Supplemental Data - Herrmann et al.: Supplement to Manuscript

Delineation of target expression profiles in CD34⁺/CD38⁻ and CD34⁺/CD38⁺ stem- and progenitor cells in acute (AML) and chronic (CML) myeloid leukemia

Patients and Methods

Antibodies and other reagents

A number of fluorochrome-conjugated monoclonal antibodies (mAb) were applied in this study (Table S1). For identification and phenotyping of normal and leukemic stem and progenitor cells (CD45⁺/CD34⁺/CD38⁻ and CD45⁺/CD34⁺/CD38⁺ cells), CD34 mAb 581, CD38 mAb HIT2, and CD45 mAb 2D1 or HI30 were applied as reported.¹ The screen-panel of mAb was established based on literature data and data obtained by gene array and qPCR screening. A specification of antibodies used in this study (n=93) is provided in Table S1. Most mAb were clustered in international workshops on human leukocyte differentiation antigens.^{2,3} RPMI 1640 medium and fetal calf serum (FCS) were purchased from PAA laboratories (Pasching, Austria), ³H-thymidine from Perkin Elmer (Waltham, MA, USA), recombinant human (rh) granulocyte colonystimulating factor (G-CSF) from Amgen (Thousand Oaks, CA, USA) and from PeproTech (Rocky Hill, NJ, USA), rh interleukin-3 (IL-3) from Novartis (Vienna, Austria), rh stem cell factor (SCF) from PeproTech, and rh IL-2, rh EPO and rh SLIT2 from R&D systems (Minneapolis, MN, USA). The CD33-targeting drug gemtuzumab/ozogamicin (GO) (Mylotarg[®]) was kindly provided by Wyeth Austria. Midostaurin (PKC412) was purchased from LC Laboratories (Woburn, MA, USA), alemtuzumab (Mabcampath[®]) from Genzyme (Cambridge, MA, USA) and gilteritinib from Selleck Chemicals (Houston, TX, USA). The IL-2-diphtheria toxin-conjugate denileukin-diftitox was produced as reported.⁴ The human BCR/ABL1+ CML cell line KU812 was kindly provided by Dr. K. Kishi (Niigata University, Niigata, Japan) and was maintained in RPMI 1640 medium, 10% FCS, and antibiotics at 37°C. The identity of the cell line was confirmed in 2016 by the German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany) using nonaplex-PCR. After confirmation, these cells were passaged once and multiple aliquotes were stored in liquid nitrogen for subsequent experiments. Knock-down studies with shRNAs against CD25 were performed as published previously.⁵

Patients, diagnostic evaluations and follow-up examinations

A total of 274 patients with AML (121 females and 153 males), 97 patients with CML (47 females and 50 males) and 288 control cases were examined. The median age of our AML patients at diagnosis was 63 years (range: 19-92 years) and the median age of our CML patients at diagnosis was 55 years (range: 19-86 years). All patients gave written informed consent before bone marrow (BM) or peripheral blood (PB) samples were obtained. AML patients were classified according to criteria provided by the French-American-British (FAB) cooperative group and the World Health Organization (WHO).⁶⁻¹¹ AML patients in whom no CD34⁺ blast cells could be detected were excluded from the study. The patients' characteristics are shown in Table 1 (main text) and Tables S2 (CML) and S3 (AML). In the CML patients examined, diagnoses and

the phase of disease were established according to the WHO proposal.¹⁰⁻¹³ Of the 97 CML patients examined, 80 had chronic phase (CP), 9 had accelerated phase (AP), and 8 had blast phase (BP) of CML at the time of sampling. In 239 patients with AML, PB or BM cells (iliac crest or sternum) were analyzed at diagnosis or blast cell persistence after induction chemotherapy. In 42 of these patients, PB or BM samples were analyzed additionally at the time of relapse or disease progression or at the time of complete hematologic remission (CHR). In 35 patients with AML, PB or BM samples were only analyzed at the time of relapse or disease progression. In 82 patients with CML, PB or BM samples were analyzed at diagnosis and in 29 of these patients PB or BM samples were additionally analyzed at the time of disease progression or at CHR. In 15 patients, PB or BM samples were only analyzed at the time of disease progression. In our AML patients, routine BM investigations (morphology, cytogenetics, PCR) were performed at the time of diagnosis, prior to each chemotherapy cycle, and at the time of relapse. In the CML patients examined, karyotype studies were performed in 3-month intervals during the first year; and later, after 12 months, in 6-48 month-intervals, depending on the molecular response. In general, we followed the recommendations of the European Leukemia Net (ELN).¹¹⁻¹³ BCR-ABL1 mRNA levels were quantified in PB samples in 6-12 month intervals by qPCR and expressed as percent of ABL mRNA levels employing the International Scale (IS).¹¹⁻¹³ CML patients were treated with imatinib (400 mg daily per os) according to published guidelines.^{12,13} In case of resistance or intolerance against imatinib, patients were treated with a second- or third generation tyrosine kinase inhibitor (TKI): nilotinib, dasatinib or bosutinib.^{12,13} AML patients were treated with intensive chemotherapy, including 1-3 induction cycles (containing daunorubicin and ARA-C in first induction) and up to 4 consolidation cycles with high-dose ARA-C $(2x3 \text{ g/m}^2 \text{ on days } 1,3,5: \text{ age up to } 60 \text{ years})$ or intermediate-dose ARA-C $(2x1.5 \text{ g/m}^2)$ on days 1,3,5: age >60 years) or stem cell transplantation.¹⁴⁻²⁰ In those who were not eligible for intensive therapy (because of comorbidities or age or a clear pre-phase of a myelodysplastic syndrome, MDS) or refused chemotherapy, 5-azcytidine or experimental drugs were administered. Hydroxyurea (HU) was used as palliative cytoreductive drug. Survival and progression-free survival were captured in the follow up (until death or loss for follow up) in all patients. All patients gave their written informed consent before PB or BM samples were collected. Information about control patients is provided in Table S4 (other bone marrow-derived neoplasms) and Table S5 (lymphoma, normal bone marrow, premalignant conditions). Subgroup analyses were performed in patients with MDS (n=58), myelodysplastic/myeloproliferative overlap neoplasms (MDS/MPN) (n=23), and idiopathic cytopenia of undetermined significance (ICUS, n=40). Normal BM cells were purchased from Lonza (Basel, Switzerland) (n=17) or were obtained from patients with Non-Hodgkin's lymphoma (NHL) or Hodgkin's lymphoma (n=98) or patients with suspected BM neoplasm (n=24). Cord blood (CB) samples (n=26) were examined after written informed consent was obtained from mothers. All studies were approved by the ethics committee of the Medical University of Vienna.

Cell sampling and storage

A total number of 878 cell samples, including 381 AML samples, 202 CML samples and 295 control samples were analyzed. All samples were collected during routine investigations. BM aspirate samples were obtained from the iliac crest or sternum after local anesthesia. Stabilizer-free heparin (Biochrom AG, Berlin, Germany) was used as anticoagulant. Freshly obtained samples (PB, BM, CB) were subjected to flow cytometry analysis and/or isolation of mononuclear cells (MNC) using Ficoll. Isolated MNC were either used immediately or were frozen in liquid nitrogen until used. Frozen MNC and frozen CD34⁺ MNC were thawed using DNase type I, 100 U/mL (Sigma Aldrich, St. Louis, MO, USA) to prevent cell clumping. CB cells were examined as freshly isolated leukocytes (after erythrocyte lysis) or as MNC after Ficoll-isolation and short-term (18 hours) culture. All cells were stored in a local biobank. Biobanking was approved by the ethics committee of the Medical University of Vienna.

Flow cytometry and cell sorting

Phenotyping of CD34⁺/CD45⁺/CD38⁻ SC and CD34⁺/CD45⁺/CD38⁺ progenitor cells (in whole BM/PB/CB samples or MNC) was performed by multicolor flow cytometry as described¹ using combinations of fluorochrome-conjugated mAb shown in Table S1. Heparinized BM or PB cells (0.5-1.0 x 10⁶ leukocytes per tube) were incubated with various combinations of mAb at room temperature (RT) for 15 minutes. Then, erythrocytes were lysed in FACS-Lysing Solution (BD Biosciences, San José, CA, USA). In a subset of patients, phenotyping was (also) performed on freeze-thawed MNC (BM or PB) derived from patients with CML (n=44) or AML (n=17). No major differences in cell surface marker expression were found when comparing freshly obtained cells with freeze-thawed cells of the same samples (not shown). Flow cytometry was performed on a FACSCalibur or FACSCanto II (BD Biosciences) or Cytoflex S (Beckman Coulter). In our samples, 80,000 to 150,000 cells (thawed MNC) or 150,000 to 350,000 cells (fresh lysed cells) were acquired and expression of surface markers on CD34⁺/CD45⁺/CD38⁻ stem cells (SC) and CD34⁺/CD45⁺/CD38⁺ progenitor cells was determined by multi-color flow cytometry. The gating strategy is shown in Figure S1. Antibody-staining results were controlled by isotype-matched control mAb. For detection of biotinylated antibodies, cells were washed in phosphate-buffered saline (PBS) and stained with streptavidin-PE (BD Biosciences). Cells were then washed, and analyzed by flow cytometry using FlowJo software (TreeStar, Ashland, OR, USA) as reported.^{1,21} Staining results were expressed as a) percentage of reactive cells and b) as ratio of median fluorescence intensities (MFI) obtained with specific mAb and control mAb (MFI mAb : MFI control mAb) as reported.¹ This MFI ratio (= staining index, SI) was determined to compare expression levels of markers on leukemic stem cells (LSC) and progenitors in various patients' groups. SI values were graded using the following score: –, 0-1.3; +/–, 1.31-3; +, 3.01-10; ++, >10.

In 6 normal BM samples, 5 cord blood (CB) samples, 21 AML samples and in 7 CML samples (chronic phase, n=4, accelerated phase, n=3), primary CD34⁺/CD38⁻ cells and CD34⁺/CD38⁺ progenitor cells were purified to homogeneity by cell sorting on a FACSAria (Becton Dickinson) as described.¹ The purity of immature, sorted, CD34⁺/CD38⁻ stem cells amounted to >95%. In a subset of patients (n=3), CML cells were pre-enriched as CD34⁺ cells by magnetic cell sorting (MACS; Miltenyi Biotec, Bergisch Gladbach, Germany). In 6 patients with AML, cells were depleted from CD3⁺ cells by MACS (Miltenyi Biotec).

Selection of markers and targets for further validation: markers were mainly selected based on their specificity for LSC (expressed on LSC but not on normal stem cells and preferably not on LSC in other forms of leukemia) and targets were expressed primarily based on i) more or less specific expression on LSC, ii) stability of expression on LSC (on LSC in most patients and also at both, diagnosis and relapse) and iii) the availability of targeted drugs (antibody-type or small molecules).

To estimate numbers of surface molecules per cells, the quantibrite PE fluorescence quantitation kit (BD Biosciences) was applied. In brief, beads were resuspended in 500 μ l PBS containing 0.1% bovine serum albumin (Sigma Aldrich) and acquired on a FACSCanto II. Using an appropriate isotype-matched mAb, the SI was calculated for the four beads-populations laden with different amounts of PE molecules in the same way as for leukemic cells. Staining intensities obtained with beads were then correlated with expression levels of surface molecules (in SI) obtained in our staining experiments with LSC. To estimate the numbers of PE-molecules per cell (antibody molecules bound to the cell surface) a PE-molecule to antibody ratio of 1:1 was assumed. The limit of detection was 100 sites per cell corresponding to an SI of 1.6.

Incubation of cells with cytokines and targeted drugs and evaluation of proliferation, apoptosis and cell surface marker expression

In a subset of patients, unfractionated MNC or purified stem- and progenitor cells were incubated with recombinant human (rh) cytokines, including granulocyte colony-stimulating factor (G-CSF, 100 ng/ml), stem cell factor (SCF, 100 ng/ml), interleukin-3 (IL-3, 100 ng/ml) or a cocktail of cytokines (G-CSF+SCF+IL-3; each 100 ng/ml). In select experiments, cells were incubated with the ROBO4 ligand rh SLIT2 (100 ng/ml), IL-2 (100-2,000 ng/ml) or EPO (10 U/ml). In another set of experiments, cells were incubated in the absence or presence of targeted drugs: the IL-2R-targeted drug denileukin-diffitox (KU812 cells: 0.01-10 μ g/ml; primary CML cells: 10-100 μ g/ml),

the CD33-targeted antibody-conjugate gemtuzumab/ozogamicin (GO, 0.01-5 µg/ml), the multi-targeting FLT3/KIT drug midostaurin (0.01-5 μ M), the FLT3-targeting drug gilteritinib (0.1-1 μ M) or the CD52-targeted drug alemtuzumab (100-500 μ g/ml). After 48 hours, cells were examined for uptake of ³H-thymidine (purified LSC), or the expression of surface markers (CD26 on LSC), or the percentage of apoptotic cells (LSC and KU812) by flow cytometry as published previously.^{1,5} Drug effects on apoptosis in LSC were examined by combined staining for surface markers (gating for CD34⁺/CD38⁻ and CD34⁺/CD38⁺ cells) and AnnexinV (eBioscience, San Diego, CA, USA). 4',6-diamidino-2-phenylindole (DAPI, 0.4 µg/ml) (Sigma Aldrich) was used to exclude non-viable cells. Effects of GO and alemtuzumab on absolute numbers of viable LSC were examined using CountBright absolute counting beads (Invitrogen, Carlsbad, CA, USA) essentially as described.²² For all *in vitro* experiments, cells were incubated in RPMI 1640 medium plus 10% FCS, penicillin/streptomycin and amphotericin B (each 1%). In drug incubation experiments with alemtuzumab, RPMI 1640 medium was supplemented with 30% complement-containing human serum. Effects of denileukin-diftitox on KU812 cells transduced with a random shRNA and KU812 cells transduced with shRNA against CD25 were analyzed after 48 hours of drug incubation by caspase-3 (BD Biosciences) staining and flow cytometry.⁵

Xenotransplantation model

NOD.Cg-*Prkdc^{scid} Il2rg^{tm1Wjl}*/SzJ mice (NSG mice) were purchased from Jackson Laboratory (Bar Harbor, ME, USA). NSG mice were kept under stringent aseptic (sterile) conditions. Twenty-four hours prior to injection, mice were irradiated in flat (sterile) irradiation-cages (2.4 Gy). In typical experiments, T cell-depleted AML cells

or sorted CD34⁺ CML cells (all samples obtained at diagnosis) were injected into adult NSG mice (5 mice per group). Prior to injection, cells were incubated in control medium (RPMI 1640 medium plus 10% FCS plus 30% human serum plus solvent control), GO (5 μ g/ml), alemtuzumab (500 μ g/ml), or a combination of GO+alemtuzumab, for 1 hour at 37°C. Then, cells were resuspended in RPMI medium with 10% FCS and injected into the lateral tail vein of adult female NSG mice (1.5-15x10⁶ AML cells, 0.5-1.0x10⁶ CD34⁺ CML cells). After injection, mice were inspected daily and sacrificed as soon as they developed disease-symptoms or after a maximum observation period of 15 weeks (AML) or 27 weeks (CML). Then, mice were sacrificed, and the long bones (humeri, tibiae, and femura) were flushed to recover BM cells for flow cytometry essentially as described.¹ Multicolor flow cytometry was performed using mAb against human CD19, CD33, and CD45. TO-PRO-3 (Invitrogen) was used to exclude non-viable cells. Engraftment was defined as a population of at least 0.01% human CD45⁺ cells in flushed mouse BM samples. Animal studies were approved by the ethics committee of the University of Veterinary Medicine Vienna (Austria), and were carried out in accordance with guidelines for animal care and protection and protocols for experimental animal housing and studies approved by Austrian law (BMWFW-68.205/0050-WF/V/3b/2015).

Gene array studies

To define mRNA expression patterns in CD34⁺ cell subsets in AML, CML and normal BM samples, sorted cells (CD34⁺/CD38⁻ and CD34⁺/CD38⁺) were subjected to gene array analysis. Total RNA was extracted from sorted cells using RNeasy kit (Qiagen, Hilden, Germany). Total RNA (100 ng) was then used for GeneChip analyses.

Preparation of terminal-labeled cRNA, hybridization to genome-wide human PrimeView GeneChips (Affymetrix, Santa Clara, CA, USA) and scanning of the carried according to manufacturer's arrays were out protocols (https://www.affymetrix.com). Robust Multichip Average (RMA) signal extraction and normalization were performed as described (http://www.bioconductor.org/).^{23,24} Changes in mRNA expression levels were calculated as mRNA ratio of CD34⁺/CD38⁻ cells when comparing normal BM hematopoietic stem cells (HSC) with LSC (AML or CML). To calculate differential gene expression between individual sample groups, we performed a statistical comparison using the LIMMA package as described previously.²⁵ Briefly, LIMMA estimates the 'fold-change' between predefined sample groups by fitting a linear model and using an empirical Bayes method to define the standard errors of the estimated log-fold changes for each probe set.²⁶

Potential SC markers were reviewed and grouped into non-clustered and clustered surface antigens. In a next step, most upregulated surface antigens that have a defined SC-related function or are known as potential targets were selected. These antigens were re-examined in purified LSC and normal stem cells by qPCR and surface phenotyping. The top-upregulated surface antigens (mRNA) in AML LSC and CML LSC compared to normal BM stem cells are shown in Table S13B. The top-upregulated surface antigens in CML LSC compared to more mature CML progenitors are shown in Table S18. A heat map of regulated genes in AML and CML LSC is depicted in Figure 2 in the main text of the manuscript and in Figure S3. A complete list of all expressed mRNA species is available at Gene Expression Omnibus:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE138883&token=glmjuauafp qbxij

Quantitative PCR (qPCR)

To confirm marker expression at the mRNA level, qPCR was performed using primers specific for markers and target antigens and control-antigens (huABL). Experiments were performed on mRNA derived from sorted CD34⁺/CD38⁻ and CD34⁺/CD38⁺ cells (AML, n=14; CML, n=4; cord blood, n = 4; normal BM, n=3). Total RNA was extracted using the RNeasy Micro Kit (Qiagen). cDNA was synthesized using Moloney murine leukemia virus reverse transcriptase (Invitrogen), random primers, dNTPs (2 mM) (both from Invitrogen), and Rnasin (Promega, Madison, WIS, USA) according to the manufacturer's instructions. PCR was performed using primers (Eurofins, Ebersberg, Germany) shown in Table S6. mRNA levels were quantified on a 7900HT Fast Real-Time PCR System or Quantstudio 3 (both from Applied Biosystem, Foster City, CA, USA) using iTAq SYBR Green Supermix with ROX (Bio-Rad, Hercules, CA, USA), as described.²⁷ PCR conditions were: hold stage: 2 minutes at 50°C, 2 minutes at 95°C (denaturation); PCR stage: 15 seconds at 95°C, 1 minute annealing and extension at 60°C (40x cycles); melt curve stage: 15 seconds at 95°C, 15 seconds at 60°C, 15 seconds at 95°C. ABL served as a reference gene. Results are expressed as ΔCt values (= Ct_{ABL} - Ct_{GENE}). Samples with undetectable mRNA expression were set to a maximum Ct value of 38.

For the quantification of BCR/ABL1 transcript levels in patient-derived cells (routine PB or BM samples in the follow-up), we performed a qPCR using the BCR/ABL1 Mbcr FusionQuant® Mega Kit (Ipsogen, Marseille, France) and the LightCycler® 2.0-System (Roche, Mannheim, Germany). BCR/ABL1 levels were calculated and expressed according to the international scale (IS).²⁸⁻³⁰

Conventional cytogenetic studies and fluorescence in situ hybridization (FISH)

Conventional cytogenetics was performed in all patients with CML and AML at diagnosis. In patients with CML, cytogenetics was also performed routinely during follow-up at defined time-intervals, namely in 3 month-intervals during the first year; and after the first year in 3-12 month-intervals. In addition, cytogenetics (and FISH if necessary) was performed in all patients with (suspected) relapse. In most samples, at least 20 metaphases were examined in each sample. In case of questionable results or poor growth, FISH analysis was performed. Karyotypes were reported according to available guidelines.³¹ In patients with CML, results were expressed as percent Phchromosome-positive metaphases (of all metaphases examined). In order to confirm the clonal origin of sorted stem cells (CD34⁺/CD38⁻ cells), FISH was performed on cytospin slides using probes specific for genes located on chromosome 3 or chromosome 16, the long arm of chromosome 5, and AML1 and ETO (RUNX1 and RUNX1T1) (Kreatech, Amsterdam, Netherlands). A detailed description of probes is shown in Table S7. Results obtained by conventional karyotyping in patients' cells at diagnosis are summarized in Tables S2-S5, and a summary of FISH results obtained with purified (sorted) stem cells is shown in Table S8.

Statistical evaluations

Differences in marker expression or the percentage of LSC in various sample-series were determined by appropriate statistical tests. For comparing surface marker expression on normal versus leukemic ($CD34^+/CD38^-$) stem cells and between subsets of patients (defined by molecular abnormalities such as *FLT3* ITD or cytogenetic

markers), the Kruskal-Wallis test was applied. Statistical post-hoc analyses were performed to confirm significance levels using pair-wise Wilcoxon rank-sum test. Results were adjusted for multiple testing using the Benjamini-Hochberg correction.³² All statistical analyses were conducted by using R version 3.6.1 (Vienna, Austria).³³ Results were considered significant when the p value was below 0.05.

