlas/).23 For GSE10358 

dataset, clinical annotations for 223 patients were collected from the GEO database and the 

corresponding articles.19,24 

 

RT-qPCR analysis 

The score was also validated on a retrospective cohort of 142 patients from the French Innovative 

Leukemia Organization (FILO, N° BB-0033-00073, Goelamsthèque/FILOthèque Cochin hospital, 

Paris). Briefly, primary leucoblasts were obtained after informed consent from BM samples of 

patients with hyperleucocytic AML (Supplemental Table 19-20). RNA purity was analyzed using 

Agilent 2100 Bioanalyzer (Agilent Technologies, Les Ulis, France). One microgram of RNA were 

reverse transcribed using the SuperScript® VILOTM cDNA Synthesis kit (Invitrogen, Paris, 

France). RT-qPCR reactions were performed on three ng of cDNA using LightCycler® 480 Probes 

Master (Roche). Samples were subjected to initial denaturation step (5 min, 95°C), followed by 45 

PCR cycles (10 s, 95°C, then 30 s, 60°C) and a final cooling step (30 s, 40°C). Triplicates of each 

sample were analyzed using the Cycle threshold (Ct) values determined with the LightCycler® 

http://www.leukemia-gene-atlas.org/LGAtlas/
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480 software. The geometric Ct mean of human GAPDH and EF1A were used as endogenous 

control to normalize the expression of target genes: ΔCT = “Ct target” – “Ct reference geomean”. 

ΔCT values for each patient are presented in Supplemental Table 19. The CODEG22 score was 

calculated for each patient from -ΔCT after gene-wise scaling and centering, as described above. 

The sequences of primers and probes are documented in Supplemental Table 22.  

 

Survival analysis 

Relapse-free survival (RFS) was defined as the time from complete remission (CR) until relapse, 

death, or last follow-up. Overall survival (OS) was defined as the time from AML diagnosis until 

death or last follow-up. Event-free survival (EFS) was defined as the time from diagnosis until an 

event occurred (induction failure, relapse or death) or last follow-up. Survival analysis was done 

as described previously.25 Briefly, survival curves are visualized using Kaplan-Meier26 plots and 

comparisons between categories were performed using Mantel-Cox Log-Rank test.27 Cox 

proportional hazard (CPH) regression was used to perform univariate and multivariate analyses28. 

Violation of the proportional hazards assumption was examined using Schoenfeld residuals29. 

Wald’s test was used to evaluate the significance of individual regression coefficients, and the 

Likelihood Ratio Test (LRT) was used to evaluate the global significance of multivariate models. 

Survival analysis was performed and visualized in R environment using survival30 and survminer31 

packages, respectively. 
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Supplemental Results 

The expression profile of CODEGs correlates with their methylation profile 

We hypothesized that the high frequency of downregulated genes in CODEGs could be associated 

with CpG hypermethylation in AML. Therefore, the methylation profile of both up- and 

downregulated genes was investigated in the AML methylation dataset from TCGA. As expected, 

the majority of downregulated genes (71%) were highly methylated, with CpG methylation level 

above 30%, whereas most of the upregulated genes (78%) were hypomethylated in AML samples 

(Supplemental Figure 8A). Next, the methylation of CODEGs was examined in association with 

the mutational status of DNA methylation regulators that are frequently mutated in AML. 

Interestingly, the methylation of 25 genes, all downregulated except PDGFC, was increased in 

association with mutations in the positive demethylation effectors IDH1/2, TET1/2 and WT1 

(Supplemental Table 23 and Supplemental Figure 8B). In addition, the methylation of 33 genes, 

all downregulated except ATP6V0A2, was decreased in correlation with inactivation mutations in 

DNA methyltransferase (DNMT) enzymes (Supplemental Table 23 and Supplemental Figure 8B). 

Of note, the DNA methylation of five genes (ADGRG3, FAR2, VNN3, GSAP, and FGR) was 

epigenetically associated with mutations in both groups of methylation regulators. Together, these 

results suggest that the expression of downregulated CODEGs may rely on epigenetic regulation. 

We also examined whether CODEGs contained genes that are known to be mutated in AML. Only 

two such genes, FLT3 and DNMT3A, were found after examining the mutational status in the 

TCGA AML dataset (Supplemental Figure 9). Thus, the increased expression of these two genes 

may play a major role, independent of their mutation status, in all AML subgroups. 

High CODEG22 correlates with poor survival in AML patients of various cytogenetic groups 

The prognostic value of the model was independently verified on 2 well-annotated and 

heterogeneous AML microarray datasets: GSE6891 (Supplemental Tables 24 N=279)18 and 

GSE10358 (Supplemental Table 16, N=223).19 Interestingly, a High CODEG22 score was 

associated with poor OS and EFS in both datasets (Figure 5A-B). Indeed, High score patients 

showed shorter median OS and EFS times compared to Low score patients, both in GSE6891 

(Supplemental Table 24, OS: 16.59 vs 85.78 months, p = .0021; EFS: 9.43 vs 16.51, p = .0034) 

and GSE10358 (Supplemental Table 16, OS: 14.4 months vs not reached, p <.001; EFS: 9.7 vs 
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29.7 months, p <.001). Similarly, a High score was also associated with poorer survival probability 

in both GSE6891 (Figure 5A and univariate model in Supplemental Table 25, OS HR=1.57 a 

p = .007; EFS HR=1.53 with p = .007) and GSE10358 (Figure 5B and Supplemental Table 26, OS 

HR=2.53 with p <.001; EFS HR=1.53 with p <.001). Results also showed that CODEG22 score 

was neither associated with gender, karyotype, NPM1 mutations and FLT3ITD status in both 

datasets (Supplemental Tables 16 and 24), nor with blasts percentage and WBC in the GSE10358 

dataset (Supplemental Table 16). Moreover, the CODEG22 score remained prognostic after 

adjustment for age and cytogenetic abnormalities, both in GSE6891 (Supplemental Table 25, OS 

HR=1.49, p = .018; EFS HR=1.54, p = .008) and GSE10358 (Supplemental Table 26, OS 

HR=2.01, p = .001; EFS HR=1.83, p = .002). Interestingly, the addition of the CODEG22 score 

(multivariate model 2) to the model containing age and cytogenetic abnormalities (multivariate 

model 1) increased the model’s predictive value in GSE6891 dataset based on Likelihood-Ratio-

Test (LRT) assessment (Supplemental Table 25, OS LRT p = .0351; EFS LRT p = .0154). This 

proves that the predictive power of the CODEG22 score is independent of age and cytogenetic 

abnormalities. 

High CODEG22 correlates with poor survival in the Beat-AML RNA-seq data set 

The Beat-AML RNA-seq dataset was downloaded from the Supplemental data of the work done 

by Tyner et al. (Tyner et al., 2018). The dataset offers whole-exome-sequencing, clinical 

annotation, and RNA-seq data for 451 AML samples. It is worth noting that only 277 samples are 

collected from AML patients at diagnosis, whereas 174 samples are either from MDS/MPN 

patients (n=12) or from relapsed AML specimen. Because our main objective from this data was 

to further validate the prognostic power of our model, we used the diagnosis subset of this dataset 

to test the CODEG22 signature. 

Our analysis showed that patients with high CODEG22 score in the Beat-AML dataset showed 

shorter overall-survival (OS) (Supplemental Table 27: OS time: 10.46 vs 23.19 months, and 

Figures 10A-B), and a poorer survival probability (Supplemental Table 28: univariate model: 

HR=1.71 and p=0.004), compared to patients with low score. Interestingly, high score was also 

associated with higher relapse and lower complete response rates (Supplemental Table 27). The 

correlation of high score with poor OS outcome was maintained for patients with CA-AML 

(Supplemental Figure 10C: OS p<0.001), as well as for patients belonging to the ELN poor risk 
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group (Supplemental Figure 10D: OS p=0.02). In contrast to the other validation datasets, the score 

was not prognostic within the CN-AML subset (data not shown). This is probably due to the 

correlation between our score and the mutational status of NPM1 in this particular cohort 

(Supplemental Table 27). 