For determining the level of significance in drug inhibition experiments or differences in engraftment levels of LSC in NSG mice, the Student's t test was applied. Results were considered significantly different when p was <0.05.

The probability of overall survival (OS) in subsets of patients (AML, CML) defined by marker expression on LSC was calculated by the product limit method of Kaplan and Meier. The patients were split into two groups per marker based on sample size and subpopulation formation. Statistical significance in differences among patient subgroups (defined by divergent surface marker expression on LSC) concerning survival were determined by log rank test.²²

Supplemental Material – Figures

Figure S1

Flow cytometry and gating strategy to define and separate stem- and progenitor cells

In order to define and analyze immature CD34⁺/CD38⁻ stem cells and CD34⁺/CD38⁺ progenitor cells, a sequential gating algorithm (I-VII) was applied using FlowJo software. First, CD45⁺ cells (I) were gated to exclude erythrocytes and stroma cells, followed by gating of CD34⁺ stem and progenitor cells (II) and further selection of CD45 dim-positive cells (III). In a next step, dead cells and cell debris was excluded by forward and side-scatter properties (IV). Finally, CD34⁺/CD38⁻ stem cells and CD34⁺/CD38⁺ progenitor cells were analyzed separately for expression of surface markers and targets (V; CD34⁺/CD38⁺: blue gate; CD34⁺/CD38⁻: red gate) (VI/VII). The figure shows expression of CD123 on CD34⁺/CD38⁻ stem cells (lower panel, red histogram) and CD34⁺/CD38⁺ progenitor cells (upper panel, blue histogram) in a patient with AML. Antibody reactivity was controlled by isotype-matched antibodies (black open histogram).

Examples for staining reactions on stem and progenitor cells from normal BM, cord blood and patients with AML and CML

Cells were stained with antibodies against ROBO4, CD25, CD26, CD43, CD44, CD90, CD133, CLL-1 and IL-1RAP. Antibody reactivity with test antibodies is shown in colored histograms (CD34⁺/CD38⁻ stem cells in blue and CD34⁺/CD38⁺ cells in green histograms) and the isotype-matched control antibody in black open histograms. Abbreviations: AML, acute myeloid leukemia; BM, bone marrow; CD; cluster of differentiation; CML, chronic myeloid leukemia; IL-1RAP, interleukin-1 receptor accessory protein; ROBO4, roundabout 4.

Gene chip analysis in CD34⁺/CD38⁻ cells in normal BM, AML and CML

Microarray analyses were performed on RNA of highly purified (sorted) CD34⁺/CD38⁻ AML and CML LSC as described in the supplement. The heatmaps show the 50 most upregulated genes in CD34⁺/CD38⁻ cells in 3 patients with AML (right columns of left subpanel; patients #102, #173, #210) and 3 with CML (right columns of right subpanel; patients #8, #11, #21) (all leukemic samples were obtained at diagnosis). The definition of the color-scoring is indicated in the figures. The 3 left columns of each subpanel show the same genes in normal CD34⁺/CD38⁻ BM stem cells. Patients' numbers (#) refer to the patients' numbers defined in Table S2 and S3. Abbreviations: AML, acute myeloid leukemia; CML, chronic myeloid leukemia; #, number; LSC, leukemic stem cell; BM, bone marrow.

Figure S3B Gene chip analysis of CD markers in CD34⁺/CD38⁻ cells in normal BM, AML and CML

-2.5	0	2.5	5	-2.5	0	2.	5
Normal	AML	СМГ		Normal		CML	1
CD3/1+/CD38-	CD3/1+/CD38-	CD34+/CD38-				CD34+/CD38	-
0034 /0030	0034 /0030	0034 /0038	CD1a	000470000	000470000	0034 /0030	
			CD1b				CD42
			CD1c				CD42
			CD1d				CD43
			CD3d				CD4
			CD3e				CD4
			CD3g				CD4
			CD4				CD4
			CD7				CD4
			CD8a				CD4
			CD8b				CD4
			CD9				CD49
			CD10				CD5
			CD11b				CD5
			CD11c				CD5
			CD11d				CD5
			CD13				CD5
			CD14				CD5
			CD16b				CD5
			CD18				CD59
			CD19				CD61
			CD20				CD62
							CD62
			CD22				CD62
			CD24				CD64
			CD25				CD66
			CD26				CD66
			CD27				CD66
			CD29				CD6
			CD30				CD6
			CD31				CD7
			CD32a				CD7
			CD32b				CD72
			CD33				
			CD35				CD7
			CD36				CD7
			CD37				CD79
			CD38				CD79
			CD39				CD80
			CD41				CD84

-2.5	0	- I	2.5
Normal	АМІ	СМІ	1
CD34 ⁺ /CD38 ⁻	CD34 ⁺ /CD38 ⁻		38-
		0001700	CD85A
			CD85A
			CD85E
			CD85G
			CD85H
			CD85K
			CD86
			CD87
			CD88
			CD89
			CD90
			CD91
			CD92
			CD93
			CD94
			CD95
			CD90
			CD98
			CD99
			CD100
			CD101
			CD102
			CD103
			CD104
			CD105
			CD106
		_	CD107a
			CD108
			CD109
			CD110
			CD111
			CD112
			CD113
			CD114
			CD115
			CD116
			CD117
			CD118
			CD119
			CD120a
			CD120b
			CD121a
			CD121b
			CD122
			CD123
			00123

-2.5 0 2.5 Normal AML CML CD34⁺/CD38⁻ CD34⁺/CD38⁻ CD34⁺/CD38⁻ CD124 CD125 CD125 CD127 CD129 CD130 CD131 CD132 CD133 CD134 CD135 CD136 CD136 CD137 CD138 CD140a CD141 CD142 CD144 CD145 CD155 CD15

Figure S3B continued

Figure S3B continued

Figure S3B continued

Gene chip analysis of CD markers in CD34⁺/CD38⁻ cells in normal BM, AML and CML

Gene array data of sorted CD34⁺/CD38⁻ stem cells (SC) obtained from control bone marrow (BM) (n=3; left columns) and patients with AML (n=3; patients #102, #173, #210; middle columns) and CML (n=3; patients #8, #11, #21; right columns) (leukemic samples were obtained at diagnosis). Gene array analyses were performed as described in the supplement. mRNA expression levels were normalized to the mean expression of the control samples and are shown as heatmap. The definition of the color-scoring is indicated in the figures. Patients' numbers (#) refer to the patients' numbers defined in Table S2 and S3. Abbreviations: AML, acute myeloid leukemia; CD; cluster of differentiation; CML, chronic myeloid leukemia; IL-1RAP, interleukin-1 receptor accessory protein; FGFR3, fibroblast growth factor receptor 3.

Figure S3C Gene chip analysis of CD markers in CD34⁺/CD38⁺ cells in normal BM, AML and CML

-2.5 0 2.5

Figure S3C continued

Figure S3C continued

-2.5	0	2.5	5 -2 .
N			1 1
Normai			
CD34 ⁺ /CD38 ⁺	CD34 ⁺ /CD38 ⁺	CD34 ⁺ /CD38 ⁺	C
			CD163
			CD164
			CD166
			CD167a
			CD167a
			CD168
			CD169
			CD170
			CD172a
			CD172b
			CD1720
			CD173
			CD174
			CD177
			CD177
			CD178
			CD179a
			CD179b
			CD180
			CD181
			CD182
		0	CD183
			CD185
			CD186
			CD191
			CD192
			CD193
			CD194
			CD196
			CD197
			CD198
			CD199
			CD200
			CD201
			CD2020
			CD204
			CD205
			CD206
			CD206
			CD207
			CD208
			CD209
			CD210a
			CD210b
			CD212
			CD213a1
			CD213a2

Figure S3C continued

Gene chip analysis of CD markers in CD34⁺/CD38⁺ cells in normal BM, AML and CML

Gene array data of sorted CD34⁺/CD38⁺ progenitor cells obtained from control bone marrow (BM) (n=3; left columns) and patients with AML (n=3; patients #102, #173, #210; middle columns) and CML (n=3; patients #8, #11, #21; right columns) (leukemic samples were obtained at diagnosis). Gene array analyses were performed as described in the supplement. mRNA expression levels were normalized to the mean expression of the control samples and are shown as heatmap. The definition of the color-scoring is indicated in the figures. Patients' numbers (#) refer to the patients' numbers defined in Table S2 and S3. Abbreviations: AML, acute myeloid leukemia; CD; cluster of differentiation; CML, chronic myeloid leukemia; IL-1RAP, interleukin-1 receptor accessory protein; FGFR3, fibroblast growth factor receptor 3.

Expression of ROBO4 on leukemic and normal hematopoietic stem cells

The expression of ROBO4 on CD34⁺/CD38⁻ stem cells (blue boxes) and CD34⁺/CD38⁺ progenitor cells (grey boxes) in normal bone marrow, patients with CML, MDS, AML and other disease categories as indicated is shown. Samples were examined by multi-color flow cytometry using an antibody against ROBO4. The figure shows the staining ratio compared to an unspecific isotype control antibody (staining index, upper panel) and the percentage of reactive cells in each sample (lower panel). The dotted line represents clear expression (staining index is higher than 3 or more than 20% positive cells). The range of each box represents the 25th (lower box margin) to 75th (upper box margin) percentile. The middle lines inside the boxes represent the median expression level. Abbreviations: BM, bone marrow; n, normal; CML, chronic myeloid leukemia; AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasm; CB, cord blood; ICUS, idiopathic cytopenia of undetermined significance; CHR, AML and/or CML in complete hematologic remission; ROBO4, roundabout 4.

Expression of CD26 on CD34⁺/CD38⁻ AML stem cells from *FLT3* ITD+ patients after incubation with the FLT3 inhibitor gilteritinib

Mononuclear cells from 3 patients with AML (samples obtained at diagnosis) were incubated in medium (Control) or gilteritinib (0.1-1 μ M) for 24 hours at 37°C. Thereafter, CD26 expression was analyzed on CD34⁺/CD38⁻ cells using multi-color flow cytometry. Results are expressed as staining index (median fluorescence intensity of CD26 divided through matched isotype control) and are presented as % of control and show the mean±S.D. from 3 experiments. Asterisk (*): p<0.05 compared to control. Abbreviations: SI, staining index; AML, acute myeloid leukemia.

Effects of various cytokines on viability of CD34⁺/CD38⁻AML LSC

(A) Mononuclear cells from 4 patients with AML (samples obtained at diagnosis) were incubated separately in RPMI 1640 medium and 10% FCS in the absence (control, grey bar) or presence of G-CSF (blue bar), IL-3 (red bar), SCF (yellow bar), or a combination of these cytokines (violet bars for double combinations and green bar for the combination of all cytokines) as indicated (each 100 ng/ml) at 37°C for 48 hours. Thereafter, cells were examined for apoptosis induction in CD34⁺/CD38⁻ using flow cytometry. Results are expressed as percent Annexin⁺/DAPI⁻ CD34⁺/CD38⁻ cells and show the mean \pm S.D. of 4 independent experiments. Asterisk (*): p<0.05 compared to control. Lower left panel: The table shows the expression of the cytokine receptors G-CSFR (CD114), IL-3RA (CD123) and SCFR (CD117) on CD34⁺/CD38⁻ cells from 4 patients with AML used in these experiments. Patients' numbers (#) refer to the patients' numbers defined in Table S3. Results are obtained using multi-color flow cytometry and are expressed as staining index as described in the supplement and were graded using the following score: -, 0-1.3; +/-, 1.31-3; +, 3.01-10; ++, >10. (B) Mononuclear cells from 1 patient with AML were incubated in RPMI 1640 medium and 10% FCS in the absence or presence of G-CSF, IL-3, or EPO at 37°C for 48 hours. Thereafter, cells were examined for apoptosis induction in CD34⁺/CD38⁻ (left panel) and CD34⁺/CD38⁺ cells (right panel) using AnnexinV/DAPI staining and flow cytometry. Results are expressed as histograms and show the percent of AnnexinV⁺/DAPI⁻ cells. Abbreviations: AML, acute myeloid leukemia; DAPI, 4',6diamidino-2-phenylindole; EPO, Erythropoetin; G-CSF, granulocyte colony stimulating factor; IL, interleukin; SCF, stem cell factor; D, diagnosis.

Figure **S7**

(A, B) Expression of surface antigens on $CD34^+/CD38^-$ cells (blue boxes) and $CD34^+/CD38^+$ cells (grey boxes) in patients with (A) acute myeloid leukemia (AML) and (B) chronic myeloid leukemia (CML) (both at diagnosis and at relapse). Cells were stained with antibodies against CD123 (IL-3RA) and ROBO4. Expression of these surface antigens on $CD34^+/CD38^-$ and $CD34^+/CD38^+$ cells was determined by multi-color flow cytometry as described in the supplement. The dotted line represents clear expression (staining index >3). The range of each box represents the 25th (lower box margin) to 75th (upper box margin) percentile. The middle line inside the boxes represents the median expression level. Asterisk (*): p<0.05 compared to data obtained with $CD34^+/CD38^-$ BM cells in diagnostic samples. Pairwise Wilcoxon rank-sum test and p values were adjusted for multiple comparison according to Benjamini-Hochberg.

Figure **S8A**

Expression of surface markers on CD34⁺/CD38⁻ AML LSC at the time of diagnosis (D) and relapse (R)

Multi-color flow cytometry was used to analyze the expression of various surface markers on CD34⁺/CD38⁻ AML LSC at the time of diagnosis and relapse samples. Each diagram represents a single patient. Expression levels for each marker analyzed are shown in percent (upper row) and as SI (lower row). Patients' numbers (#) refer to the patients' numbers defined in Table S3. Abbreviations: AML, acute myeloid leukemia; LSC, leukemic stem cells; SI, staining index; D, diagnosis; R, relapse.

Figure **S8B**

Expression of surface markers on CD34⁺/CD38⁻CML LSC at the time of diagnosis (D) and relapse (R)

Multi-color flow cytometry was used to analyze the expression of various surface markers on CD34⁺/CD38⁻ CML LSC at the time of diagnosis and relapse samples. Each diagram represents a single patient. Expression levels for each marker analyzed are shown in percent (upper row) and as SI (lower row). Patients' numbers (#) refer to the patients' numbers defined in Table S2. Abbreviations: CML, chronic myeloid leukemia; LSC, leukemic stem cells; SI, staining index; D, diagnosis; R, relapse.

Figure S9

Effects of targeted drugs on survival of leukemic stem cells (LSC) in AML

(A) Mononuclear cells (MNC) from 12 patients with AML (samples obtained at diagnosis or relapse) were incubated in RPMI 1640 medium and 10% fetal calf serum (FCS) in the absence (control, grey bar) or presence of GO, 1 μ g/ml (blue bar) at 37°C for 48 hours. Thereafter, apoptosis was analyzed in CD34⁺/CD38⁻ AML LSC using AnnexinV/DAPI staining and flow cytometry. Results are expressed as percent of AnnexinV⁺/DAPI⁻ cells and represent the mean±S.D. from 12 experiments. Asterisk (*): p<0.05 compared to control. Results are expressed as bar plot (left panel) or line plot (right panel). (B) MNC from 3 patients with AML (sample obtained at diagnosis) were incubated with various concentrations of midostaurin at 37°C for 48 hours. Then, apoptosis was analyzed in CD34⁺/CD38⁻ AML LSC (blue bars) and CD34⁺/CD38⁺ progenitor cells (green bars) using AnnexinV/DAPI staining and flow cytometry. Results are expressed as percent of AnnexinV⁺/DAPI⁻ cells and represent the mean±S.D. from 3 patients with AML (blue bars) and CD34⁺/CD38⁺ progenitor cells (green bars) using AnnexinV/DAPI staining and flow cytometry. Results are expressed as percent of AnnexinV⁺/DAPI⁻ cells and represent the mean±S.D. from 3 experiments. Abbreviations: AML, acute myeloid leukemia; GO, gemtuzumab/ozogamicin.

А

B

Effects of target drugs on apoptosis induction in CML LSC and KU812 cells

(A) Mononuclear cells (MNC) from 5 patients with CML (samples obtained at diagnosis or relapse) were incubated with various concentrations of midostaurin at 37° C for 48 hours. Then, apoptosis was analyzed in CD34⁺/CD38⁻ AML LSC (blue bars) and CD34⁺/CD38⁺ progenitor cells (green bars) using AnnexinV/DAPI staining and flow cytometry. Results are expressed as percent of AnnexinV⁺/DAPI⁻ cells and represent the mean±S.D. from 5 experiments. (B) KU812 cells transduced with a random control (RDM) shRNA (blue bars) or a CD25 shRNA (orange bars) were incubated in control medium (control) or in various concentrations of denileukin-diftitox at 37°C for 48 hours. Thereafter, cells were analyzed for apoptosis induction by caspase-3 staining and flow cytometry. Results are expressed as percent of caspase-3⁺ cells and represent the mean±S.D. from 4 experiments. Asterisk (*): p<0.05 compared to control. Abbreviations: shRNA, short hairpin RNA; LSC, leukemic stem cells.

Expression of CD25 and CD123 on preleukemic stem cells in MDS

Boxblots show the expression of CD25 (upper panels) and CD123 (lower panels) on CD34⁺/CD38⁻ (blue boxes) and CD34⁺/CD38⁺ (grey boxes) in normal BM, ICUS, MDS and AML. Results are expressed as staining index (left panels) or percentage of positive cells (right panels). The dotted line represents clear expression (staining index is higher than 3 or more than 20% positive cells). The range of each box represents the 25th (lower box margin) to 75th (upper box margin) percentile. The middle line inside the boxes represent the median expression level. Abbreviations: AML, acute myeloid leukemia; BM, bone marrow; ICUS, idiopathic cytopenia of undetermined significance; MDS, myelodysplastic syndrome.

+ CD49f <=90%

+ CD49f >90%

Years

õ

Overall survival of patients with AML

Patients were split into two groups per marker based on higher (yellow graphs) or lower (blue graphs) expression of surface antigens on CD34⁺/CD38⁻ cells as indicated in each subpanel. The thresholds of expression were selected based on patient distribution and formation of subsets in flow cytometry experiments (see supplement). Overall survival of patients with AML was calculated according to the method of Kaplan and Meier. p values were calculated by log-rank test.

Figure S13

Influence of the numbers of aberrantly expressed surface markers in LSC on overall survival in patients with AML

A total number of 112 patients with AML were included. Patients were split into two groups based on aberrant expression of surface markers on CD34⁺/CD38⁻ LSC: group A (blue graph: one or no marker detected on LSC) and B (yellow graph: two to four markers detected on LSC). The following aberrantly expressed markers were included in these analyses: CD25 (IL-2RA), CD26 (DPPIV), CD371 (CLL-1), and IL1-RAP. Expression thresholds of markers selected to define subsets was based on patient distribution and formation of sizable subsets. Only patients in whom at least 3 markers were analyzed were included. Overall survival was calculated according to the method of Kaplan and Meier. The p value was calculated by log-rank test.

Figure S14

Patients were split into two groups per marker based on higher (yellow graphs) or lower (blue graphs) expression of surface antigens on CD34⁺/CD38⁻ cells as indicated in each subpanel. The thresholds of expression were selected based on patient distribution and formation of subsets in flow cytometry experiments (see supplement). Samples were obtained from patients with CML in CP, AP and BP. Overall survival of patients with CML was calculated according to the method of Kaplan and Meier. p values were calculated by log-rank test. Abbreviations: CML, chronic myeloid leukemia; CP, chronic phase; AP, accelerated phase; BP, blast phase.

CD116 <=25%

9 10

CD116 >25%

Years

p = 0.071

Supplemental (S) Tables

Table S1

Specification of antibodies used in multicolor flow cytometry experiments

CD	Antigen	Clone	Conjugate	Species, Isotype	Manufacturer
n.c.	Isotype control	MOPC-21	PE	Mouse, IgG1	BD Biosciences
n.c.	Isotype control	20102	PE	Mouse, IgG2A	R&D Systems
n.c.	Isotype control	X39	FITC	Mouse, IgG2A	BD Biosciences
n.c.	Isotype control	133303	PE	Mouse, IgG2B	R&D Systems
n.c.	Isotype control	polyclonal	biotinylated	Sheep, IgG	R&D Systems
CD3	TcR	UCHT1	APC	Mouse, IgG1	BD Biosciences
CD9	Tetraspanin 29	M-L13	PE	Mouse, IgG1	BD Biosciences
CD11a	Integrin α-L	G43-25B	PE	Mouse, IgG2A	BD Biosciences
CD13	ANPEP	WM15	PE	Mouse, IgG1	BD Biosciences
CD14	LPSR	TÜK4	FITC	Mouse, IgG2A	Dako
CD18	Integrin β2	6.7	PE	Mouse, IgG1	BD Biosciences
CD19	B4	4G7	FITC	Mouse, IgG1	BD Biosciences
CD19	B4	4G7	PE	Mouse, IgG1	BD Biosciences
CD20	MS4A1	L27	PE	Mouse, IgG1	BD Biosciences
CD23	FceR2	M-L233	PE	Mouse, IgG1	BD Biosciences
CD25	IL2Ra	2A3	PE	Mouse, IgG1	BD Biosciences
CD26	DPPIV	M-A261	PE	Mouse, IgG1	BD Biosciences
CD29	Integrin β1	419217	PE	Mouse, IgG2B	R&D Systems
CD30	TNFRSF8	BerH8	PE	Mouse, IgG1	BD Biosciences
CD33	Siglec-3	WM53	PE	Mouse, IgG1	BD Biosciences
CD34	HPCA-1	581	FITC	Mouse, IgG1	BD Biosciences
CD34	HPCA-1	581	FITC	Mouse, IgG1	BioLegend
CD34	HPCA-1	581	PE	Mouse, IgG1	BD Biosciences
CD34	HPCA-1	581	pacific blue	Mouse, IgG1	BioLegend
CD36	TSPR	5-271	PE	Mouse, IgG2A	BioLegend
CD38	T10	HIT2	APC	Mouse, IgG1	BD Biosciences
CD41	Integrin α2b	HIP8	PE	Mouse, IgG1	BioLegend
CD42b	GP1Ba	HIP1	PE	Mouse, IgG1	BioLegend
CD43	Sialophorin	1G10	PE	Mouse, IgG1	BD Biosciences
CD44	Hermes	515	PE	Mouse, IgG1	BD Biosciences
CD45	LCA	2D1	APC-H7	Mouse, IgG1	BD Biosciences
CD45	LCA	2D1	PerCP	Mouse, IgG1	BD Biosciences
CD45	LCA	HI30	V500	Mouse, IgG1	BD Biosciences
CD47	MER6	B6H12	PE	Mouse, IgG1	BD Biosciences
CD49f	Integrin α6	GoH3	PE	Rat, IgG2a	BioLegend

CD	Antigen	Clone	Conjugate	Species, Isotype	Manufacturer
CD51	Integrin αV	NKI-M9	PE	Mouse, IgG2A	BioLegend
CD51/61	Integrin $\alpha V/\beta 3$	23C6	PE	Mouse, IgG1	BioLegend
CD52	CAMPATH-1	HI186	PE	Mouse, IgG2B	BioLegend
CD56	NCAM1	NCAM16.2	PE	Mouse, IgG2B	BD Biosciences
CD61	Integrin β3	VI-PL2	PE	Mouse, IgG1	BioLegend
CD62P	SELP	AK-4	PE	Mouse, IgG1	eBioscience
CD69	CLEC2C	FN50	PE	Mouse, IgG1	BioLegend
CD90	Thy-1	5E10	PE	Mouse, IgG1	BD Biosciences
CD93	MXRA4	VIMD2	PE	Mouse, IgG1	BioLegend
CD95	FAS	DX2	PE	Mouse, IgG1	BD Biosciences
CD96	Tactile	NK92.39	PE	Mouse, IgG1	eBioscience
CD97	ADGRE5	VIM3b	PE	Mouse, IgG1	BioLegend
CD99	MIC2	3B2/TA8	PE	Mouse, IgG2A	eBiosciences
CD105	Endoglin	166707	PE	Mouse, IgG1	R&D Systems
CD110	TPOR	167639	PE	Mouse, IgG2A	R&D Systems
CD114	G-CSFR	LMM741	PE	Mouse, IgG1	BD Biosciences
CD115	M-CSFR	61708	PE	Mouse, IgG1	R&D Systems
CD116	GM-CSFRa	hGMCSFR-M1	PE	Mouse, IgG1	BD Biosciences
CD117	SCFR/KIT	104D2	PE	Mouse, IgG1	BD Biosciences
CD122	IL-2Rβ	Mik-β3	PE	Mouse, IgG1	BD Biosciences
CD123	IL-3Ra	32703	PE	Mouse, IgG1	R&D Systems
CD123	IL-3Ra	7G3	PE	Mouse, IgG2A	BD Biosciences
CD123	IL-3Ra	AC145	APC	Mouse, IgG2A	Miltenyi Biotec
CD129	IL-9R	33423	PE	Mouse, IgG1	R&D Systems
CD131	IL-3Rβ	1C1	PE	Mouse, IgG1	Abcam
CD132	IL-2Rγ	AG184	PE	Mouse, IgG1	BD Biosciences
CD133	Prominin 1	AC133	PE	Mouse, IgG1	Miltenyi Biotec
CD134	OX40	ACT35	PE	Mouse, IgG1	BD Biosciences
CD135	FLT3	BV10A4H2	PE	Mouse, IgG1	Biolegend
CD150	SLAMF1	7D4	PE	Mouse, IgG1	BioLegend
CD151	RAPH	PETA-3	PE	Mouse, IgG1	BD Biosciences
CD157	BST1	SY/11B5	PE	Mouse, IgG1	BD Biosciences
CD162	Selectin P ligand	KPL-1	PE	Mouse, IgG1	BD Biosciences
CD164	Sialomucin	67D2	PE	Mouse, IgG1	BioLegend
CD167a	DDR1	51D6	PE	Mouse, IgG3	BioLegend
CD184	CXCR4	12G5	PE	Mouse, IgG2A	BD Biosciences
CD203c	ENPP3	97A6	PE	Mouse, IgG1	Immunotech
CD206	MMR	15-2	PE	Mouse, IgG1	BioLegend
CD221	IGF-1R	33255	PE	Mouse, IgG1	R&D Systems
CD243	MDR1	15D3	PE	Mouse, IgG1	BD Biosciences
CD252	OX40L	ik-1	PE	Mouse, IgG1	BD Biosciences
CD271	NGF-R	C40-1457	PE	Mouse, IgG1	BD Biosciences
CD273	PD-L2	MIH18	PE	Mouse, IgG1	BioLegend

CD	Antigen	Clone	Conjugate	Species, Isotype	Manufacturer
CD274	PD-L1	29E.2A3	PE	Mouse, IgG2B	BioLegend
CD279	PD1	EH12.2H7	PE	Mouse, IgG1	BioLegend
CD300a	CMRF-35-H9	MEM-260	PE	Mouse, IgG1	Abcam
CD309	KDR/VEGFR-2	89106	PE	Mouse, IgG1	R&D Systems
CD321	JAM-1	M.Ab.F11	PE	Mouse, IgG1	BD Biosciences
CD325	Cadherin 2	8C11	PE	Mouse, IgG1	BD Biosciences
CD332	FGFR2	98725	PE	Mouse, IgG1	R&D Systems
CD371	CLL-1/CLEC12A	50C1	PE	Mouse, IgG2A	BD Biosciences
n.c.	EPOR	38409	PE	Mouse, IgG2B	R&D Systems
n.c.	HLA-DR	G46-6	PE	Mouse, IgG2A	BD Biosciences
n.c.	IL-1RAP	89412	PE	Mouse, IgG1	R&D Systems
n.c.	MET/HGFR	95106	PE	Mouse, IgG1	R&D Systems
n.c.	NPDC1	polyclonal	biotinylated	Sheep, IgG	R&D Systems
n.c.	OSMRβ	AN-U2	PE	Mouse, IgG1	Biotechnology
n.c.	ROBO4	265703	PE	Mouse, IgG2A	R&D Systems

Abbreviations: CD, cluster of differentiation; PE, phycoerythrin; FITC, fluorescein isothiocyanate; PerCP, peridinin chlorophyll protein; APC, allophycocyanin; n.c., not (yet) clustered; Ig, immunoglobulin; TcR, T cell receptor; LPSR, lipopolysaccharide-related antigen; IL-2RA, interleukin-2 receptor alpha chain; DPPIV, dipeptidylpeptidase IV; HPCA-1, human precursor cell antigen-1; LCA, leukocyte common antigen; G-CSF, granulocyte colony-stimulating factor; SCF, stem cell factor; NGF, nerve growth factor; CLL-1, C-type lectin-like molecule-1; IL-1RAP, interleukin-1 receptor accessory protein; ROBO4, roundabout 4; EPOR, erythropoietin receptor; CXCR, C-X-C chemokine receptor; FGFR, fibroblast growth factor receptor; HGFR, hepatocyte growth factor receptor; HLA, human leucocyte antigen; NPDC1, neural proliferation differentiation and control protein 1; VEGFR, vascular endothelial growth factor receptors; NCAM, Neural cell adhesion molecule.

Company Locations: BD Bioscience, San José, CA, USA; R&D Systems, Minneapolis, MN, USA; Dako, Glostrup, Denmark; eBioscience, San Diego, CA, USA; Miltenyi Biotec, Bergisch Gladbach, Germany; BioLegend, San Diego, CA, USA; Santa Cruz Biotechnology, Dallas, TX, USA; Abcam, Cambridge, UK.

Patients' characteristics - chronic myeloid leukemia (CML)

	age	gender	diagnosis -	- 、 /	WBC	Hb	PLT	basophils (%)	blas	sts (%)	BCR-ABL1
No. #	(yrs)	(m/f)	CML phase	karyotype	(G/L)	(g/dL)	(G/L)	PB	PB	BM	mutations
1	52	m	СР	46,XY,t(9;22)	45.7	14.7	577	10	0	1	n.t.
2	57	f	СР	46,XX,t(9;22)	68.7	12.6	818	7	0	1	n.t.
3	41	f	СР	46,XX,t(9;22)	30.4	9.6	1172	19	1	1	n.t.
4	65	m	AP	46,XY,t(9;22)	273.6	7.7	470	8	10	6	n.t.
5	49	m	СР	46,XY,t(9;22)	232.8	9.3	1062	6	3	1	n.t.
6	42	f	СР	46,XX,t(9;22)	181.9	14.1	148	4	1	2	n.t.
7	37	m	СР	46,XY,t(9;22)	396.0	9.3	225	4	5	3	n.t.
8	24	f	СР	46,XX,t(9;22)	77.0	12.3	363	5	2	1	n.t.
9*	47	m	BP	complex	3.2	7.9	30	0	35	97	G250E, E355A
10	60	m	СР	46,XY,t(9;22)	47.9	14.3	261	3	0	1	n.t.
11	57	f	СР	46,XX,t(9;22)	398.9	8.6	165	7	1	1	n.t.
12*	38	f	BP	complex	3.5	9.6	18	0	52	30	n.t.
13	68	f	СР	46,XX,t(9;22)	97.8	10.9	450	6	1	1	n.t.
14	63	m	СР	45,X,-Y,t(9;22)	93.5	13.1	305	1	1	1	n.t.
15	80	f	СР	46,XX,t(9;22)	96.3	10.5	477	1	0	1	n.t.
16	67	m	СР	46,XY,t(9;22)	35.9	9.1	186	2	0	2	n.t.
17	39	m	AP	46,XY,t(9;22),t(8;17)	190.9	11.0	347	15	3	2	n.t.
18	82	f	СР	46,XX,t(9;22)	32.6	13.6	326	5	0	1	n.t.
19	19	m	СР	46,XY,t(9;22)	175.8	8.7	282	3	2	1	n.t.
20	59	m	СР	46,XY,t(9;22)	83.7	13.5	297	4	2	3	n.t.
21	46	f	СР	46,XX,t(9;22)	570.5	7.5	342	3	1	2	n.t.
22	22	f	СР	46,XX,t(9;22)	26.6	13.4	354	5	0	1	n.t.
23*	49	m	СР	46,XY,t(9;11;22)	34.5	14.0	145	1	0	1	n.t.
24	53	m	СР	46,XY,t(9;22)	54.2	12.9	302	4	0	1	n.t.
25	73	f	СР	46,XX,t(9;22)	46.8	8.8	1060	7	1	1	n.t.

	age	gender	diagnosis -		WBC	Hb	PLT	basophils (%)	blas	sts (%)	BCR-ABL1
No. #	(yrs)	(m/f)	CML phase	karyotype	(G/L)	(g/dL)	(G/L)	PB	PB	BM	mutations
26	57	m	СР	46,XY,t(9;22)	271.5	9.2	607	8	2	2	n.t.
27	33	m	СР	46,XY,t(9;22)	142.1	10.5	822	6	6	3	n.t.
28	72	m	СР	46,XY,t(9;22)	179.1	11.1	83	4	1	2	n.t.
29	84	f	BP	complex	149.8	5.5	62	1	63	83	n.t.
30	36	f	СР	46,XX,t(9;10;22)	193.8	11.5	222	4	1	2	n.t.
31	71	m	СР	46,XY,t(9;22)	52.5	15.0	340	4	2	2	n.t.
32	57	f	СР	46,XX,t(9;22)	39.1	12.1	150	1	0	1	n.t.
33	55	m	СР	46,XY; (FISH: BCR-ABL)	33.7	12.9	417	5	0	4	n.t.
34	29	m	СР	46,XY,t(9;22)	96.8	12.9	174	2	1	1	n.t.
35	40	m	СР	46,XY,t(9;22)	13.0	13.9	601	1	0	1	n.t.
36	38	f	СР	46,XX,t(9;22)	27.3	12.7	412	5	0	1	n.t.
37	85	m	СР	46,XY,t(9;22)	45.7	12.4	330	2	1	2	n.t.
38*	44	m	BP	n.t.	74.0	8.0	33	33	44	n.t.	E255K
39	63	f	СР	46,XX,t(9;22)	43.5	11.7	265	19	1	4	n.t.
40*	74	f	BP	46,XX,t(9;22)	3.0	10.2	156	n.t.	6	43	none
41	46	f	СР	46,XX,t(9;22)	47.0	11.1	591	2	0	1	n.t.
42	33	m	СР	46,XY,t(9;22)	190.7	9.7	750	4	3	8	n.t.
43	35	m	AP	46,XY,t(9;22)	263	11.7	124	11	10	2	none
44*	63	f	СР	46,XX,t(9;22)	36.8	11.5	105	2	0	n.t.	V379I
45	28	f	СР	46,XX,t(9;22)	108.6	8.5	432	3	0	1	n.t.
46	68	f	СР	46,XX,t(9;22)	40.2	12.1	413	5	0	2	n.t.
47	27	f	AP	46,XX,t(9;22)	178.3	10.2	626	15	7	5	n.t.
48*	75	f	СР	47,XX,t(9;22),+der(22)t(9;22)	6.6	11.4	286	1	0	1	L248V
49	67	f	СР	46,XX,t(9;22)	37.6	10.5	1375	3	1	4	n.t.
50	57	f	СР	n.t.	143.7	11.5	204	4	3	4	n.t.
51	60	f	СР	46,XX,t(9;22)	39.8	13.1	793	9	1	3	n.t.
52	63	m	СР	46,XY,t(9;22)	46.5	11.8	419	4	1	2	n.t.
53	84	f	СР	46,XX,t(9;22)	67.6	12.8	305	2	0	1	n.t.

	age	gender	diagnosis -		WBC	Hb	PLT	basophils (%)	bla	sts (%)	BCR-ABL1
No. #	(yrs)	(m/f)	CML phase	karyotype	(G/L)	(g/dL)	(G/L)	PB	PB	BM	mutations
54	43	m	BP	46,XY,t(9;22)	44.6	9	769	31	20	23	n.t.
55	55	f	СР	46,XX,t(9;22)	541.2	7.6	782	3	7	2	n.t.
56*	48	f	BP	complex	71.0	11.9	49	0	34	11	none
57	57	m	СР	46,XY,t(9;22)	48.1	13.9	217	1	0	1	n.t.
58	45	f	СР	n.t.	31.9	12.9	411	3	0	1	n.t.
59	67	f	СР	46,XX,t(9;22)	332.2	10.3	568	4	4	4	n.t.
60	47	m	СР	46,XY,t(9;22)	55.7	13.9	250	1	1	3	n.t.
61	59	m	СР	46,XY,t(9;22)	222.1	10.5	789	8	1	2	n.t.
62	75	m	СР	n.t.	65.0	9.2	185	0	0	1	n.t.
63	33	m	СР	46,XY,t(9;22)	173.3	10.8	787	5	3	2	n.t.
64	46	m	СР	46,XY,t(9;22)	53.8	14	480	8	2	1	n.t.
65	66	m	СР	46,XY,t(9;22)	137.2	13.8	173	1	2	1	n.t.
66	52	m	СР	46,XY,t(9;22)	174.2	11.6	275	1	1	1	n.t.
67*	45	m	AP	46,XY,t(9;22)	31.1	9	306	0	6	4	n.t.
68	28	m	СР	46,XY,t(9;22)	23.7	13	209	1	0	1	n.t.
69	43	m	СР	46,XY; (FISH: BCR-ABL)	76.1	14	151	2	2	4	n.t.
70	34	f	СР	46,XX,t(9;22)	396.9	7.2	425	6	2	1	n.t.
71	72	m	СР	46,XY,t(2;10),t(9;22)	112.5	11.9	394	13	6	4	n.t.
72	60	f	BP	46,XX,t(9;22)	94.4	10.9	45	1	35	75	none
73	46	f	СР	46,XX,t(9;22)	184.0	10.1	700	1	1	1	n.t.
74	75	f	СР	46,XX,t(9;22)	34.2	12.8	911	6	0	1	n.t.
75	40	f	СР	46,XX,t(9;22)	24.4	13	643	8	0	1	n.t.
76	60	f	СР	46,XX,t(9;22)	22.4	13.2	319	5	0	1	n.t.
77	22	f	СР	46,XX,t(9;22)	230.6	10.4	720	5	1	1	n.t.
78*	69	m	AP	complex	1.7	9.5	112	7	4	8	Q252H
79	86	f	AP	46,XX,t(9;22)	230.0	8.9	783	4	11	3	n.t.
80	64	m	СР	46,XY,t(9;22)	23.9	13.3	164	1	0	1	n.t.
81*	73	m	СР	n.t.	169.5	7.8	205	3	2	n.t.	n.t.

	age	gender	diagnosis -		WBC	Hb	PLT	basophils (%)	blas	sts (%)	BCR-ABL1
No. #	(yrs)	(m/f)	CML phase	karyotype	(G/L)	(g/dL)	(G/L)	PB	PB	BM	mutations
82	44	f	СР	46,XX,t(9;22)	113.7	12.3	514	5	3	2	n.t.
83	54	m	СР	complex	290.4	12.4	441	3	2	2	n.t.
84*	23	m	СР	47,XY,+8,t(9;22)	127.7	11.7	93	1	1	1	none
85	65	m	СР	46,XY,t(9;22)	38.4	11.8	311	5	0	1	n.t.
86	33	f	СР	46,XX,t(9;22)	38.7	13.2	732	8	1	1	n.t.
87	67	m	СР	46,XY,t(9;22)	37.8	14.5	114	7	1	1	n.t.
88*	73	f	AP	n.t.	23.4	8.3	69	1	5	n.t.	none
89	48	m	СР	46,XY,t(9;22)	315.9	10.8	190	5	2	n.t.	n.t.
90	65	m	СР	46,XY,t(9;22)	30.6	15.2	216	3	0	1	n.t.
91	42	f	СР	46,XX,t(9;22)	61.2	13.5	319	3	0	1	n.t.
92	74	m	СР	46,XY,t(9;22)	48.4	13.1	321	1	1	1	n.t.
93*	76	m	СР	46,XY,t(9;22)	17.5	12.7	595	4	0	n.t.	F359V
94*	56	f	СР	46,XX,t(9;22),i(17q)	9.9	7.5	171	2	2	2	E279K
95*	74	f	AP	46,XX,t(9;22)	32.0	8.7	1150	10	1	1	F317L
96	51	m	СР	46,XY,t(9;22)	170.0	17	176	7	3	1	n.t.
97	29	f	СР	46,XX,t(9;22)	34.1	12.7	606	2	0	1	n.t.

Abbreviations: No. #, patient number; WBC, white blood count; Hb, hemoglobin; Plt, platelet count; yrs, years; m, male; f, female; PB, peripheral blood; BM, bone marrow; G/L, 10^9 cells per liter; g/dL, gram per deciliter; CP, chronic phase; AP, accelerated phase; BP, blast phase; complex karyotype: t(9;22) and at least two additional cytogenetic abberations; FISH: a cryptic BCR-ABL fusion gene was detected by fluorescence in situ hybridization; n.t., not tested.

* These patients were analyzed at relapsed/refractory disease only and the patients' characteristics refer to the time of sampling.