Nevertheless, CODEG22 remained prognostic in multivariate Cox-regression-analysis of the 

whole cohort after adjustment for age, cytogenetic risk, NPM1 mutation, FLT3ITD, biallelic 

CEBPA, TP53 mutation and other recurrent mutations (Supplemental Table 28: CODEG22-High 

HR=1.81 and p=0.045). In addition, the inclusion of CODEG22 in the multivariate model 

improved its overall prognostic power (LTR p-value decreased from 1.23x10-5 to 5.18x10-6). 

Taken together, these data further confirm that our score offers independent prognostic information 

that is not captured by recurrent mutations or by other currently used prognostic factors. 

It is worth noting that CODEG22 outperformed the LSC17 score in this dataset when both scores 

were included in the same model (Univariate analysis: HR = 1.71 and P = 0.004 vs. HR = 1.67 and 

P =  0.006; Multivariate analysis: HR = 1.47 and P = 0.099 vs. HR = 1.37 and P = 0.203). 

 

 

Description of the up-regulated CODEGs. 

ANKRD28: ankyrin repeat domain 28, also called KIAA0379, is putative regulatory subunit of 

protein phosphatase 6 (PP6) that may be involved in the recognition of phosphoprotein 

substrates.32 ANKRD28 has been reported to be upregulated in CML33, and was identified as an 

NUP98 fusion partner in a case of secondary AML.34 

ATP6V0A2: V-type proton ATPase 116 kDa subunit a isoform 2 is part of the proton channel of 

V-ATPases. It is an essential component of the endosomal pH-sensing machinery that have been 

shown to activate prolyl hydroxylases (PHD) leading to the degradation of HIF-1alpha35. 

ATP6V0A2 is one of 33 genes among CODEGs that we identified as hypomethylated in association 

with DNMTs mutations. Notedly, it has been reported to be epigenetically regulated in association 

with mutations in epigenome-modifying enzymes in AML.36 
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CDK6: Cyclin-dependent kinase 6 is a serine/threonine-protein kinase involved in the control of 

the cell cycle and differentiation. Indeed, CDK6 has been found to be required for the progression 

of MLL-rearranged AML37 and identified as key regulator in the activation of LSCs.38 CDK 

inhibitors have been used to treat a wide spectrum of cancers.39-42 

DNM1: Dynamin-1 is a microtubule-associated force-producing protein that is required for 

clathrin-mediated endocytosis and mitochondrial division. DNM1 has been shown to be 

abnormally expressed in lung and colorectal cancers.43 Together with DNM2, DNM1 is proposed 

as potential therapeutic target in cancer.44 

DNMT3A: DNA (cytosine-5)-methyltransferase 3A is essential for genome-wide de novo 

methylation. It is one of the most frequently and early mutated genes in AML in association with 

a loss of methylation activity and poor prognosis.45,46 

FLT3: It is a tyrosine-protein kinase that acts as cell-surface receptor for the cytokine FLT3LG 

and regulates differentiation, proliferation and survival of hematopoietic progenitor cells. 

Interestingly, FLT3, a hallmark of high risk AML and associated with high percentages of BM 

blasts 47, showed the highest fold-increase in all AML samples, compared to control samples. FLT3 

inhibitors have shown promising results in treating AML patients harboring FLT3 mutations.48 

Indeed, combination therapy targeting several aberrant pathways could be used in the future to 

improve the response to treatment in resistant patients.49 

MIB1: mindbomb E3 ubiquitin protein ligase 1 is an E3 ubiquitin-protein ligase that was proposed 

to disassemble the centriolar satellites and suppress ciliogenesis by marking fold protein 

pericentriolar matrix protein 1 (PCM1) for proteasomal degradation.50,51 MIB1 also regulates all 

known canonical Notch ligands in the Notch signal-sending cells.52 MIB1’s conditional knockout 

in mice models leads to myeloproliferative disease53, however, this was attributed to defective 

signaling in the microenvironment rather than hematopoietic cells.54,55 Since Notch activation 

mediates multilineage potential while its downregulation is associated with differentiation56, it is 

thereby possible that the increased expression of MIB1 in AML bone marrow could be linked to 

AML differentiation blockage. 