Patients' characteristics - acute myeloid leukemia (AML)

	age	gender	sample	AML o	liagnosis	Mutations or		WBC	Hb	Plt	Blas	st (%)
No. #	(yrs)	(m/f)	used at	FAB	WHO	molecular translocations	karyotype	(G/L)	(g/dL)	(G/L)	РВ	BM
1	53	m	D,FU	M1	AML without maturation	none found	47,XY,+13	2.4	10.4	20	30	80
2	37	f	D	M5a	AML with mutated NPM1	FLT3 ITD, NPM1	46, XX	25.1	8.8	71	8	42
3	43	f	D	M1	AML with mutated NPM1	FLT3 ITD, NPM1	46,XX	65.1	7.7	46	72	72
4	51	f	D,FU	M2	AML with mutated NPM1	NPM1	46,XX	44.0	9.1	32	59	66
5	34	m	D,FU	M4eo	AML with inv(16)	CBFB-MYH11	46,XY,inv(16)	57.1	9.3	11	60	34
6	71	f	D	M1	AML with mutated NPM1	NPM1	46,XX	52.4	11.0	15	87	85
7	74	f	D,FU	M0	AML with myelodysplasia	none found	46,XX,t(1;17;X),del(5q)	2.5	9.3	65	10	50
8	80	f	D	M5a	AML with mutated NPM1	NPM1	47,XX,+8,add(21)/47,XX,+8	10.2	10.1	44	5	42
9	66	f	D,FU	M2	AML with mutated NPM1	FLT3 ITD, NPM1	46,XX	97.4	10.3	56	94	83
10	69	m	D	M4	AML with myelodysplasia	none found	complex, del(5q)	1.0	10.3	88	0	37
11	66	f	D	M4	AML with myelodysplasia	none found	complex, del(5q)	62.2	10.3	50	79	70
12	55	m	D	M4	AML with mutated NPM1	NPM1	46,XY	76.1	9.4	60	70	85
13	61	f	D,FU	M2	AML with mutated NPM1	NPM1	46,XX	1.3	10.2	73	3	41
14	71	m	D	M2	AML with maturation	FLT3 ITD	46,XY	6.1	9.2	73	45	26
15	70	m	D	M4	AML with myelodysplasia	none found	45,XY,-7	13.7	6.6	39	18	24
16	54	m	D	M1	AML with mutated NPM1	FLT3 ITD, NPM1	46,XY	361.5	6.9	74	95	92
17	56	m	D	M2	AML with myelodysplasia	none found	complex	18.7	9.2	142	13	33
18	69	m	D	n.a.	AML with myelodysplasia	none found	46,XY	3.2	8.0	1	0	65
19	49	f	D	M4eo	AML with inv(16)	<i>CBFB-MYH11, FLT3</i> D835	46,XX,inv(16)	94.2	8.1	15	47	57
20	72	f	D	M2	AML with mutated NPM1 and CEBPA	NPM1, CEBPA	46,XX	2.1	10.5	166	27	50
21	62	f	D	M1	AML without maturation	none found	47,XX,+11	2.8	12.1	158	77	60
22	64	f	D,FU	M0	AML with inv(3) or t(3;3)	none found	46,XX,t(3;3)	60.2	9.2	13	77	90
23	77	f	D	M4	AML with mutated NPM1	FLT3 ITD, NPM1	46,XX	200.0	8.3	26	41	65

	age	gender	sample	AML	diagnosis	Mutations or		WBC	Hb	Plt	Blas	st (%)
No. #	(yrs)	(m/f)	used at	FAB	WHO	molecular translocations	karyotype	(G/L)	(g/dL)	(G/L)	РВ	BM
24	59	m	D	M2	Therapy-related AML with t(8;21)	AML1-ETO	46,XY,t(8;21)	100.0	9.5	29	60	58
25	63	m	D	n.a.	AML with myelodysplasia	<i>NPM-MLF1</i> ; t(3;5)(q25.1;q34)	complex	26.5	9.8	11	79	70
26	69	m	D	M4	AML with myelodysplasia	none found	46,XY	3.5	9.0	118	0	20
27	59	m	FU	M5a	AML with myelodysplasia	none found	complex, del(5q)	1.0	7.9	43	0	9
28	52	m	D,FU	M2	AML with t(8;21)	AML1-ETO	45,X,-Y,del7q,t(8;21)	51.8	7.3	17	88	70
29	26	m	D	M4	Acute myelomonocytic leukemia	none found	46,XY	2.3	11.4	159	1	37
30	64	m	D	n.a.	AML with myelodysplasia	none found	46,XY	1.8	8.2	12	0	26
31	78	f	FU	M4	Acute myelomonocytic leukemia	none found	46,XX	26.1	10.9	7	4	23
32	53	f	D	M0	AML with minimal differentiation	none found	46,XX	0.4	8.2	104	0	75
33	24	m	D	M0	AML with myelodysplasia	none found	complex	2.4	11.1	332	7	25
34	65	m	D	M4eo	AML with inv(16)	<i>CBFB-MYH11A, KIT</i> D816V	46,XY,inv(16)	51.8	8.6	16	33	22
35	56	m	D	M2	AML with t(8;21)	<i>AML1-ETO,</i> t(8;21)(q22;q22)	46,XY,t(8;21)	6.8	11.1	53	27	58
36	63	f	D	M4	AML with myelodysplasia	none found	complex, del(5q)	1.0	8.9	71	21	57
37	57	f	D	M4eo	AML with inv(16)	CBFB-MYH11	46,XX,inv(16)	27.6	10.0	20	56	65
38	69	f	D	M2	AML with myelodysplasia	none found	complex	1.5	8.6	49	11	22
39	36	f	FU	M6	AML with myelodysplasia	FLT3 ITD, NPM1	46,XX	5.0	10.0	128	39	65
40	53	m	FU	M6	AML with myelodysplasia	none found	complex	2.6	7.5	97	11	22
41	67	m	D	M4	AML with myelodysplasia	none found	45,XY,-7	84.5	11.4	121	4	28
42	51	m	D	M1	AML without maturation	none found	46,XY	0.7	8.8	30	8	73
43	27	m	FU	M4	Acute myelomonocytic leukemia	none found	46,XY	0.9	11.6	14	19	77
44	42	m	D,FU	M3	Acute promyelocytic	PML-RARA	46,XY,t(15;17)	6.3	14.9	18	22	88

	age	gender	sample	AML	diagnosis	Mutations or		WBC	Hb	Plt	Blas	st (%)
No. #	(yrs)	(m/f)	used at	FAB	WHO	molecular translocations	karyotype	(G/L)	(g/dL)	(G/L)	РВ	BM
					leukemia							
45	62	f	D,FU	n.a.	AML with myelodysplasia	CEBPA	46,XX,del(13q)/45,XX,-13	2.2	9.2	40	0	24
46	65	f	D,FU	M1	AML with mutated CEBPA	CEBPA	46,XX	25.8	9.7	14	89	80
47	36	m	D	M4	AML with mutated NPM1	NPM1	46,XY	93.9	8.9	50	37	64
48	38	m	D	M5a	AML with myelodysplasia	none found	complex	13.4	7.9	108	96	75
49	65	m	D,FU	M1	AML without maturation	none found	46,XY	2.9	9.3	56	40	88
50	65	f	D	M1	AML without maturation	none found	46,XX	1.3	10.8	108	28	66
51	78	m	D	n.a.	AML with myelodysplasia	none found	45,XY,-7	53.1	10.3	20	51	40
52	79	m	D	M2	AML with maturation	none found	46,XY	52.4	11.6	65	72	60
53	65	f	D	M0	AML with myelodysplasia	none found	46,XX	2.0	10.5	31	21	78
54	74	m	D,FU	M1	AML with myelodysplasia	none found	complex, 5q-,7q-	1.6	9.0	17	16	25
55	56	m	D	M1	AML with mutated NPM1	NPM1	46,XY	127.4	8.5	307	95	96
56	70	f	D	M2	AML with myelodysplasia	none found	46,XX,t(1;6)	2.4	2.6	2	0	23
57	71	f	D	M0	AML with minimal	none found	46,XX	2.4	10.8	208	48	84
					differentiation							
58	68	m	FU	M6	Acute erythroid leukemia	none found	46,XY	4.4	12.1	81	0	22
59	65	m	D	n.a.	AML with myelodysplasia	<i>KIT</i> D816V	47,XY,+8	6.6	8.2	20	13	85
60	66	f	D	n.a.	AML with myelodysplasia	none found	46,XX	1.3	9.0	85	0	20
61	58	m	D	n.a.	Therapy-related AML	none found	46,XY	1.7	8.8	34	0	20
62	40	f	D	M4	AML with mutated NPM1	NPM1	46,XX	18.6	10.3	91	16	28
63	83	f	D	M6	Acute erythroid leukemia	none found	n.t.	1.8	9.2	912	3	27
64	53	f	D	M4	Therapy related AML	none found	complex	2.0	11.4	10	2	25
65	82	m	D	M0	AML with myelodysplasia	<i>FLT3</i> ITD	46,XY,del(5q)	6.7	8.2	74	23	60
66	55	f	D	M2	AML with myelodysplasia	NPM1	46,XX	10.3	7.7	39	28	24
67	72	m	D	M2	AML with myelodysplasia	none found	47,XY,+8	1.9	10.2	62	1	47
68	75	m	D	n.a.	AML with myelodysplasia	<i>JAK2</i> V617F	47,XY,+mar	20.7	8.2	480	28	21
69	67	m	D	M2	AML with mutated CEBPA	CEBPA	46,XY	77.9	13.9	193	81	71
70	59	m	D	M4	AML with mutated NPM1	NPM1	46,XY	6.1	8.6	212	21	40

	age	gender	sample	AML	diagnosis	Mutations or		WBC	Hb	Plt	Blas	st (%)
No. #	(yrs)	(m/f)	used at	FAB	WHO	molecular translocations	karyotype	(G/L)	(g/dL)	(G/L)	РВ	BM
71	21	m	D	M1	AML without maturation	none found	46,XY,add(17p)	133.2	9.5	28	95	88
72	54	f	D	M1	AML without maturation	none found	n.t.	1.2	11.1	271	0	71
73	56	f	D	M4	Acute myelomonocytic leukemia	none found	47,XX,+der(11)	55.7	9.5	61	28	55
74	49	f	D	M5a	AML with mutated NPM1	NPM1	47,XX,+8	12.1	11.8	97	42	75
75	79	f	D	M1	AML without maturation	none found	48,XX,+8,+21	4.3	8.3	191	77	n.t.
76	71	f	D	M2	AML with myelodysplasia	none found	complex, del(5q)	5.3	9.5	159	20	62
77	60	m	D	M1	AML with myelodysplasia	none found	46,XY,del(13q)	1.7	12.4	112	0	60
78	65	m	D	M4	AML with myelodysplasia	none found	47,XY,+8	72.4	12.5	129	2	55
79	54	m	D	M2	AML with t(8;21)	AML1-ETO	45,X,-Y,t(8;21)	14.0	7.5	13	22	23
80	73	m	D,FU	M5a	AML with mutated NPM1	NPM1	46,XY	50.0	7.8	143	29	78
81	59	m	FU	n.a.	AML with myelodysplasia	none found	47,XY,add(3),+8	34.3	10.4	7	26	n.t.
82	51	f	D	M4	AML with myelodysplasia	none found	complex	90.0	8.7	79	60	70
83	61	f	D	M3	Acute promyelocytic leukemia	<i>PML-RARA,</i> <i>FLT3</i> ITD	45,XX,der(15)t(15;17),-17	1.0	11.8	122	3	81
84	63	f	FU	M1	AML with mutated NPM1	FLT3 ITD, NPM1	46,XX	33.8	10.0	25	95	94
85	74	m	D	M0	AML with minimal differentiation	none found	46,XY	13.9	11.2	206	51	80
86	68	m	D,FU	M1	AML without maturation	none found	46,XY	24.4	7.3	41	17	20
87	54	f	D	M1	AML without maturation	none found	47,XX,+8	0.5	8.4	28	20	72
88	39	f	D,FU	M2	AML with t(8;21)	KIT D816V, AML1-ETO	47,XX,+4,t(8;21)	9.2	9.6	17	30	65
89	73	m	D	M2	AML with mutated CEBPA	CEBPA	46,XY	2.0	14.9	17	10	33
90	38	f	D	M4	Acute myelomonocytic leukemia	<i>FLT3</i> D835	46,XX	45.2	9.0	69	11	45
91	71	m	D,FU	M4	Acute myelomonocytic leukemia	none found	46,XY	33.2	9.8	24	26	43
92	75	f	D	M5b	Acute monocytic leukemia	<i>JAK2</i> V617F	46,XX	77.9	9.5	22	2	66
93	55	m	D	n.a.	AML with myelodysplasia	none found	46,XY,t(10;11)	44.4	10.0	76	16	30

	age	gender	sample	AML o	diagnosis	Mutations or		WBC	Hb	Plt	Blas	st (%)
No. #	(yrs)	(m/f)	used at	FAB	WHO	molecular translocations	karyotype	(G/L)	(g/dL)	(G/L)	РВ	вМ
94	25	f	D	M3	Acute promyelocytic leukemia	PML-RARA	46,XX,t(15;17)	7.5	9.7	26	47	90
95	85	f	D	M4	Acute myelomonocytic leukemia	none found	46,XX	132.0	10.0	57	8	29
96	67	m	D	M2	AML with t(8;21)	AML1-ETO	46,XY,t(8;21)	1.4	8.5	54	35	53
97	67	m	D	n.a.	AML with myelodysplasia	none found	46,XY	1.8	11.6	144	0	40
98	76	m	D	M2	AML with myelodysplasia	FLT3 ITD	48,XY,+8,+14	3.3	10.4	35	18	28
99	70	f	D	M1	AML with myelodysplasia	none found	46,XX	0.3	10.0	176	n.t.	22
100	62	m	FU	n.a.	AML with myelodysplasia	none found	46,XY	1.2	11.2	6	75	70
101	62	m	D	M4	AML with myelodysplasia	none found	complex	7.3	9.8	44	10	65
102	67	m	D	n.a.	AML with myelodysplasia	<i>FLT3</i> ITD	46,XY	13.1	5.9	29	63	50
103	62	f	D,FU	M1	AML with myelodysplasia	FLT3 ITD, NPM1	46,XX	4.7	11.3	116	19	62
104	56	m	D,FU	M4eo	AML with inv(16)	CBFB-MYH11	46,XY	14.9	10.5	48	43	57
105	78	m	D	n.a.	AML with myelodysplasia	none found	complex	40.6	8.8	21	50	45
106	50	m	D,FU	M2	AML with t(8;21)	AML1-ETO	45,X,-Y,t(8;21)	4.6	5.9	18	35	63
107	57	m	FU	n.a.	AML, NOS	none found	46,XY,dup(1q)	2.0	8.9	18	0	12
108	83	m	D	M0	AML with minimal differentiation	none found	46,XY	116.9	6.1	12	81	85
109	51	f	D	M1	AML without maturation	none found	47,XX,+8	2.4	7.7	11	19	82
110	45	m	FU	M2	AML with myelodysplasia	FLT3 ITD, NPM1	46,XY	1.6	13.1	86	0	60
111	38	m	D,FU	M4	AML with mutated NPM1	NPM1	46,XY	14.0	11.1	87	11	24
112	77	f	D	n.a.	AML with myelodysplasia	none found	complex	1.3	7.4	53	0	23
113	73	m	D	M4	Acute myelomonocytic leukemia	<i>FLT3</i> D835	46,XY,+11,-16	69.0	10.6	44	59	60
114	28	m	D	M2	AML with t(8;21)	AML1-ETO	45,X,-Y	11.5	9.9	68	24	20
115	48	m	D	M2	AML with maturation	none found	46,XY	11.8	8.4	576	42	27
116	71	m	D	M1	AML with mutated NPM1	FLT3 ITD, NPM1	n.t.	152.3	9.1	22	96	n.t.
117	66	f	FU	M4eo	AML with inv(16)	CBFB-MYH11	46,XX,inv(16)	3.3	12.2	72	5	19

	age	gender	sample	AML o	diagnosis	Mutations or		WBC	Hb	Plt	Blas	st (%)
No. #	(yrs)	(m/f)	used at	FAB	WHO	molecular translocations	karyotype	(G/L)	(g/dL)	(G/L)	РВ	BM
118	83	m	D	M2	AML with myelodysplasia	none found	47,XY,+8	8.1	9.1	28	21	24
119	68	f	D	M1	AML with mutated NPM1	FLT3 ITD, NPM1	n.t.	198.1	9.2	14	90	91
120	74	f	D	M4	Therapy-related AML	FLT3 ITD	46,XX	109.5	9.2	67	37	70
121	65	f	FU	M0	AML with minimal differentiation	n.t.	47,XX,t(3;12),+8	0.6	10.9	10	n.t.	88
122	68	f	D	M2	AML with myelodysplasia	none found	49,XX,+8,+12,+13	7.4	9.8	5	72	30
123	77	m	D	M2	Therapy-related AML	none found	46,XY	4.9	11.1	61	32	37
124	43	m	D	M2	AML with mutated NPM1	NPM1	46,XY	135.7	12.5	54	50	49
125	49	f	FU	M0	AML with minimal differentiation	TLS-ERG	46,XX,t(16;21;13)	7.4	13.3	242	1	5
126	73	f	D	M4	Therapy-related AML	FLT3 ITD, NPM1	46,XX	93.2	8.1	90	62	62
127	54	f	D	M5a	AML with mutated NPM1	FLT3 ITD, NPM1	46,XX	144.2	10.3	62	96	95
128	62	m	D	M4	AML with t(11;17), MLL-MSF	MLL1-MSF	47,XY,t(11;17)	35.1	11.3	32	33	72
129	41	m	D,FU	M3	Acute promyelocytic leukemia	PML-RARA	46,XY,t(15;17)	54.0	11.1	23	88	90
130	55	m	D,FU	M2	AML with maturation	FLT3 ITD	47,XY,+8	6.8	12.0	112	56	66
131	54	f	D,FU	M2	AML with myelodysplasia	none found	complex, del(5q), del(7q)	2.4	9.4	55	1	21
132	44	f	D	n.a.	AML with myelodysplasia	none found	45,XX,inv(3),-7	1.5	9.3	13	16	25
133	78	m	FU	M4	AML with mutated NPM1	FLT3 ITD, NPM1	46,XY	91.6	8.8	33	93	81
134	34	f	D	M5a	AML with mutated NPM1	NPM1	46,XX	30.8	9.6	41	5	70
135	83	f	D	M1	AML with myelodysplasia	n.t.	47,XX,del(5q),+8	1.2	8.0	151	5	60
136	39	f	D	M2	AML with maturation	none found	46,XX	19.9	11.7	87	82	81
137	68	m	D	n.a.	AML with myelodysplasia	none found	complex	2.2	8.2	34	0	34
138	65	f	D	M6	Acute erythroid leukemia	FLT3 ITD	46,XX	2.5	9.6	189	1	30
139	64	f	D	n.a.	AML with myelodysplasia	<i>JAK2</i> V617F	n.t.	10.3	10.7	352	24	n.t.
140	43	f	FU	M1	AML without maturation	none found	46,XX	2.4	10.9	168	0	14
141	21	f	D	M4eo	AML with inv(16)	CBFB-MYH11	46,XX,inv(16)	192.9	8.4	18	78	86
142	76	m	D	n.a.	AML with myelodysplasia	none found	46,XY	1.9	12.4	111	0	21

	age	gender	sample	AML	diagnosis	Mutations or		WBC	Hb	Plt	Blas	st (%)
No. #	(yrs)	(m/f)	used at	FAB	WHO	molecular translocations	karyotype	(G/L)	(g/dL)	(G/L)	РВ	BM
143	71	m	D	M6	Acute erythroid leukemia	none found	48,XY,+8,+15	3.9	6.8	145	28	48
144	49	m	FU	n.a.	AML with myelodysplasia	none found	46,XY	2.0	14.8	41	1	22
145	85	f	D	M1	AML with myelodysplasia	none found	46,XX,del(5q)	1.7	11.1	101	0	33
146	39	f	FU	M2	AML with maturation	n.t.	46,XX	1.7	10.5	29	6	27
147	68	m	D	M0	AML with minimal differentiation	none found	46,XY	1.8	6	38	1	46
148	64	f	D	M4	AML with myelodysplasia	<i>FLT3</i> ITD	46,XX,del(9q)	63.9	8.2	36	28	79
149	72	m	D	M6	AML with myelodysplasia	none found	complex with (del5q)	2.7	7.2	86	1	30
150	62	m	D	n.a.	AML with myelodysplasia	none found	complex	1.6	9.6	31	2	30
151	67	m	D	M1	AML with myelodysplasia	<i>JAK2</i> V617F, <i>FLT3</i> ITD	46,XY	38.4	9.1	12	78	69
152	28	f	FU	M1	AML without maturation	none found	46,XX	4.0	12.0	114	10	37
153	70	m	D	M2	AML with myelodysplasia	none found	46,XY,+mar	1.3	7.0	95	0	1
154	36	f	D	M4	AML with mutated NPM1	FLT3 ITD, NPM1	46,XX	26.2	8.2	82	5	40
155	80	m	D	n.a.	AML, NOS	none found	46,XY	2.5	9.4	47	17	38
156	83	m	D	M2	AML with myelodysplasia	none found	complex	1.4	8.0	43	5	23
157	50	f	D,FU	M4	AML with mutated NPM1 and CEBPA	FLT3 ITD, NPM1, CEBPA	46,XX	15.4	7.3	68	16	63
158	73	f	D	M2	AML with myelodysplasia	none found	46,XX,7,+mar,del(20q)/ 46,XX,del(20q)	70.6	9.8	19	77	50
159	57	m	D	M1	AML without maturation	<i>FLT3</i> ITD	46,XY	72.6	8.5	91	80	73
160	46	f	D	M1	AML with t(10;11), <i>MLL-AF10</i>	MLL1-AF10	46,XX,t(8;12)	25.0	8.1	35	81	93
161	92	m	D	M0	AML with minimal differentiation	<i>FLT3</i> ITD	n.t.	107.0	10.3	63	70	80
162	50	m	D	M3	Acute promyelocytic leukemia	PML-RARA	n.t.	0.9	11.9	61	2	n.t.
163	78	m	D	n.a.	AML with myelodysplasia	none found	46,XY,t(X;2)/47,XY,t(2;X),+9	9.0	9.5	24	89	63
164	71	f	D	M2	AML with myelodysplasia	none found	46,XX	10.5	10.0	24	6	33
165	63	m	D	M1	AML with inv(16)	CBFB-MYH11	46,XY,inv(16)	27.5	9.0	22	65	64

	age	gender	sample	AML	diagnosis	Mutations or		WBC	Hb	Plt	Blas	st (%)
No. #	(yrs)	(m/f)	used at	FAB	WHO	molecular translocations	karyotype	(G/L)	(g/dL)	(G/L)	РВ	BM
166	71	m	FU	M4	AML with myelodysplasia	none found	46,XY	17.8	11.4	56	2	22
167	62	m	D	M2	AML with myelodysplasia	JAK2 V617F, CEBPA	46,XY,-18,+mar	17.4	10.8	560	41	32
168	64	m	D,FU	M1	AML without maturation	none found	46,XY	53.5	9.0	52	94	84
169	70	m	D	M2	AML with maturation	none found	46,XY	1.9	9.1	36	0	37
170	56	m	D,FU	M5b	Acute monocytic leukemia	none found	46,XY	1.7	9.3	90	6	35
171	76	m	D,FU	M2	AML with maturation	none found	47,XY,+8	21.7	7.3	15	79	40
172	33	f	FU	M1	AML with t(9;11) <i>, MLL1-AF9</i>	MLL1-AF9	46,XX,t(9;11)	0.4	7.5	16	n.t.	73
173	60	m	D	M2	AML with myelodysplasia	none found	46,XY	3.4	11.4	50	38	55
174	49	f	FU	M2	AML with maturation	n.t.	46,XX,add(17q)	37.4	9.3	23	95	90
175	66	m	D	M5a	Acute monoblastic leukemia	none found	46,XY	30.8	10.5	26	1	n.t.
176	88	m	D	M6	Acute erythroid leukemia	none found	complex	3.6	8.4	124	1	21
177	82	f	D	M2	AML with mutated NPM1	FLT3 ITD, NPM1	46,XX	112.9	9.5	54	73	75
178	50	m	D	n.a.	n.t.	n.t.	n.t.	330.0	7.3	100	67	n.t.
179	71	m	D	n.a.	AML with t(6;11) <i>, MLL1-AF6</i>	MLL1-AF6	46,XY,t(6;11)	312.0	11.4	94	77	nA
180	66	f	D	M4	AML with myelodysplasia	FLT3 ITD	46,XX	4.2	9.4	14	0	19
181	76	m	D	M4	AML with myelodysplasia	TP53, BCR-ABL	complex with del(5q)	3.6	6.5	151	33	50
182	71	f	D	M1	AML with mutated NPM1	FLT3 ITD, NPM1	46,XX	33.1	10.0	9	44	75
183	69	m	D	M2	AML with myelodysplasia	none found	complex (5q-,-7)	8.2	9.6	126	28	17
184	50	f	FU	M4	AML with mutated NPM1	NPM1, FLT3 ITD	46,XX	75.6	12.7	158	81	79
185	38	f	D,FU	M3	Acute promyelocytic leukemia	PML-RARA	46,XX,t(15;17)	5.1	9.8	22	37	73
186	71	m	FU	M1	AML with myelodysplasia	none found	45,XY,-7	1.4	11.1	43	7	56
187	53	f	D,FU	M1	AML with mutated NPM1	NPM1	46,XX	64.1	8.5	39	88	80
188	51	f	D	M1	AML without maturation	FLT3 ITD	46,XX	55.9	9.4	33	94	94
189	36	f	D	M2	AML with myelodysplasia	FLT3 ITD	46,XX,del(3)	5.2	8.7	8	41	56
190	44	f	D	M1	AML with mutated NPM1	FLT3 ITD, NPM1	46,XX	219.8	5.1	38	94	83
191	76	f	D	n.a.	AML with myelodysplasia	FLT3 ITD	46,XX,del(5q)	20.1	12.1	206	36	49

	age	gender	sample	AML	liagnosis	Mutations or		WBC	Hb	Plt	Blas	st (%)
No. #	(yrs)	(m/f)	used at	FAB	WHO	molecular translocations	karyotype	(G/L)	(g/dL)	(G/L)	РВ	BM
192	66	f	D,FU	M5a	AML with mutated NPM1	FLT3 ITD, NPM1	46,XX	56.0	8.9	88	11	62
193	78	m	D	M3	Acute promyelocytic leukemia	PML-RARA	46,XY,t(15;17)	2.6	10.1	29	33	81
194	29	f	D,FU	M2	AML with maturation	none found	46,XX	31.0	11.5	20	79	56
195	26	f	D	M2	AML with maturation	none found	46,XX	20.8	11.4	124	39	65
196	19	m	D,FU	M1	AML without maturation	none found	46,XY	34.4	8.2	11	81	79
197	62	f	FU	M2	AML with maturation	none found	46,XX	1.7	14.0	52	0	16
198	70	f	D	M2	AML with mutated NPM1	NPM1	46,XX	6.7	9.4	92	38	68
199	64	f	FU	M3	Acute promyelocytic leukemia	PML-RARA	47,XX,+8,t(15;17)	2.5	12.2	143	0	8
200	68	f	D	M2	AML with myelodysplasia	none found	46,XX	1.2	11.9	81	3	30
201	50	m	D	M4	AML with mutated NPM1	NPM1	46,XY	27.2	8.2	99	0	40
202	61	m	D	M4	AML with mutated NPM1	FLT3 ITD, NPM1	46,XY	34.7	9.3	180	32	60
203	75	f	D	n.a.	Therapy related AML	none found	n.t.	1.07	8.4	8	3	47
204	53	f	D	M2	AML with myelodysplasia	none found	45,XX,-7	2.4	9.3	84	13	30
205	30	m	D	M4eo	AML with inv(16)	FLT3 ITD, CBFB-MYH11	47,XY,+8,inv(16)	110.9	10.7	37	80	68
206	73	m	D	M0	AML with myelodysplasia	none found	45,XY,-7	25.6	11.4	121	88	66
207	66	m	FU	M2	AML with myelodysplasia	none found	46,XY	0.9	8.6	41	2	22
208	70	f	D	M2	AML with mutated NPM1	FLT3 ITD, NPM1	46,XX	40.5	9.8	447	78	71
209	44	m	D	M0	AML with minimal differentiation	none found	46,XY	1.7	9.7	186	4	65
210	68	m	D	M1	AML with myelodysplasia	none found	complex	74.6	12.0	146	95	84
211	39	m	D,FU	M4	Acute myelomonocytic leukemia	none found	46,XY,t(11;17)	28.5	6.7	42	40	47
212	42	m	D	M1	AML without maturation	none found	46,XY	15.2	10.8	39	57	53
213	41	m	D	M1	AML with mutated NPM1	FLT3 ITD, NPM1	46,XY	202.3	8.3	24	61	65
214	62	f	FU	M5b	AML with myelodysplasia	NPM1	46,XX,del(12p),del(20q)	12.3	9.4	12	47	74

	age	gender	sample	AML	diagnosis	Mutations or		WBC	Hb	Plt	Blas	st (%)
No. #	(yrs)	(m/f)	used at	FAB	WHO	molecular translocations	karyotype	(G/L)	(g/dL)	(G/L)	РВ	BM
215	53	m	D	M4	AML with mutated NPM1	NPM1	46,XY	31.7	8.2	18	1	25
216	43	m	D	M2	AML with mutated NPM1	NPM1	46,XY	1.0	10.2	39	11	56
217	54	f	D,FU	M4	AML with myelodysplasia	none found	complex, del(5q)	5.4	8.6	13	5	64
218	56	m	D,FU	M4	Acute myelomonocytic leukemia	FLT3 ITD	46,XY	47.0	6.7	145	12	43
219	73	f	FU	M1	AML without maturation	FLT3 ITD	46,XX	136.4	10.5	79	57	
220	69	m	D	M0	AML with myelodysplasia	none found	46,XY,inv(3),del(7q)	2.4	8.2	19	2	37
221	44	m	D,FU	M4	Acute myelomonocytic leukemia	none found	46,XY,t(5;9)	25.0	9.1	24	11	31
222	64	m	D	M4	AML with t(11;19), <i>MLL1-ELL</i>	<i>MLL1-ELL,</i> t(11;19)	46,XY	219.0	7.1	34	68	61
223	54	m	D	M2	AML with myelodysplasia	none found	45,XY,-7	2.8	11.5	24	16	37
224	20	f	D,FU	M2	Therapy related AML	CEBPA	46,XX	2.4	8.1	40	32	25
225	71	m	D	M4	Acute myelomonocytic leukemia	none found	47,XY,+mar	46.7	10.8	116	90	72
226	46	m	D	M4	AML with mutated NPM1	NPM1	46,XY	19.0	5.0	24	0	50
227	58	f	D	M4	AML with t(11;17), <i>MLL1-AF17</i>	<i>MLL1-AF-17,</i> t(11;17)	46,XX,t(11;17)	13.3	6.3	66	71	81
228	55	f	D	M3	Acute promyelocytic leukemia	PML-RARA	47,XX,t(15;17)	3.3	9.1	67	27	63
229	70	f	D	M2	AML with maturation	none found	46,XX	2.2	11.6	45	0	21
230	79	m	D	M1	AML without maturation	FLT3 ITD	46,XY	1.7	8.5	113	49	77
231	55	m	D	M2	AML with mutated NPM1	FLT3 ITD, NPM1	46,XY	42.0	8.5	242	82	62
232	23	m	D	M4eo	AML with inv(16)	CBFB-MYH11	complex, inv(16)	51.0	8.1	21	17	32
233	62	m	D	M1	AML with mutated NPM1	NPM1, FLT3 ITD	n.t.	116.7	13.2	50	95	95
234	41	f	D	M4eo	AML with inv(16)	CBFB-MYH11	46,XX,inv(16)	86.4	6.7	30	7	28
235	43	m	FU	M2	AML with myelodysplasia	none found	45,XY,der(6),-7	6.8	11.5	58	86	63
236	70	m	D,FU	M2	AML with maturation	none found	47,XY,+8	2.3	9.1	77	0	33
237	56	m	D,FU	M1	AML without maturation	none found	46,XY	2.0	8.9	45	0	50

	age	gender	sample	AML	diagnosis	Mutations or		WBC	Hb	Plt	Blas	st (%)
No. #	(yrs)	(m/f)	used at	FAB	WHO	molecular translocations	karyotype	(G/L)	(g/dL)	(G/L)	РВ	BM
238	65	f	D	M1	AML with myelodysplasia	none found	46,XX	1.1	7.3	84	7	63
239	36	m	D	M1	AML with myelodysplasia	none found	47,XY,del(9q),+21	18.5	9.2	28	77	77
240	72	m	D	M2	AML with myelodysplasia	<i>NPM1,</i> <i>KIT</i> D816V	46,XY	13.0	10.3	163	77	46
241	41	f	FU	n.a.	n.t.	DEK-CAN	46,XX	1.4	8.5	7	1	75
242	54	f	FU	M2	AML with maturation	none found	46,XX	1.8	11.8	45	5	30
243	36	m	D,FU	M0	AML with t(10;11), <i>MLL-AF10</i>	MLL1-AF10	complex	1.5	12.0	192	6	66
244	74	f	D	M4	AML with t(6;11), MLL1-AF6	MLL1-AF6.t(6;11)	46,XX	3.4	8.0	3	0	40
245	76	m	D,FU	M3	Acute promyelocytic leukemia	PML-RARA	46,XY,t(15;17)	22.8	11.9	36	88	90
246	81	m	D	M5a	AML with t(9;11), <i>MLL1-AF9</i>	MLL1-AF9	46,XY	66.2	8.7	36	90	93
247	73	m	FU	M1	AML without maturation	none found	47,XY,+8	2.0	10.0	78	0	2
248	66	m	D	M1	AML without maturation	none found	46,XY	3.3	8.6	15	79	20
249	64	m	D	M1	AML with mutated NPM1	FLT3 ITD, NPM1	45,XY	130.3	11.8	22	86	85
250	81	f	D	M1	AML with mutated NPM1	NPM1	46,XX	36.4	8.9	94	86	80
251	36	f	FU	M1	AML without maturation	FLT3 ITD	46,XX	1.9	10.2	92	0	15
252	66	m	D	M2	AML with myelodysplasia	none found	47,XY,+11,der(11)	2.9	10.1	21	0	31
253	41	f	D	M4	Acute myelomonocytic leukemia	none found	46,XX	2.8	8.2	61	51	72
254	45	f	D	M4	AML with myelodysplasia	FLT3 ITD	46,XX	66.8	10.2	46	53	66
255	20	m	D	M3	Acute promyelocytic leukemia	PML-RARA	46,XY,t(15;17)	51.2	10.6	25	90	95
256	27	m	FU	M4	Acute myelomonocytic leukemia	<i>FLT3</i> ITD	46,XY	93.9	10.3	88	76	76
257	32	f	D	M4	AML with mutated NPM1	NPM1, FLT3 ITD	46,XX	126.2	9.1	35	42	32
258	41	m	D	M3v	Acute promyelocytic leukemia	<i>PML-RARA, FLT3</i> ITD	46,XY,t(15;17)	57.5	9.9	15	63	90
259	63	f	D	n.a.	Therapy-related AML	none found	46,XX	0.8	6.5	24	0	48
260	83	m	D	M2	AML with myelodysplasia	none found	complex, del(5q)	2.4	7.9	25	0	22

	age	gender	sample	AML	diagnosis	Mutations or		WBC	Hb	Plt	Blas	st (%)
No. #	(yrs)	(m/f)	used at	FAB	WHO	molecular translocations	karyotype	(G/L)	(g/dL)	(G/L)	РВ	BM
261	62	m	D	M4	AML with mutated NPM1	NPM1	46,XY	233.7	7.9	53	9	28
262	81	m	D	M4	AML with mutated NPM1	<i>NPM1, FLT3</i> ITD, <i>KIT</i> D816V	46,XY	198.5	10.2	27	25	66
263	69	m	D	M0	AML with minimal differentiation	none found	46,XY	1.1	9.8	106	0	78
264	58	m	D	M1	AML with t(8;21)	AML1-ETO	46,XY,t(8;21)	9.6	9.5	12	85	77
265	53	m	D	M2	AML with mutated NPM1	NPM1	46,XY	5.0	8.2	47	46	50
266	81	f	D	M0	AML with myelodysplasia	none found	94,XXXX, complex	1.4	11.4	122	16	46
267	68	m	D	M4	AML with mutated NPM1	NPM1	46,XY	22.7	10.4	28	53	72
268	73	f	D	M6	Acute erythroid leukemia	none found	46,XX	4.4	8.2	173	1	43
269	64	m	D	M5a	Acute monoblastic leukemia	none found	46,XY,dup(11q)	56.0	9.1	12	70	70
270	22	f	D	M1	AML without maturation	none found	47,XX,+11	2.8	9.5	78	57	65
271	81	f	D	M1	AML with myelodysplasia	none found	complex	2.6	8.4	25	53	77
272	55	f	D	M2	AML with myelodysplasia	none found	45,XX,-7,-17	10.5	9.8	94	22	40
273	76	m	D	M2	Therapy-related AML	none found	complex	51.3	7.7	63	69	61
274	88	f	D	n.a.	AML with mutated NPM1	NPM1, FLT3 ITD	n.t.	62.4	7.0	21	89	95

Abbreviations: No. #, patient number; WBC, white blood count; Hb, hemoglobin; Plt, platelet count; yrs, years; m, male; f, female; FAB, French-American-British cooperative study group; WHO, world health organization classification, 4^{th} Edition; PB, peripheral blood; BM, bone marrow; G/L, 10^9 cells per liter; g/dL, gram per deciliter; m, male; f, female; D, used at time of diagnosis or persistence of blasts after induction chemotherapy; FU, used during follow up; n.a., not available; n.t., not tested; AML, acute myeloid leukemia; *FLT3* ITD, fms like tyrosine kinase 3 internal tandem duplication; NPM1, nucleophosmin mutation; complex karyotype: at least three cytogenetic aberrations.

Patients' characteristics - other hematologic neoplasms

	age	gender						WBC	Hb	Plt	Blas	st (%)
No. #	(yrs)	(m/f)	diagnosis	FAB	WHO	mutations	karyotype	(G/L)	(g/dL)	(G/L)	PB	BM
1	83	m	MDS	RA	RCMD	n.t.	n.t.	5.5	11.0	78	0	2
2	86	f	MDS	RARS	RARS	n.t.	46,XX	2.0	10.3	151	0	2
3	84	m	MDS	RAEB-2	RAEB-2	n.t.	n.t.	5.5	10.5	25	3	15
4	66	f	MDS	RAEB-2	RAEB-2	n.t.	47,XX,+21	2.9	9.5	231	2	10
5	70	m	MDS	RAEB-2	RAEB-2	n.t.	n.t.	1.2	7.9	76	0	14
6	78	f	MDS	RA	del(5q)	n.t.	46,XX,del(5q)	8.4	8.2	152	0	3
7	81	m	MDS	RA	RCUD	n.t.	n.t.	13.3	11.6	19	1	8
8	69	m	MDS	RAEB-2	RAEB-2	n.t.	47,XY,+8	1.1	14.8	44	0	19
9	82	m	MDS	RAEB-1	RAEB-1	n.t.	n.t.	1.7	10.3	105	0	7
10	72	f	MDS	RAEB-1	RAEB-1	n.t.	46,XX,del(20q)/4 7,XX,del(20q),+d el(20q)	4.2	5.6	25	0	9
11	76	m	MDS	RAEB-1	RAEB-1	n.t.	45,XY,-7	2.6	10.6	39	0	5
12	52	f	MDS	RA	del(5q)	n.t.	46,XX,del(5q)	4.9	8.0	409	0	1
13	51	f	MDS	RAEB-1	RAEB-1	n.t.	46,XX,del(7q)	1.8	10.0	82	0	5
14	59	m	MDS	RA	RCMD	n.t.	46,XY	3.0	6.7	71	0	1
15	57	m	MDS	RAEB-2	RAEB-2	n.t.	46,XY	4.1	10.3	47	0	11
16	72	f	MDS	RARS	RARS	n.t.	46,XX	2.6	8.9	349	0	1
17	70	f	MDS	RA	del(5q)	n.t.	46,XX,del(5q)/47, XX,del(5q),+8	2.7	8.9	267	0	2
18	72	m	MDS	RA	RCMD	n.t.	45,X,-Y/45,XY,- 21/45,XY,-22	11.7	8.1	342	0	2
19	80	f	MDS	RA	del(5q)	n.t.	46,XX,del(5q)	8.7	8.6	354	0	1
20	54	m	MDS	RA	RCMD	n.t.	46,XY	1.3	13.2	16	0	1
21	63	m	MDS	RA	del(5q)	n.t.	46,XY,del(5q)	1.9	10.5	317	0	3

	age	gender						WBC	Hb	Plt	Blas	st (%)
No. #	(yrs)	(m/f)	diagnosis	FAB	WHO	mutations	karyotype	(G/L)	(g/dL)	(G/L)	PB	BM
22	76	m	MDS	RA	RCUD	n.t.	45,X,-Y	2.4	11.8	111	0	1
23	74	m	MDS	RA	del(5q)	n.t.	46,XY,del(5q)	1.8	8.4	89	0	2
24	64	m	MDS	RAEB	RAEB-2	n.t.	46,XY,del(7p)	1.8	7.8	118	0	14
25	63	m	MDS	RA	RCMD	n.t.	complex	3.3	10.0	134	0	5
26	73	f	MDS	RAEB-2	RAEB-2	n.t.	n.t.	3.0	11.4	93	0	15
27	58	m	MDS	RAEB	RAEB-1	n.t.	46,XY	4.2	11.4	122	0	6
28	88	m	MDS	RA	RCMD	n.t.	45,XY,-7	2.0	9.1	90	0	3
29	69	f	MDS	RA	RCMD	n.t.	46,XX	4.0	8.9	114	0	1
30	76	m	MDS	RAEB-2	RAEB-2	n.t.	46 <i>,</i> XY	4.5	8.6	41	0	11
31	39	m	MDS	RAEB-2	RAEB-2	n.t.	48,XY,+8,+12	2.8	12.6	52	4	15
32	72	m	MDS	RA	RCUD	TCR	46,XY	7.1	11.0	58	0	1
						Rearrangement						
33	76	m	MDS	RAEB-2	RAEB-2	n.t.	46,XY	1.4	10.8	22	0	12
34	84	f	MDS	RA	del(5q)	n.t.	46,XX,del(5q)	6.2	9.3	332	0	2
35	57	f	MDS	RAEB-1	RAEB-1	n.t.	46,XX,del(11q)	4.2	12.6	295		5
36	78	m	MDS	RARS	del(5q)	n.t.	46,XY,del(5q)	4.2	9.6	122	0	1
37	63	f	MDS	RARS	RARS	n.t.		5.7	8.0	85	0	3
38	80	f	MDS	RAEB-1	RAEB-1	n.t.	46,XX	1.8	10.8	46	0	4
39	73	f	MDS	RAEB-1	RAEB-1	n.t.		10.0	11.3	34	0	1
40	78	m	MDS	RAEB-2	RAEB-2	FLT3 ITD	46,XY,del(20q)	2.1	9.6	43	0	17
41	72	m	MDS	RARS	RARS	n.t.	46,XY	7.3	9.5	266	0	1
42	53	f	MDS	RAEB-2	RAEB-2	n.t.	45,XX,-7	2.0	7.3	203	2	13
43	64	m	MDS	RAEB-1	RAEB-1	n.t.		1.4	8.6	117	0	9
44	63	m	MDS	RARS	RARS	n.t.		8.5	8.6	286	0	1
45	70	m	MDS	RA	RCMD	n.t.	46,XY	8.0	9.5	157	0	2
46	66	m	MDS	RAEB-2	RAEB-2	n.t.	complex	1.9	8.6	24	2	11
47	65	f	MDS	RA	del(5q)	n.t.	46,XX,del(5q)	5.7	10.5	284	0	2
48	71	m	MDS	RAEB	RAEB-2	n.t.	46,XY	1.5	10.1	10	8	16