MLLT11: MLLT11 transcription factor 7 cofactor, also called AF1Q. The overexpression of 

MLLT11 is associated with poor prognosis in AML57, and resistance to imatinib in CML58 and is 
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involved in the progression of ovarian and bladder cancers59,60. Translocation between KMT2A 

and MLLT11 has been reported in AML.61 

NRXN2: Neurexin-2 is a neuronal cell surface protein that may be involved in cell recognition 

and cell adhesion. It is one of three genes that have been found to harbor age-related 

hypomethylation CpG sites in human monocytes.62  

PDGFC: Platelet-derived growth factor C is a member of PDGF family that is essential for the 

regulation of a range of biological processes from embryonic development, to cell proliferation, 

angiogenesis and cell migration.63 PDGFs have been proposed to promote the proliferation of 

AML blasts while AML-secreted PDGFs was suggested to modulate the bone marrow 

microenvironment.64 PDGFs are known to mediate oncogenic signaling, and PDGFC autocrine 

signaling is reported to promote the progression of breast cancer65 and fibrocarcinoma.66 

Therefore, many specific antibodies and small molecules inhibitors have been developed to target 

PDGF signaling in cancer.67 It is worth noting that PDGFC was downregulated in the two 

cytogenetic groups harboring MLL fusion mutations in contrary to the other cytogenetic groups. 

PLEKHA5: Pleckstrin homology domain containing A5. Its expression in melanoma was 

associated with early development of brain metastasis68, and was thereby proposed as potential 

therapeutic target.69 

RABEP2: rabaptin, RAB GTPase-binding effector protein 2, also called FRA, is a member of the 

rabaptin family and a component in the endosomal vesicle trafficking complex.70 It was found to 

be associated with poor prognosis in AML.71  

SOX4: SRY-box 4 is a member of the SOX transcription factors and is crucial for embryogenesis 

and the development of many tissues. It promotes survival, proliferation, epithelial mesenchymal 

transition as well as metastasis in a multitude of cancers.72 SOX4 is a poor prognostic marker in 

AML.73 Its expression has been reported to be increased in AML samples harboring t(8;21) 

translocation74, and was found to contribute to AML progression in CEBPA mutant AML.75 

SINHCAF: SIN3-HDAC complex-associated factor, also called FAM60A, is a member of the 

SIN3A–HDAC (histone deacetylase) complex that is a master transcriptional repressor.76 

SINHCAF is required for self-renewal in embryonic stem cells77, and is reported to act as repressor 
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of HIF2A.78 It was recently reported to be transcriptionally upregulated within a population of 

immune-evading AML cells that is enriched in LSCs.79 

SPINK2: is a serine protease inhibitor of the Kazal type (SPINK) that is highly expressed in 

HSCs80, LSCs81 and in most leukemia cell lines.82 It was recently reported as poor prognostic 

marker in AML.83 This gene was among the top downregulated genes in apoptotic chronic 

lymphocytic leukemia (CLL) cell lines after treatment with arsenic trioxide.84 It is worth noting 

that although globally upregulated in AML, SPINK2 is down-regulated in t(8;21) subtype 

compared to normal bone marrow. 

TGIF2: TGFB induced factor homeobox 2 is a transcriptional co-repressor that represses TGFB 

signaling by interacting with TGFB-activated SMAD proteins.85 TGIF2 was shown to promote 

colon cancer86, osteosarcoma87 as well as HBV-associated hepatocarcinogenesis.88 It was also 

found to be upregulated in LSCs in AML.80 

ZBTB8A: Zinc finger and BTB domain-containing protein 8A, also called BOZF1, is a member 

of the POZ domain and Krüppel-like zinc finger (POK) family of proteins that regulate apoptosis 

and cell cycle. It has been found to be upregulated in many cancers and was shown to stimulate 

cell proliferation through the inhibition of p53 and p21.89 

ZBTB10: is a zinc finger and BTB domain-containing protein, also called RINZF. It has been 

found to be increased in LSCs.90 However, it is also a repressor of Specificity protein (SP) family 

of transcription factors and is activated by reactive oxygen species (ROS) downstream a wide 

spectrum of ROS-inducing anticancer agents.91-93 
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Supplemental Figure 1. Quality control assessment of the samples. (A) Representative figure 

showing quality control assessment of 500 samples. (B) principal component analysis on batch-

adjusted bone marrow samples. colors represent different batches. 
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Supplemental Figure 2. Interaction and Gene ontology (GO) enrichment analysis of CODEG 

genes. (A) Protein-protein interaction network analysis of CODEG genes based on STRINGdb. 