	age	gender						WBC	Hb	Plt	Blas	st (%)
No. #	(yrs)	(m/f)	diagnosis	FAB	WHO	mutations	karyotype	(G/L)	(g/dL)	(G/L)	PB	BM
49	77	f	MDS	RA	del(5q)	n.t.	46,XX,del(5q)	2.5	8.8	13	0	n.t.
50	67	m	MDS	RAEB	RAEB-2	n.t.	46,XY,del(5q)	3.8	9.6	109	1	11
51	85	m	MDS	RAEB	RAEB-2	n.t.	46,XY,del(5q)	2.6	6.7	14	9	12
52	66	m	MDS	RAEB-2	RAEB-2	n.t.	46,XY,del(10q),t(10;21)	6.2	8.9	16	2	14
53	64	m	MDS	RAEB	RAEB-2	n.t.	46,XY	3.7	12.3	58	0	11
54	75	f	MDS	RA	del(5q)	n.t.	47,XX,del(5q),+8	3.6	9.7	413	0	3
55	65	f	MDS	RA	RCMD	n.t.	n.t.	3.6	8.2	110	0	3
56	69	m	MDS	RA	RCUD	n.t.	46,XY	5.8	12.9	79	0	1
57	71	f	MDS	RA	RCMD	n.t.	46,XX	1.6	11.4	27	0	2
58	77	m	MDS	RAEB-2	RAEB-2	n.t.	complex, del(5q)	2.8	9.9	33	3	18
59	56	m	MDS/MPN	CMML	CMML-1	n.t.	46,XY	16.0	8.7	49	1	2
60	72	m	MDS/MPN	n.a.	MDS/MPN-U	n.t.	n.t.	45.3	8.7	40	0	1
61	75	m	MDS/MPN	CMML	CMML-2	n.t.	n.t.	17.7	11.3	132	2	15
62	62	m	MDS/MPN	CMML	CMML-2	JAK2 V617F	n.t.	24.6	8.3	49	15	n.t.
63	46	m	MDS/MPN	CMML	CMML-2	n.t.	complex	39.1	8.5	22	1	6
64	81	m	MDS/MPN	CMML	CMML-2	n.t.	46,XY	8.9	11.0	8	2	10
65	73	m	MDS/MPN	CMML	CMML-1	n.t.	46,XY	4.7	8.1	36	0	6
66	62	m	MDS/MPN	CMML	CMML-2	n.t.	46,XY	77.1	10.3	26	7	11
67	71	m	MDS/MPN	RAEB-2	MDS/MPN-U	n.t.	47,XY,+8	25.4	7.6	137	11	8
68	66	m	MDS/MPN	RAEB-2	MDS/MPN-U	n.t.	n.t.	26.2	10.5	39	13	15
69	61	m	MDS/MPN	n.a.	MDS/MPN-U	n.t.	46,XY	9.5	9.9	512	0	1
70	72	m	MDS/MPN	CMML	CMML-1	n.t.	46,XY	21.6	11.8	64	0	4
71	76	f	MDS/MPN	n.a.	MDS/MPN-U	n.t.	complex	21.0	9.1	19	4	6
72	83	f	MDS/MPN	CMML	CMML-1	n.t.	46,XX	16.1	10.3	160	1	3
73	78	f	MDS/MPN	CMML	CMML-1	n.t.	46,XX	6.0	10.1	137	0	4
74	71	f	MDS/MPN	CMML	CMML-1	n.t.	46,XX,del(20q)	9.4	11.5	54	0	4
75	77	m	MDS/MPN	CMML	CMML-1	n.t.	n.t.	17.6	9.8	11	0	2

	age	gender						WBC	Hb	Plt	Blas	st (%)
No. #	(yrs)	(m/f)	diagnosis	FAB	WHO	mutations	karyotype	(G/L)	(g/dL)	(G/L)	PB	BM
76	56	m	MDS/MPN	n.a.	MDS/MPN-U	n.t.	n.t.	15.7	10.5	256	0	1
77	62	m	MDS/MPN	CMML	CMML-1	n.t.	46,XY	70.3	10.2	148	2	8
78	73	f	MDS/MPN	CMML	CMML-2	n.t.	46,XX	18.1	10.6	28	9	11
79	53	f	MDS/MPN	CMML	CMML-2	n.t.	47,XX,+6	3.3	9.5	33	18	17
80	47	f	MDS/MPN	CMML	CMML-2	n.t.	46,XX	39.9	10.1	26	3	14
81	71	m	MDS/MPN	CMML	CMML-2	n.t.	47,XY,+8	19.5	8.4	259	0	20

Abbreviations: No. #, patient number; WBC, white blood count; Hb, hemoglobin; Plt, platelet count; yrs, years; m, male; f, female; FAB, French-American-British classification; WHO, World Health Organisation classification, 4th edition; PB, peripheral blood; BM, bone marrow; MDS/MPN, myelodysplastic/myeloproliferative overlap neoplasm; MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasm; SM, systemic mastocytosis; CMML, chronic myelomonocytic leukemia; RARS, refractory anemia with ring sideroblasts; RAEB, RA with excess of blasts; del(5q), deletion of chromosome 5q; RCUD, refractory cytopenia with unilineage dysplasia; RCMD, refractory cytopenia with multilineage dysplasia; n.a., not available; n.t., not tested.

	age	gender			WBC	Hb	Plt	Bla	ist (%)
No. #	(yrs)	(m/f)	diagnosis	karyotype	(G/L)	(g/dL)	(G/L)	PB	вм
1	77	m	ICUS	46,XY	3.2	12.5	93	0	2
2	67	f	ICUS	n.t.	2.9	12.9	33	0	3
3	82	f	ICUS	n.t.	7.4	11.8	82	0	1
4	56	f	ICUS	n.t.	1.6	11.6	25	0	1
5	59	f	ICUS	n.t.	2.9	13.5	58	0	3
6	78	m	ICUS	n.t.	2.5	16.0	118	0	1
7	50	f	ICUS	46,XX	3.9	11.1	205	0	2
8	60	m	ICUS	46,XY	1.5	10.9	45	0	2
9	44	f	ICUS	46,XX	4.0	10.8	189	0	1
10	75	m	ICUS	n.t.	7.9	14.8	12	n.t.	1
11	36	f	ICUS	46,XX	2.2	11.1	310	0	1
12	82	m	ICUS	n.t.	3.0	14.4	211	0	1
13	23	f	ICUS	n.t.	6.0	13.8	37	0	1
14	70	f	ICUS	46,XX	2.8	10.5	97	0	1
15	20	m	ICUS	46,XY	3.8	12.3	47	0	1
16	69	f	ICUS	n.t.	12.8	11.4	45	0	1
17	53	f	ICUS	46,XX	3.2	11.3	173	0	1
18	34	f	ICUS	n.t.	2.5	13.7	159	0	1
19	64	m	ICUS	46,XY	5.3	8.2	96	0	1
20	79	m	ICUS	n.t.	3.4	13.2	89	0	1
21	69	m	ICUS	46,XY	4.6	9.9	136	0	1
22	53	f	ICUS	n.t.	11.0	11.2	11	0	1
23	56	f	ICUS	n.t.	7.9	14.2	261	0	n.t.
24	34	f	ICUS	46,XX	4.8	11.6	201	0	1

Patients' characteristics of control patients: lymphoma, normal bone marrow, premalignant conditions and cord blood samples

	age	gender			WBC	Hb	Plt	Bla	st (%)
No. #	(yrs)	(m/f)	diagnosis	karyotype	(G/L)	(g/dL)	(G/L)	PB	вм
25	81	m	ICUS	45,X,-Y	9.1	10.3	258	0	1
26	69	m	ICUS	n.t.	2.4	10.6	1	0	1
27	39	m	ICUS	n.t.	9.5	14.8	27	0	n.t.
28	80	m	ICUS	46,XY	3.6	15.1	107	0	4
29	68	f	ICUS	46,XX	2.5	13.8	189	0	2
30	72	m	ICUS	46,XY	3.6	13.3	120	0	1
31	38	f	ICUS	46,XX	2.7	12.9	289	0	1
32	58	m	ICUS	n.t.	1.5	12.8	216	0	2
33	62	m	ICUS	n.t.	5.0	8.4	94	0	2
34	33	f	ICUS	46,XX	12.0	11.7	133	0	2
35	73	f	ICUS	n.t.	2.6	9.3	256	0	2
36	37	f	ICUS	n.t.	2.7	11.6	196	0	0
37	64	m	ICUS	n.t.	3.7	9.8	67	0	1
38	70	m	ICUS	n.t.	7.9	15.6	59	0	1
39	82	f	ICUS	n.t.	3.6	11.5	134	0	2
40	79	m	ICUS	n.t.	6.9	12.8	102	0	1
41	41	m	Hodgkin's lymphoma	n.t.	10.0	15.5	279	0	1
42	57	m	suspected NHL	46,XY	6.0	17.6	95	0	1
43	38	f	suspected CML	n.t.	85.1	10.8	285	0	1
44	28	f	NHL	n.t.	6.0	10.8	297	0	1
45	43	m	Hodgkin's lymphoma	n.t.	8.5	14.3	288	0	1
46	47	f	Hodgkin's lymphoma	n.t.	8.2	13.2	345	0	1
47	78	m	NHL	n.t.	12.6	15.0	266	0	1
48	70	m	suspected NHL	n.t.	3.6	10.2	189	0	2
49	88	f	NHL	n.t.	9.8	12.9	297	0	1
50	74	m	NHL	n.t.	2.5	11.6	56	0	1
51	55	m	NHL	n.t.	6.6	13.4	86.3	0	1
52	23	m	NHL	n.t.	11.7	14.1	210	0	2

	age	gender			WBC	Hb	Plt	Bla	st (%)
No. #	(yrs)	(m/f)	diagnosis	karyotype	(G/L)	(g/dL)	(G/L)	PB	BM
53	52	m	NHL	n.t.	10.2	12.0	192	0	1
54	63	f	NHL	n.t.	6.8	14.6	208	0	1
55	66	f	NHL	n.t.	6.4	13.4	268	0	1
56	53	m	Hodgkin's lymphoma	n.t.	7.4	9.5	316	0	1
57	69	f	NHL	46,XX	6.2	12.9	276	n.t.	2
58	52	f	NHL	n.t.	7.4	11.6	587	0	1
59	48	f	NHL	n.t.	17.0	11.4	387	0	1
60	46	f	Hodgkin's lymphoma	n.t.	6.5	14.4	165	0	1
61	58	f	NHL	complex	5.1	12.0	230	0	2
62	50	m	suspected mastocytosis	n.t.	7.4	15.3	242	n.t.	1
63	65	f	normal bone marrow	46,XX	5.4	13.3	289	0	1
64	26	f	NHL	n.t.	6.3	12.8	345	0	1
65	37	m	Hodgkin's lymphoma	n.t.	7.0	15.1	245	0	1
66	87	m	normal bone marrow	46,XY	9.7	12.5	254	0	1
67	79	m	NHL	46,XY	12.7	12.5	627	0	1
68	49	f	NHL	n.t.	5.1	11.9	214	0	n.t.
69	47	f	MGUS	n.t.	5.6	12.1	222	0	2
70	69	f	Hodgkin's lymphoma	n.t.	8.7	14.2	292	0	1
71	82	m	NHL	n.t.	5.4	13.2	226	0	1
72	73	m	NHL	46,XY	4.5	8.5	n.t.	n.t.	1
73	76	m	Hodgkin's lymphoma	n.t.	4.6	9.0	142	0	1
74	40	m	NHL	n.t.	5.5	14.6	247	0	1
75	36	f	Ewing's Sarcoma	n.t.	7.7	11.6	357	0	1
76	28	m	NHL	n.t.	13.2	14.6	303	0	1
77	38	f	Hodgkin's lymphoma	n.t.	7.7	14.0	280	0	1
78	28	m	NHL	n.t.	5.2	16.9	198	0	2
79	66	m	NHL	n.t.	19.3	15.6	223	0	1
80	30	m	Hodgkin's lymphoma	46,XY	6.0	13.0	258	0	2

	age	gender			WBC	Hb	Plt	Bla	st (%)
No. #	(yrs)	(m/f)	diagnosis	karyotype	(G/L)	(g/dL)	(G/L)	PB	BM
81	62	m	NHL	n.t.	4.5	13.1	60	0	1
82	19	m	suspected mastocytosis	n.t.	5.4	15.5	177	0	1
83	19	m	Hodgkin's lymphoma	n.t.	9.4	9.3	557	0	1
84	56	m	NHL	n.t.	6.6	16.6	166	0	1
85	61	m	NHL	46,XY	8.1	7.6	530	0	1
86	54	f	NHL	n.t.	6.4	13.4	202	0	1
87	23	m	suspected mastocytosis	46,XY	6.0	14.4	165	0	1
88	28	m	NHL	n.t.	6.8	14.0	326	n.t.	1
89	54	m	suspected mastocytosis	46,XY	9.5	16.0	356	0	1
90	27	f	Dysgerminoma	n.t.	9.1	13.8	354	0	1
91	71	f	NHL	n.t.	7.3	10.8	177	0	1
92	35	m	suspected mastocytosis	n.t.	7.3	14.2	241	0	1
93	81	f	NHL	n.t.	5.2	8.8	139	0	2
94	66	f	NHL	n.t.	5.9	14.9	307	0	1
95	24	f	NHL	n.t.	8.4	11.1	317	0	1
96	77	f	NHL	n.t.	3.9	10.2	110	0	1
97	32	m	suspected mastocytosis	46,XY	4.3	15.2	278	0	1
98	59	f	NHL	n.t.	4.9	12.3	238	0	1
99	42	m	suspected NHL	46,XY	15.7	7.8	259	1	1
100	73	m	NHL	n.t.	5.2	11.9	212	0	1
101	71	f	NHL	n.t.	17.8	9.7	530	0	1
102	24	m	Hodgkin's lymphoma	n.t.	6.3	16.4	191	0	1
103	57	m	NHL	n.t.	4.2	14.4	196	0	1
104	54	f	NHL	n.t.	15.5	9.1	331	0	1
105	47	f	cutaneous mastocytosis	n.t.	7.7	14.9	215	0	1
106	78	f	Hodgkin's lymphoma	n.t.	13.2	10.2	516	0	1
107	29	m	NHL	n.t.	12.1	13.7	375	0	1
108	39	f	Hodgkin's lymphoma	n.t.	11.0	9.6	614	0	1

	age	gender			WBC	Hb	Plt	Bla	st (%)
No. #	(yrs)	(m/f)	diagnosis	karyotype	(G/L)	(g/dL)	(G/L)	PB	BM
109	52	f	NHL	n.t.	1.9	13.2	67	0	1
110	64	f	NHL	46,XX	5.6	8.7	444	0	1
111	59	m	NHL	n.t.	31.0	14.9	276	0	1
112	44	f	suspected mastocytosis	n.t.	7.1	14.1	267	0	1
113	74	m	NHL	n.t.	8.1	9.7	345	0	1
114	46	m	NHL	n.t.	17.8	13.8	332	n.t.	1
115	75	m	NHL	n.t.	102.0	14.3	123	2	n.t.
116	38	m	Hodgkin's lymphoma	n.t.	14.8	13.1	234	n.t.	2
117	55	m	NHL	n.t.	1.7	9.2	49	0	1
118	27	m	Hodgkin's lymphoma	n.t.	7.8	13.1	336	0	n.t.
119	86	f	NHL	46,XX	8.8	11.9	184	0	1
120	68	f	NHL	46,XX	6.1	11.8	350	0	1
121	28	m	NHL	n.t.	6.7	13.7	305	0	1
122	71	m	NHL	n.t.	13.0	14.7	108	0	1
123	24	m	Hodgkin's lymphoma	n.t.	6.1	13.1	243	0	1
124	80	m	MGUS	n.t.	10.7	16.0	172	0	1
125	48	f	Hodgkin's lymphoma	n.t.	6.6	11.8	282	0	1
126	46	m	NHL	n.t.	2.9	11.4	28	0	1
127	60	m	NHL	n.t.	7.8	10.5	723	0	1
128	36	f	Hodgkin's lymphoma	n.t.	11.5	10.1	502	0	2
129	37	m	NHL	n.t.	8.8	12.9	391	0	1
130	64	m	NHL	n.t.	3.5	13.6	64	0	1
131	71	m	NHL	n.t.	8.5	13.6	228	0	1
132	23	m	Hodgkin's lymphoma	n.t.	11.9	12.1	427	0	2
133	70	m	NHL	n.t.	8.2	16.0	289	0	1
134	27	f	Hodgkin's lymphoma	n.t.	13.6	8.3	376	0	1
135	62	m	NHL	46,XY	2.9	14.8	131	0	1
136	31	f	Suspected mastocytosis	n.t.	4.7	13.7	229	0	1

	age	gender			WBC	Hb	Plt	Bla	st (%)
No. #	(yrs)	(m/f)	diagnosis	karyotype	(G/L)	(g/dL)	(G/L)	PB	BM
137	72	f	Breast Cancer	n.t.	23.5	8.6	91	0	1
138	51	m	NHL	n.t.	6.7	14.0	84	0	1
139	19	m	NHL	n.t.	9.5	12.2	362	n.t.	2
140	68	f	NHL	n.t.	9.3	10.6	350	0	1
141	52	m	Ewing's sarcoma	n.t.	8.0	15.0	203	0	1
142	64	m	NHL	n.t.	6.3	15.1	211	n.t.	1
143	70	m	NHL	n.t.	13.7	10.4	91	0	2
144	70	m	NHL	n.t.	8.5	12.8	291	n.t.	1
145	60	m	NHL	n.t.	5.9	10.9	334	1	1
146	72	m	NHL	n.t.	6.9	13.7	205	n.t.	1
147	72	m	NHL	n.t.	13.8	14.3	286	0	1
148	20	m	NHL	n.t.	12.7	13.6	520	1	2
149	49	f	NHL	46,XX	2.3	8.4	541	0	1
150	52	m	MGUS	n.t.	7.2	15.3	219	0	1
151	34	m	NHL	n.t.	10.7	12.6	196	0	1
152	48	m	NHL	46,XY	12.4	15.7	196	0	1
153	47	m	Agranulocytosis	n.t.	1.7	10.6	399	0	2
154	19	m	NHL	n.t.	11.5	13.4	287	0	1
155	34	m	NHL	n.t.	18.1	12.8	312	0	n.t.
156	61	m	NHL	n.t.	20.9	12.7	263	0	1
157	45	m	NHL	n.t.	5.1	14.5	245	0	1
158	57	f	NHL	n.t.	6.1	9.3	206	0	2
159	58	m	NHL	n.t.	12.1	14.1	222	n.t.	1
160	71	m	NHL	complex	44.8	11.9	19	0	2
161	66	m	NHL	n.t.	5.2	11.9	76	0	2
162	34	m	Suspected NHL	n.t.	4.8	11.2	189	n.t.	3
163-			Normal bone marrow						
179	n.a.	n.a.	(purchased from Lonza)	n.t.	n.t.	n.t.	n.t.	n.t.	n.t.

	age	gender			WB	С	Hb	Plt	Bla	st (%)
No. #	(yrs)	(m/f)	diagnosis	karyotype	(G/I	_)	(g/dL)	(G/L)	PB	BM
180-										
205	n.a.	n.a.	Cord blood samples	n.t.	n.t.	r	n.t.	n.t.	n.t.	n.t.

Abbreviations: No. #, patient number; WBC, white blood count; Hb, hemoglobin; Plt, platelet count; yrs, years; m, male; f, female; PB, peripheral blood; BM, bone marrow; ICUS, idiopathic cytopenia of undetermined significance; NHL, Non-Hodgkin's lymphoma; CTLC, cutaneous T-cell lymphoma; MGUS, monoclonal gammopathy of undetermined significance; n.t., not tested.

Soano	noog of	f_{α}	igonual	antida	nrimara	head	for		analy	1000
Seque		1 01	Igonuci	eonue	primers	useu	101 0	$\Gamma \cup \Gamma$	anary	1868

Gene	Sequence
huABCB10-fwd	GTGGCCTTCATCCGGAATTT
huABCD10-rev	ATCGCAATCCGCTGTTTCTG
huIL2Ra-fwd	GGACTGCTCACGTTCATCATGG
huIL2Ra-rev	GCTTTGAATGTGGCGTGTGG
huCD9-fwd	ACATCATCGGCGCAGTGG
huCD9-rev	GGTTCCTGCGGATAGCACAG
huCD26-fwd	TCAATATCTCCTGATGGGCAGTTT
huCD26-rev	TGTCATATGAAGCTGTGTAGGAATGC
huCD33-fwd	CCCAGCTCTCTGTGCATGTGA
huCD33-rev	GAGTGCCAGGGATGAGGATTT
huCD36-fwd	TGATGAACAGCAGCAACATTCA
huCD36-rev	TCCTCAGCGTCCTGGGTTAC
huCD44-fwd	ATGGCCCAGATGGAGAAAGC
huCD44-rev	GGAATCACCACGTGCCCTTC
huCD46-fwd	CTTTCCTTCCTGGCGCTTTC
huCD46-rev	CAAATGTTGGTGGCTCCTCA
huCD52-fwd	TCCTCCTACTCACCATCAGCCTCCTG
huCD52-rev	GGGCTGCTGGTTGGCTGGT
huCD90-fwd	CTGCAGCAGCGGAAGACC
huCD90-rev	GCAGGAGAGCGATGCTGATG
huCD96-fwd	GCTCTGTCTCCAGTCCCAGGAA
huCD96-rev	TCAGTGGAGGGTCTGTTGAGGA
huCD114-fwd	CTGACTTGGGCTGCCCTGAT
huCD114-rev	ACTGATGTGCCCGCACTCCT
huCD115-fwd	GCCGCCATCCACCTCTATGT
huCD115-rev	GAACACGACCACCTCCTGTGC
huCD116-fwd	CCACACCCAGCATTCCTCCT
huCD116-rev	AGGCTGGTGCCACTGTTCG
huCD117-fwd	GCGTTCTGCTCCTACTGCTTCG
huCD117-rev	CCCTGGACTCACAGATGGTTGA
huCD122-fwd	GGGCTCTGCAGGACACTTCC
huCD122-rev	GGAGCAGCTCACAGGTTTGG
huCD123-fwd	CCACGAAGGCTGTTTCTTCCA
huCD123-rev	CTCCGGAACGCAGGACAGAG
huCD131-fwd	CCGTCACTCTGACCCAGCAT
huCD131-rev	AAGTGGTCCTGGTCGGTGCT
Gene	Sequence
---------------	-----------------------------
huCD133-fwd	GCGGAATTCTTGACCGACTGA
huCD133-rev	CCAACGCCTCTTTGGTCTCC
huCD135-fwd	TCAGCTGGCAGATGCAGAAG
huCD135-rev	CATTCCGAAACACGGCCATC
huCD151-fwd	CGAGACCATGCCTCCAACAT
huCD151-rev	CCAATGACCCTCAGGTGCTC
huCD164-fwd	TAGCGCCCATCTCCAACGTA
huCD164-rev	ACGCAGCTGTTTCGACCTTC
huCD184-fwd	GCTACCTGGCCATCGTCCAC
huCD184-rev	AGGAGGGCAGGGATCCAGAC
huCD200-fwd	GTTTGGGTCATGGCAGCAGT
huCD200-rev	CATCCTGGGTCACCACTTGC
huCD203c-fwd	TGAGGATGCCCATGTGGAGTTCA
huCD203c-rev	TGGGAGGCAGAGGCGATGTG
huCD221-fwd	TGGCCGACGAGTGGAGAAAT
huCD221-rev	CTGCTGATAGTCGTTGCGGATG
huCD243-fwd	GCAGCAAAGGAGGCCAACAT
huCD243-rev	TCTGGCCACCAGAGAGCTGA
huCD271-fwd	CTGCACCGTGTGCGAGGAC
huCD271-rev	AATCCAACGGCCAGGGATCT
huCD309-fwd	GCGTGTGGCACCCACGATCA
huCD309-rev	GTTCCCCTCCATTGGCCCGC
huCLL1-fwd	TGCTGCTAGCTGGGATGTGG
huCLL1-rev	GCTCCGCAAATGAGAAGCAA
hu-MET-fwd	CGG ACC CAA TCA TGA GCA CTG
hu-MET-rev	ATC ACG GCG CGC TTC ACA G
huEPO-R-fwd	CCCGGGCAACTACAGCTTCT
huEPO-R-rev	GCAGGCGACACAGCT TCCAT
hulTGA6-fwd	CCCGCTGGTTATAATCCTTCAA
hulTGA6-rev	TGAACTCTTGAGGATAGCCCAGAT
huITGA2B-fwd	ATGGAGACACCCATGTGCAG
huITGA2B-rev	ACGCTGGCAGTGAGCTGAAG
hulTGB3-fwd	TGTGTGCCTGGTGCTCTGAT
hulTG3B-rev	CCTTCAGGTCACAGCGAGGT
huITGB3BP-fwd	AACTGAAAGCAAAGAATCTACAACAAA
huITGB3BP-rev	TTGCATTATCTCCATGATTTCTTCTG
huGP1BA-fwd	TGCCTTCGGAGGTCTTTCTG

Gene	Sequence
huGP1BA-rev	CAGGAGCAGCAAGAGGAGGA
huIL-1RAP-fwd	CCGGGCTCATTTTGGAACAG
huIL-1RAP-rev	TTCTTCCGCATTCCTTGCAT
huNPDC1-fwd	GCACAGAGCGCGGAGATGTA
huNPDC1-rev	CAGCTCCTTGGGTGGCTCTT
huOSM-R-fwd	TGGGTGCTTCTCCTGCTTCTG
huOSM-R-rev	CCACCCTCTGTGCCTGCAAT
huROBO4-fwd	CCTGGCAGTGGCTGTGGATA
huROBO4-rev	GGAGGGAGGTGATGAGGCATCT
huBCR/ABL1-fwd	TCCGCTGACCATCAATAAGGA
huBCR/ABL1-rev	CACTCAGACCCTGAGGCTCAA
huABL1-fwd	TGTATGATTTTGTGGCCAGTGGAG
huABL1-rev	GCCTAAGACCCGGAGCTTTTCA
huPDCD10-fwd	TGAAGCTGAGACCACATCCA
huPDCD10-rev	TCTGGGCTGCAGACAGATTT
huSELP-fwd	CAGTCTGGGTTGGGCAGAAG
huSELP-rev	AAGATGGCTATTTGGCAGTTGG

Abbreviations: IL-2R, interleukin-2 receptor; CLL1, C-type lectin-like molecule-1; EPO-R, erythropoietin receptor; NPDC1, neural proliferation differentiation and control protein 1; IL-1RAP, interleukin-1 receptor accessory protein; OSMR, oncostatin M receptor; ROBO4, roundabout 4; fwd, forward; rev, reverse.

Table S7

FISH probes used for detection of cytogenetic abnormalities in purified AML cells

Chromosomal aberration	FISH probes*
inv(16) or -16	CBFB t(16;16); inv(16)
t(3;3)	MECOM t(3;3); inv(3)(3q26)
del(5q)	5q- (5q31; 5q33)
t(8;21)	RUNX1/RUNX1T t(8;21)

Abbreviations: FISH, fluorescence in situ hybridization; AML, acute myeloid leukemia. *FISH probes were purchased from Kreatech (Amsterdam, The Netherlands).

		~ 1	% of cells	with abnormal ka	ryotype by FISH
No. #	AML variant	Chromosomal aberration	MNC	CD34 ⁺ /CD38 ⁻	CD34 ⁺ /CD38 ⁺
#5	AML M4eo	inv(16)	88%	100%	100%
#19	AML M4eo	inv(16)	70%	100%	100%
#22	AML M0	t(3;3)	80%	100%	100%
#113	AML M4	-16	81%	100%	100%
#191	sAML	del(5q)	92%	100%	100%
#210	AML M1	del(5q)	81%	100%	100%
#264	AML M1	t(8;21)	100%	100%	100%

FISH analysis of purified CD34⁺/CD38⁻ and CD34⁺/CD38⁺ AML cells

FISH analysis was performed as described in the text in this supplement. The percentage of interphases expressing the abnormal karyotype defined by FISH probes was determined by microscopy. AML samples obtained at diagnosis. Patients' numbers (#) refer to the patients' numbers shown in Table S3. Abbreviations: AML, acute myeloid leukemia; FISH, fluorescence in situ hybridization; No. #, patient number; MNC, mononuclear cells; sAML, secondary AML. The FAB category of AML (M0, M1, M4, M4eo) is also shown.

Table S9A

		Expression of surface antigens on progenitor cells and stem cells (% positive cases in brackets)											
		N	ormal co	ontrol BM			AM	L			CM	L	
Antigen	CD	CD34 ⁺ /	CD38 ⁺	CD34 ⁺ /	CD38 ⁻	CD34	⁺ /CD38 ⁺	CD34 ⁺ /	CD38 ⁻	CD34 ⁺ /	CD38 ⁺	CD34 ⁺ /	CD38 ⁻
IL-2RA	CD25	_	(12)	_	(8)	+	(43)	+	(48)	+/	(28)	+	(93)
Endoglin	CD105	+	(100)	+	(100)	+	(85)	+	(93)	+	(100)	+	(100)
TPOR	CD110	—/+	(67)	—/+	(56)	_	(0)	_	(5)	_	(22)	-	(11)
G-CSFR	CD114	+	(50)	+	(64)	+	(88)	+	(64)	+	(68)	+	(75)
M-CSFR	CD115	_	(0)	_	(0)	_	(14)	_	(17)	_	(20)	-	(0)
GM-CSFR	CD116	+/	(75)	—/+	(38)	+/	(67)	+/	(47)	+/	(46)	+/	(50)
KIT/SCFR	CD117	+	(100)	+	(100)	+	(99)	+	(99)	+	(98)	+	(96)
IL-2RB	CD122	_	(0)	_	(0)	—	(6)	_	(6)	—	(10)	-	(10)
IL-3RA	CD123	+	(91)	+	(95)	+	(99)	+	(98)	+	(96)	+	(100)
CR-	CD131	—	(17)	—	(0)	_	(6)	_	(0)	_	(25)	_	(0)
FLT3	CD135	+/	(45)	+/	(40)	+	(93)	+	(91)	+/	(64)	+	(64)
CXCR4	CD184	+/	(68)	+/	(55)	+	(75)	+	(72)	+	(82)	+	(82)
IGF-1R	CD221	—/+	(22)	—/+	(25)	_	(19)	_	(18)	—/+	(42)	—/+	(42)
NGFR	CD271	—	(0)	—	(0)	_	(0)	_	(0)	_	(11)	_	(11)
KDR/VEFGR2	CD309	_	(0)	_	(0)	_	(0)	_	(3)	_	(10)	_	(7)
FGFR2	CD332	—/+	(20)	—/+	(20)	—/+	(33)	—/+	(33)	+/	(44)	+/	(44)
EPOR	n.c.	+/	(50)	+/	(50)	_	(3)	_	(4)	_	(25)	_	(8)
OSMRB	n.c.	_	(13)	_	(14)	+/	(52)	+/	(41)	—/+	(32)	+/	(44)
IL-1RAP	n.c.	—/+	(36)	_	(0)	+	(79)	+	(65)	+	(95)	+	(77)
MET/HGFR	n.c.	_	(0)	—	(0)	—	(0)	—	(0)	_	(0)	—	(0)

Expression of cytokine receptors on leukemic stem- and progenitor cells and comparison to normal bone marrow (BM) cells

Expression of surface antigens on CD34⁺/CD38⁻ and CD34⁺/CD38⁺ bone marrow (BM) stem- and progenitor cells was examined by multi-color flow cytometry. Leukemic samples were obtained at diagnosis (AML: at least 6 cases per marker tested; CML: at least 5 cases per marker tested).

Control samples (normal BM; at least 5 cases per marker tested) included purchased CD34⁺ BM cell subsets and BM cells obtained from cases with suspected hematologic neoplasm without persistent cytopenia. Results show the levels of expression of surface markers (as per score defined below) and as % of positive cases in each group (in brackets). Score of antibody reactivity: +, clear expression in majority of cases; +/-, weak expression in majority of cases; -/+, expression in minority of cases; -, no expression in a vast majority of cases. Abbreviations: AML, acute myeloid leukemia; CML, chronic myeloid leukemia; n.c., not yet clustered.

Table S9B

			AML	CD34 ⁺ /CD38 ⁻	CML CD34 ⁺ /CD38 ⁻			
Antigen	CD	median SI	mediar	n sites/cell (25 th -75 th quantile)	median SI	mediar	n sites/cell (25 th –75 th quantile)	
IL-2RA	CD25	1.4	<100	(49-261)	10.4	625	(133-1081)	
Endoglin	CD105	4.2	258	(164-579)	10.9	658	(466-995)	
TPOŘ	CD110	1.0	<100	(53-96)	1.2	<100	(54-81)	
G-CSFR	CD114	2.2	136	(84-226)	2.8	171	(114-327)	
M-CSFR	CD115	1.1	<100	(62-76)	0.8	<100	(64-66)	
GM-CSFR	CD116	1.3	<100	(59-126)	2.3	138	(46-235)	
KIT/SCFR	CD117	32.1	1932	(867-4026)	15.5	939	(401-2174)	
IL-2RB	CD122	0.9	<100	(46-66)	0.8	<100	(45-71)	
IL-3RA	CD123	12.2	738	(356-2173)	9.9	598	(344-875)	
CR-	CD131	1.0	<100	(55-62)	0.8	<100	(38-54)	
FLT3	CD135	7.6	464	(264-1002)	2.6	161	(106-222)	
CXCR4	CD184	2.2	133	(98-235)	3.8	232	(120-422)	
IGF-1R	CD221	1.1	<100	(59-112)	1.7	104	(81-120)	
NGFR	CD271	0.7	<100	(37-50)	0.6	<100	(34-48)	
KDR/VEFGR2	CD309	1.1	<100	(56-76)	1.1	<100	(60-92)	
FGFR2	CD332	1.5	<100	(83-129)	1.8	112	(92-152)	
EPOR	n.c.	1.1	<100	(61-78)	1.4	<100	(76-90)	
OSMRB	n.c.	1.2	<100	(57-275)	1.5	<100	(79-122)	
IL-1RAP	n.c.	3.0	186	(91-698)	3.1	190	(103-404)	
MET/HGFR	n.c.	0.9	<100	(48-64)	1.0	<100	(60-66)	

Estimation of sites per cell of cytokine receptors on leukemic stem cells

Cytokine receptors on leukemic CD34⁺/CD38⁻ cells in patients with AML and CML (leukemic samples obtained at diagnosis – see Table S9A) were analyzed by flow cytometry using PE-labeled mAb (specification of mAb is shown in Table S1). For estimation of the number of PE-molecules bound to the cell surface, the Quantibrite kit (BD Biosciences) was applied and staining indices were correlated with absolute numbers of PE-molecules as described in the supplemental methods. The PE-molecules on the cell surface correspond to sites per cell, assuming a ratio 1:1 for

PE-molecules per mAb. Results show the median staining index (ratio of PE-labeled mAb/isotype control mAb) and sites per cell including the range of the 25th-75th quantile of all tested patients in brackets. The detection limit was defined as 100 sites/cell which corresponds to a staining index of 1.6. Abbreviations: SI, staining index, AML, acute myeloid leukemia; CML, chronic myeloid leukemia; n.c., not yet clustered.

Flow cytometry staining results of differentially expressed markers on normal CD34⁺/CD38⁻ bone marrow (BM) HSC and cord blood (CB) CD34⁺/CD38⁻ stem cells

Antigen	Normal Bone	Marrow	Cord B	lood	
	CD34 ⁺ /CD3	8 ⁻ HSC	CD34 ⁺ /CD38		
	% of patients positive	Mean staining	% of patients positive	Mean staining	
	(No. of patients tested)	index	(No. of patients tested)	index	
CD25	8% (25)	0.9	22% (9)	1.2	
CD33	100% (15)	14.3	100% (14)	32.2	
CD52	54% (24)	3.2	100% (9)	12.7	
CD93	63% (8)	2.3	100% (2)	13.5	
CD123	95% (21)	4.3	100% (14)	8.3	
CD221	25% (8)	2.0	100% (14)	6.3	
IL-1RAP	0% (11)	1.0	89% (9)	3.4	
HLA-DR	83% (6)	3.3	100% (6)	22.6	

Normal BM stem cells were purchased from Lonza. Abbreviations: CD, cluster of differentiation; No., number; CB, cord blood; HSC, hematopoietic stem cells; IL-1RAP, interleukin-1 receptor accessory protein; HLA-DR, human leukocyte antigen.

Table S11

Flow cytometry staining results of normal BM CD34⁺/CD38⁻ and CD34⁺/CD38⁺ cells

Antigen	Normal Bon	e Marrow	Normal Bone	Normal Bone Marrow			
	CD34 ⁺ /C	CD38 ⁻	CD34 ⁺ /CD38 ⁺				
	% of patients positive	Mean staining	% of patients positive	Mean staining			
	(No. of patients tested)	index	(No. of patients tested)	index			
CD18	71%(7)	2.5	100% (7)	5.4			
CD33	100% (15)	14.3	100% (15)	20.9			
CD90	85% (13)	3.7	8% (13)	0.9			
CD114	64% (11)	2.2	50% (12)	4.4			
CD117	100% (20)	35.7	100% (21)	34.5			
CD371	0% (9)	0.8	100% (9)	6.1			
HLA-DR	83% (6)	3.3	100% (6)	10.7			
IL-1RAP	0% (11)	1.0	36% (11)	1.5			
NPDC1	50% (4)	1.7	0% (4)	1.4			
ROBO4	100% (6)	3.6	50% (6)	1.7			

Normal BM stem cells were purchased from Lonza or obtained from patients with suspected BM neoplasm. Abbreviations: CD, cluster of differentiation; No, number; BM, bone marrow; HSC, hematopoietic stem cells; IL-1RAP, interleukin-1 receptor accessory protein; ROBO4, roundabout 4; HLA-DR, human leukocyte antigen.

Antigen	Basophils	Eosinophils	T cells	B cells	Monocytes	Neutrophils
CD9	+	+	+/-	+/	+	+
CD25	+	—	+/-	+/	—	—
CD26	+	—	+	-	—	—
CD33	+	+	-	-	+	+
CD36	+	+	+	+	+	+
CD44	+	+/	+	+	+	+
CD51/61	—	-	-	-	+/	-
CD52	+/	+/	+	+	+	-
CD56	—	-	-	-	—	-
CD61	+/	+/	+/-	+/	+	+/
CD90	—	+/	-	+	+/	+/
CD95	+	-	+/-	-	+	+
CD96	—	-	+	+/	—	-
CD105	+/	-	-	+/	+	+/
CD114	—	-	-	-	+/	+
CD115	—	-	-	-	+	+/
CD117	_	—	-	_	_	—
CD122	_	—	+/-	+	_	—
CD123	+	+/	-	+/	+	+/
CD129	_	_	_	_	+/	+/
CD131	+	+	-	_	+/	+
CD133	_	—	_	_	_	—
CD135	+/	_	_	_	_	_
CD150		_	+/-	+	_	_
CD203c	+	_	_	—	_	_
MET		_	_	—	_	_
EPOR		-	-	_	—	-
OSMRß			_		+	

Antigen expression on mature cells as determined by flow cytometry

Peripheral blood cells from healthy donors (n=5) were stained with fluorochrome-labeled monoclonal antibodies (mAb) and analyzed by flow cytometry on FACSCanto II. Basophils were defined as $CD123^+/CD203c^+$ cells, eosinophils were defined as forward and side-scatter high and highly 'auto-fluorescent' cells, T cells were defined as $CD3^+/CD19^-$, B cells were defined as $CD19^+/CD3^-$, Monocytes were defined as $CD14^+$, and neutrophil granulocytes were defined as $CD45^+$ and side scatter high with exclusion of eosinophils and monocytes. Antigen expression of tested mAb: +: most of cells positive in most donors, +/-: positive subpopulation or weak expression; -: negative staining in most donors

Table S13A

Antigen	Normal Bone	Marrow	AML		CML	,
	CD34 ⁺ /CD38	⁻ HSC	CD34 ⁺ /CI	038	CD34 ⁺ /Cl	D38 ⁻
	% of patients	Mean	% of patients	Mean	% of patients	Mean
	positive (No. of	staining	positive (No. of	staining	positive (No. of	staining
	patients tested)	index	patients tested)	index	patients tested)	index
CD9	14% (7)	1.3	63% (27)	4.2	100% (30)	8.9
CD25	8% (25)	0.9	48% (164)	6.5	93% (72)	13.3
CD26	0% (22)	0.8	10% (164)	2.7	97% (74)	9.7
CD33	100% (15)	14.3	96% (90)	49.3	100% (34)	49.6
CD36	57% (7)	2.6	45% (22)	7.8	55% (38)	5.6
CD44	100% (15)	113.6	98% (63)	44.3	100% (36)	91.1
CD47	100% (8)	44.6	100% (23)	43.1	100% (33)	54.8
CD52	54% (24)	3.3	51% (172)	3.2	81% (53)	3.2
CD56	8% (13)	0.9	18% (40)	5.0	91% (33)	6.6
CD69	33% (3)	2.1	86% (7)	5.6	100% (3)	3.4
CD90	85% (13)	3.7	13% (24)	1.4	91% (11)	15.4
CD93	63% (8)	2.3	72% (32)	6.0	86% (14)	9.7
CD96	0% (10)	1.0	40% (42)	4.1	0% (11)	0.9
CD105	100% (10)	6.6	93% (45)	8.1	100% (51)	12.8
CD114	64% (11)	2.2	64% (87)	3.5	75% (24)	4.1
CD116	38% (8)	1.9	47% (17)	5.0	50% (24)	2.8
CD117	100% (20)	35.7	99% (158)	50.4	96% (46)	27.9
CD123	95% (21)	4.3	98% (167)	27.5	100% (24)	10.6
CD164	86% (7)	5.5	14% (22)	4.0	86% (7)	8.9
CD184	55% (22)	2.6	72% (78)	3.2	82% (38)	5.2
CD371	0% (9)	0.8	68% (80)	9.1	17% (6)	6.7
HLA-DR	83%(6)	3.3	71% (24)	7.0	100% (21)	82.7
IL-1RAP	0% (11)	1.0	65% (112)	8.8	77% (62)	5.3
ROBO4	100% (6)	3.6	29% (42)	1.8	85% (27)	2.9

Expression of cell surface antigens on normal BM HSC and LSC in AML and CML as determined by flow cytometry

Expression of surface antigens on CD34⁺/CD38⁻ stem cells was examined by multi-color flow cytometry. All leukemic samples obtained at diagnosis. Abbreviations: AML, acute myeloid leukemia; CML, chronic myeloid leukemia; CD, cluster of differentiation; No, number; HSC, hematopoietic stem cells; LSC, leukemic stem cells; IL-1RAP, interleukin-1 receptor accessory protein; ROBO4, roundabout 4; HLA-DR, human leukocyte antigen.