Node size is proportional to number of undirected edges while edge size and transparency are 
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proportional to interaction scores. Red and blue colors are used to label up- and down-regulated 

genes, respectively. (B) Circos plots visualizing the most significantly enriched “Biological 

process” GO terms alongside their corresponding genes for both up- and down-regulated subsets. 
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Supplemental Figure 3. Average expression profile of up- and downregulated CODEGs 

throughout AML maturation. * Wilcoxon test, p<0.05. 
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Supplemental Figure 4. Venn diagrams comparing CODEGs to previously reported HSC 

and LSC signatures. 
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Supplemental Figure 5. Boxplots showing the expression of upregulated CODEG22 genes 

in paired diagnosis and relapse AML samples from GSE66525. Wilcoxon test: * p < 0.05; ** 

p < 0.01; ns, not significant. 
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Supplemental Figure 6. Boxplots showing the expression of upregulated CODEG22 genes in 

paired diagnosis and relpase AML samples from GSE83533 (RNA-seq). Wilcoxon test: * p < 

0.05; ** p < 0.01.  
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Supplemental Figure 7. OS and EFS analysis of CODEG22 score in intermediate and poor 

risk groups from A) GSE6891 and B) GSE10358 data sets. 
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Supplemental Figure 8. Methylation profile of deregulated genes. A) Methylation profile of 

271 deregulated genes and correlation with gene expression level in the TCGA AML dataset 



26 

 

(n = 170 samples). The heatmap columns and rows are clustered using Euclidean distance and 

average method. The mutational profile of many genes known to regulate DNA methylation is 

presented on top of the heatmap. B) Venn diagram highlighting deregulated genes, which DNA 

methylation level was associated with the mutation of methylation regulators. Hyper: group of 

patients harbouring inactivation mutations in the DNA demethylation effectors: IDH1/2, TET1/2 

or WT1 with no mutations in the DNMTs. Hypo: group of patients harbouring inactivation 

mutations in the DNA methyltransferases DNMT1, DNMT3A or DNMT3B with no mutation in 

the DNA demethylation effectors. None: group of patients without mutations in any of the DNA 

methylation regulators. Genes in the “Hyper” vs “None” comparison circle (blue) were hyper 

methylated in “Hyper” compared to “None” group. Genes in the Hypo vs None circle (red) were 

hypomethylated in “Hypo” compared to “None” group. An alteration in DNA methylation level 

by 10% with adjusted P value <.05 was considered significant. 
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Supplemental Figure 9. Mutational profile of deregulated genes. The mutational profile of 

genes that showed at least one missense mutation in the AML dataset from TCGA (N=173) is 

presented. B) Methylation profile of 271 deregulated genes and correlation with gene expression 

level in the TCGA AML dataset (n = 170 samples). The heatmap columns and rows are clustered 

using Euclidean distance and average method. The mutational profile of many genes known to 

regulate DNA methylation is presented on top of the heatmap. 
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Supplemental Figure 10. Stratification of patients from the Beat-AML cohort based on high 

and low CODEG22 score. (A) Overall survival (OS) curves of patients including all cytogenetic 

abnormalities (n=248). (B) OS curves of non-APL patients (n=236). (C) OS of patients with 

cytogenetically abnormal AML (CA-AML, n=116). (D) OS of patients from the poor cytogenetic 

risk group (n=81). CODEG22 scores above and below the median are labelled High (in red) and 

Low score (in blue), respectively. Log-rank test was used to compare the survival curves of High 

and Low score subsets. 

 

 