Table S13B

Antigen	Normal BM	Cord Blood	AML	CML
	CD34 ⁺ /CD38 ⁻			
CD9	+	+	n.t.	+
CD25	+	+	+	+
CD26	n.t.	_	—	+
CD33	—	+	+	+
CD36	—	+	n.t.	+
CD44	+	+	+	+
CD52	+	+	+	+
CD90	+	+	—	—
CD96	—	-	+	—
CD114	—	-	+	+
CD116	—	-	+	—
CD117	+	+	+	+
CD123	—	_	+	+
CD164	+	+	n.t.	+
CD184	+	+	+	+
CD371	+	+	+	—
IL-1RAP	_	+	+	_
ROBO4	_	_	_	+
NPDC1	_	_	+	+

Expression of antigens on purified normal hematopoietic stem cells, cord blood CD34⁺/CD38⁻ and leukemic CD34⁺/CD38⁻ cells as determined by qPCR

 $CD34^+/CD38^-$ cells from patients with AML (n=14), CML (n=4) (leukemic samples obtained at diagnosis or relapse) and from normal bone marrow (n=3) and cord blood (n=4) were sorted by flow cytometry and then conducted to qPCR analysis. Results are expressed as + (relative 'over-expression') and – (relative 'under-expression'). Abbreviations: qPCR, quantitative polymerase chain reaction; BM, bone marrow; AML, acute myeloid leukemia; CML, chronic myeloid leukemia; n.t., not tested.

Table S14A

Expression of novel and established stem cell antigens on AML stem cells – comparison between flow cytometry data and gene chip results

		Expression of cell surface markers on stem cells (mRNA and protein level)								
		AML #210* CD34 ⁺ /CD38 ⁻		AML #173* CD34 ⁺ /CD38 ⁻		AML #102* CD34 ⁺ /CD38 ⁻				
Antigen	CD	gene chip	flow	gene chip	flow	gene chip	flow			
IL-1RAP IL-2RA DPPIV Campath-1	n.c. CD25 CD26 CD52	+ -/+ +/- +/-	+/ +	+ +/- +/- +/-	- +/- - +/-	+ + +/- -	+ + - -			

Comparison of expression of stem cell markers in CD34⁺/CD38⁻ AML stem cells by multi-color flow cytometry and microarray studies. Leukemic samples obtained at diagnosis. Gene chip results were scored and normalized to normal CD34⁺/CD38⁻ bone marrow cells: –, less than 50% expression compared to normal cells; –/+, 50-100%; +/–, 101-200%; +, >200% compared to normal cells. Flow cytometry results are presented as staining index (SI) and were graded using the following score: –, 0-1.3; +/–, 1.31-3; +, 3.01-10.

*Patients' numbers (#) refer to the patients' numbers defined in Table S3. Abbreviations: AML, acute myeloid leukemia; n.c., not yet clustered; IL-1RAP, interleukin-1 receptor-associated protein; IL-2RA, IL-2 receptor alpha chain; DPPIV; dipeptidyl peptidase IV; flow, flow cytometry.

Table S14B

Expression of novel and established stem cell antigens on CML stem cells – comparison between flow cytometry data and gene chip results

		Expression of surface markers on stem cells (mRNA and protein level)								
		CML #8 CD34 ⁺ /CD38 ⁻		CML #11 CD34 ⁺ /CD38 ⁻		CML #21 CD34 ⁺ /CD38 ⁻				
Antigen	CD	gene chip	flow	gene chip	flow	gene chip	flow			
IL-1RAP	n.c.	+/	+	+/—	_	+	+			
Tetraspanin 29	CD9	—/+	+	—/+	+/	+/	+			
IL-2RÂ	CD25	+	+	+	+	+	+			
DPPIV	CD26	+	+	+/	+	+	+			
Siglec-3	CD33	+/	+	+/	+	+/	+			
KIT/SCFR	CD117	_	+	_	_	_	+/			

Comparison of expression of stem cell markers on CD34⁺/CD38⁻ CML stem cells by multi-color flow cytometry and microarray studies. Leukemic samples obtained at diagnosis. Gene chip results were scored and normalized to normal CD34⁺/CD38⁻ bone marrow cells: –, less than 50% expression compared to normal cells; –/+, 50-100%; +/–, 101-200%; +, >200% compared to normal cells. Flow cytometry results are presented as staining index (SI) and were graded using the following score: –, 0-1.3; +/–, 1.31-3; +, 3.01-10.

*Patients' numbers (#) refer to the patients' numbers defined in Table S2. Abbreviations: CML, chronic myeloid leukemia; n.c., not yet clustered; IL-1RAP, interleukin-1 receptor-associated protein; IL-2RA, IL-2 receptor alpha chain; DPPIV; dipeptidyl peptidase IV; SCFR, stem cell factor receptor; flow, flow cytometry.

Marker	Mean stai	ning index (n))	p value	Mean percentage of positive cells (n)			p value
	Normal BM	AML <i>FLT3</i> ITD	AML FLT3 wt	FLT3 ITD vs. wt	Normal BM	AML <i>FLT3</i> ITD	AML FLT3 wt	<i>FLT3</i> ITD vs. wt
CD25	0.9 (25)	17.7 (39)	3.6 (115)	<0.001**	6.8 (25)	60.6 (39)	26.5 (115)	< 0.001**
CD26	0.8 (22)	7.9 (40)	1.2 (115)	<0.001**	1.5 (22)	30.5 (40)	3.2 (115)	<0.001**
CD33	14.3(15)	93.2 (21)	42.6 (62)	0.003 **	93.8 (15)	92.8 (21)	74.8 (62)	<0.001**
CD52	3.3 (24)	3.6 (41)	3.0 (119)	n.s.	43.1 (24)	43.9 (41)	28.9 (119)	0.052
CD61	1.0 (12)	0.7 (14)	1.1 (41)	n.s.	11.6(12)	2.4 (14)	10.6 (41)	0.015 *
CD96	1.0 (10)	6.4 (11)	2.4 (28)	0.100	2.2 (10)	55.5 (11)	18.7 (28)	0.022 *
CD105	6.6 (10)	3.5 (12)	10.1 (30)	0.015 *	86.4 (10)	61.9 (12)	81.1 (30)	0.040 *
CD117	35.7 (20)	19.3 (36)	58.9 (111)	<0.001**	96.5 (20)	85.2 (36)	94.5 (111)	<0.001**
CD123	4.3 (21)	62.8 (37)	20.1 (118)	<0.001**	64.3 (21)	92.1 (37)	85.2 (118)	<0.001**
CD133	17.6(15)	14.8 (34)	20.8 (98)	0.003 **	99.0 (15)	58.9 (34)	86.5 (98)	0.003 **
CD184	2.6 (22)	12.5 (17)	3.3 (59)	0.063	42.9 (22)	32.3 (17)	43.0 (59)	n.s.
IL-1RAP	1.0 (11)	17.4 (28)	6.3 (76)	<0.001**	2.0 (11)	82.0 (28)	43.0 (76)	<0.001**

Correlation between surface marker expression on CD34⁺/CD38⁻ cells and *FLT3* mutation status in AML

Normal bone marrow CD34⁺/CD38⁻ cells and CD34⁺/CD38⁻ cells from AML patients (samples obtained at diagnosis or relapse) with mutated *FLT3* and wild type *FLT3* were analyzed for marker expression with flow cytometry. Pairwise Wilcoxon rank-sum test between subgroups was performed when Kruskal-Wallis test showed significant differences (p<0.05). P-values show results of pairwise Wilcoxon rank-sum-test between AML with mutated *FLT3* vs. wild type *FLT3* corrected for multiple testing with Benjamini-Hochberg method.

*, significant difference with p < 0.05; **, highly significant with p < 0.01. Abbreviations: n, number of tested patients in each subgroup per marker; wt, wild type; n.s., not significant in Kruskal-Wallis test or pairwise Wilcoxon rank-sum test.

Marker Mean staining index (n) Mean percentage of positive cells p value p value (n) AML AML NPM1 Normal AML NPM1 Normal AML NPM1 mut NPM1 wt mut vs. NPM1 wt BM BM NPM1 mut mut vs. wt wt 0.002 ** 4.5 47.9 (47) 27.7 (122) < 0.001** CD25 0.9 (25) 12.1 (47)(122)6.8 (25) 20.9 CD26 0.8 (22) 1.2 < 0.001** 1.5 (22) < 0.001** 6.5 (47)(122)(47)4.8 (122)0.038 * 77.7 (46) CD33 14.3(15)98.1 (19)37.0 (46) 93.8 (15) 84.9 (19) 0.021* 2.2 (10) 5.7 (19) 0.011 * 50.3 (11) 14.8 (19) 0.016* CD96 1.0 (10) (11)1.9 0.002 ** CD117 35.7(20)27.5 (42)59.3 (98) 96.5 (20) 91.6 (42) 93.2 (98) n.s. CD123 4.3 (21) 54.2 (43)19.6 (97) 0.002 ** 64.3 (21) 89.0 (43) 85.1 (97) 0.006 ** CD371 0.8 (9) 4.1 11.3 (57) 0.042 * 4.6 (9) 33.0 46.8 (57) 0.169 (26)(26)0.007 ** IL-1RAP 1.0 (11) 11.6 (36) 7.8 (79) 0.098 2.0 (11) 64.7 (36) 46.9 (79)

AML CD34⁺/CD38⁻: marker expression differences in AML subgroups with *NPM1* mutation vs. *NPM1* wt

Normal bone marrow CD34⁺/CD38⁻ cells and CD34⁺/CD38⁻ leukemic stem cells obtained from AML patients (samples obtained at diagnosis or relapse) with *NPM1* mutation and wild type *NPM1* were analyzed for surface marker expression by flow cytometry. Pair-wise Wilcoxon rank-sum test was performed as post-hoc analysis when Kruskal-Wallis test showed significant differences (p<0.05). P-values show results of pairwise Wilcoxon rank-sum-test between AML with mutated *NPM1* vs. wild type *NPM1* corrected for multiple testing with Benjamini-Hochberg method.

*, significant difference with p < 0.05; **, highly significant with p < 0.01.

Abbreviations: n, number of tested patients in each subgroup per marker; mut, mutated; wt, wild type; n.s., not significant in Kruskal-Wallis test or pairwise Wilcoxon rank-sum test.

Correlations between surface marker expression on CD34⁺/CD38⁻ cells and the karyotype (complex vs. non-complex) in our patients with AML

Marker	Mean stai	ning index (n)	p value	Mean per	p value			
					(n)	(n)			
	Normal BM	AML complex karyotype	AML non- complex karyotype	Complex vs. non- complex	Normal BM	AML complex karyotype	AML non- complex karyotype	Complex vs. non- complex	
CD26	0.8 (22)	0.8 (26)	2.9 (152)	0.017 *	1.5 (22)	2.4 (26)	10.0 (152)	0.013 *	
CD117	35.7 (20)	72.3 (24)	47.4 (144)	0.013 *	96.5 (20)	96.0 (24)	90.8 (144)	n.s.	
CD325	3.3 (10)	3.2 (11)	2.3 (39)	0.094	46.5 (10)	39.6 (11)	25.0 (39)	0.091	

Normal bone marrow CD34⁺/CD38⁻ cells and CD34⁺/CD38⁻ leukemic stem cells obtained from AML patients (samples obtained at diagnosis or relapse) with complex karyotype (\geq 3 cytogenetic aberrations) and patients with a non-complex karyotype (0-2 cytogenetic aberrations) were analyzed for surface marker expression by flow cytometry. P values show results of pair-wise Wilcoxon rank-sum test that was performed as post-hoc analysis when Kruskal-Wallis test showed significant differences (p<0.05). P-values show results of pairwise Wilcoxon rank-sum-test between AML with mutated complex karyotype vs. AML with non-complex karyotype corrected for multiple testing with Benjamini-Hochberg method.

*, significant difference with p < 0.05;

Abbreviations: n, number of tested patients in each subgroup per marker; n.s., not significant in Kruskal-Wallis test or pairwise Wilcoxon rank-sum test.

Expression of surface target antigens on leukemic stem- and progenitor cells and comparison to normal bone marrow (BM) cells

Expression of surface antigens on progenitor cells and stem cells (% positive cases in brackets)													
	Normal control BM				AML				CML				
Antigen	CD	CD34 ⁺ /	CD38 ⁺	CD34 ⁺ /	CD38 ⁻	CD34 ⁺ /	'CD38 ⁺	CD34 ⁺ /	CD38 ⁻	CD34 ⁺ /	CD38 ⁺	CD34 ⁺	/CD38 ⁻
IL-2RA	CD25	_	(12)	_	(8)	+ ,.	(43)	+	(48)	+/	(28)	+	(93)
DPPIV	CD26	_	(0)	_	(0)	—/+	(8)	-/+	(10)	+/	(30)	+	(97)
Siglec-3	CD33	+/-	(100)	+/-	(100)	+	(98)	+	(96)	+	(100)	+	(100)
Pgp-1	CD44	+	(100)	+	(100)	+	(98)	+	(98)	+	(100)	+	(100)
Campath-1	CD52	+/	(48)	+/	(54)	+/	(44)	+/	(51)	_	(11)	+	(81)
MXRA4	CD93	+/	(75)	+/	(63)	+	(81)	+	(72)	+/	(71)	+	(86)
TACTILE	CD96	_	(0)	_	(0)	+	(51)	+	(40)	_	(9)	_	(0)
KIT/SCFR	CD117	+	(100)	+	(100)	+	(99)	+	(99)	+	(98)	+	(96)
IL-3RA	CD123	+	(91)	+	(95)	+	(99)	+	(98)	+	(96)	+	(100)
FLT3	CD135	+/	(45)	+/	(40)	+	(93)	+	(91)	+/	(64)	+	(64)
CXCR4	CD184	+/	(68)	+/	(55)	+	(75)	+	(72)	+	(82)	+	(82)
PD1	CD279	_	(0)	_	(0)	_	(9)	_	(18)	_	(0)	_	(7)
PD-L1	CD274	+	(100)	+	(100)	+	(84)	+	(95)	+	(89)	+	(100)
PD-L2	CD273	_	(0)	_	(0)	_	(0)	_	(0)	_	$\dot{0}$	_	(0)
CLL-1	CD371	+	(100)	_	(0)	+	(92)	+	(68)	+	(67)	_	(17)
IL-1RAP	n.c.	—/+	(36)	_	(0)	+	(79)	+	(65)	+	(95)	+	(77)

Expression of surface antigens on CD34⁺/CD38⁻ and CD34⁺/CD38⁺ bone marrow (BM) stem- and progenitor cells was examined by multicolor flow cytometry. All leukemic samples obtained at diagnosis (AML: at least 11 cases per marker tested; CML: at least 6 cases per marker tested). Control samples (normal BM; at least 7 cases per marker tested) included purchased CD34⁺ BM cell subsets and BM cells obtained from cases with suspected hematologic neoplasm without persistent cytopenia. Results show the levels of expression of surface markers (as per score defined below) and as % of positive cases in each group (in brackets). Score of antibody reactivity: +, clear expression in majority of cases; +/-, weak expression in majority of cases; -/+, expression in minority of cases; -, no expression in a vast majority of cases. Abbreviations: AML, acute myeloid leukemia; CML, chronic myeloid leukemia; n.c., not yet clustered.

Drug	Major targets	References
a) Kinase Inhibitors		
Midostaurin	ACK1, FLT3, JAK3, KIT, PDGFRb, RET, TNK1, TRK-A/C, VEGFR2, BLK, CSF1R, FGFR2, IGF-1R, JAK2, LCK, LTK, LYN, ROS, SYK, TRK-B, FER, FYN, HCK, MUSK, PDGFRa, SRC, TYK2	34
Gilteritinib	FLT3, LTK, AXL, ELM4-ALK	35
b) Fusion proteins Denileukin-diftitox	CD25 positive cells	36
c) Targeting antibodies Gemtuzumab/ozogamicin Alemtuzumab	CD33 positive cells CD52 positive cells	37 38

Target spectrum of kinase inhibitors, fusion proteins and targeting antibodies

Abbreviations: ACK1, activated CDC42 kinase 1; FLT3, fms like tyrosine kinase 3; JAK, janus kinase; PDGFR, platelet-derived growth factor receptors; TNK1, tyrosine kinase non-receptor 1; TRK, tropomyosin receptor kinase; VEGFR, vascular endothelial growth factor receptors; BLK, B lymphoid tyrosine kinase; CSFR1, colony stimulating factor 1 receptor; FGFR, fibroblast growth factor receptor; IGR-1R, insulin-like growth factor receptor; LCK, lymphocyte-specific protein tyrosine kinase; LTK, leukocyte tyrosine kinase;

LYN, Lck/Yes novel tyrosine kinase; SYK, spleen tyrosine kinase; HCK, The hematopoietic cell kinase; MuSK, muscle-specific kinase; scr, sarkoma.

			Expression on CD34 ⁺ /CD38 ⁻ cells as staining index (SI*)							
disease	No. #	sample at	CD25 IL-2RA	CD26 DPPIV	CD33 Siglec-3	CD52 Campath-1	CD117 KIT	CD123 IL-3RA	CD135 FLT3	IL- 1RAP
AML	222	D	+/	-	n.t.	+/	++	++	n.t.	++
AML	211	D	+	—	++	+/	++	+	n.t.	n.t.
AML	210	D	—	—	++	+	++	+	+/	+/
AML	126	D	++	++	++	+	n.t.	++	n.t.	++
AML	179	D	+/	—	n.t.	+/	n.t.	n.t.	n.t.	n.t.
CML	21	D	+	+	++	+/	+/	n.t.	+/	+
CML	11	D	++	+	++	_	_	n.t.	+/	_
CML	8	D	++	++	++	+/	+	n.t.	n.t.	+

Aberrantly expressed surface markers on CD34⁺/CD38⁻ cells in AML or CML cells injected in NSG mice

CD34⁺/CD38⁻ cells obtained from AML and CML patients were analyzed for surface marker expression by multicolor flow cytometry. The score is related to the expression of surface markers on AML and CML CD34⁺/CD38⁻ cells. For NSG experiments, T-cell depleted AML MNC or CD34⁺ enriched CML cells were injected in NSG mice. SI* was calculated as ratio of median fluorescence intensities (MFI) obtained with specific monoclonal antibody (mAb) and control mAb (isotype control). SI values were graded using the following score: –, 0-1.3; +/–, 1.31-3; +, 3.01-10; ++, >10. Patients' numbers (#) refer to the patients' numbers defined in Table S2 and S3. Abbreviations: No. # , patient number; SI, staining index; D, diagnosis; AML, acute myeloid leukemia; CML, chronic myeloid leukemia; n.t., not tested.

Phenotype of pre-leukemic neoplastic stem c	cells (pre-L-NSC) in patients with MDS
and comparison to AML LSC as determined b	y flow cytometry

Antigen	Normal Bone Marrow		MDS		AML		
	CD34 ⁺ /CD38 ⁻		CD34 ⁺ /CD	038	CD34 ⁺ /CD38 ⁻		
	% of patients	Mean % of patients		Mean	% of patients	Mean staining	
	positive (No. of	staining	positive (No. of	staining	positive (No. of	index	
	patients tested)	index	patients tested)	index	patients tested)		
CD25	8% (25)	0.9	41% (34)	2.9	48% (164)	6.5	
CD26	0% (22)	0.8	6% (32)	0.8	10% (164)	2.7	
CD33	100% (15)	14.3	100% (18)	40.7	96% (90)	49.3	
CD44	100% (15)	113.6	100% (15)	37.4	98% (63)	44.3	
CD52	54% (24)	3.3	56% (41)	3.0	51% (172)	3.2	
CD90	85% (13)	3.7	100% (5)	12.2	13% (24)	1.4	
CD96	0% (10)	1.0	14% (7)	1.2	40% (42)	4.1	
CD105	100% (10)	6.6	100% (13)	14.7	93% (45)	8.1	
CD114	64% (11)	2.2	94% (18)	8.5	64% (87)	3.5	
CD117	100% (20)	35.7	100% (29)	95.3	99% (158)	50.4	
CD123	95% (21)	4.3	100% (34)	11.0	98% (167)	27.5	
CD135	40% (10)	3.4	100% (8)	16.6	91% (35)	13.2	
CD184	55% (22)	2.6	86% (14)	4.0	72% (78)	3.2	
CD221	25% (8)	2.0	33% (9)	1.9	18% (28)	2.0	
CD371	0% (9)	0.8	54% (13)	2.0	68% (80)	9.1	
IL-1RAP	0% (11)	1.0	40% (20)	2.0	65% (112)	8.8	
NPDC1	50% (4)	1.7	67% (3)	4.2	76% (21)	3.5	
ROBO4	100% (6)	3.6	78% (9)	3.0	29% (42)	1.8	

Expression of surface antigens on CD34⁺/CD38⁻ stem cells was examined by multi-color flow cytometry. All leukemic samples obtained at diagnosis. Abbreviations: AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; CD, cluster of differentiation; No., number; LSC, leukemic stem cells; HSC, hematopoietic stem cells; IL-1RAP, interleukin-1 receptor accessory protein; ROBO4, roundabout 4.

References

1. Herrmann H, Sadovnik I, Cerny-Reiterer S, et al. Dipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemia. *Blood*. 2014;123(25):3951-3962.

2. Zola H, Swart B, Nicholson I, et al. CD molecules 2005: human cell differentiation molecules. *Blood*. 2005;106(9):3123-3126.

3. Zola H, Swart B, Nicholson I, Voss E. Leukocyte and Stromal Cell Molecules: The CD Markers. in: Wiley-Liss. Hoboken, NJ, USA. 2007.

4. Chan CH, Blazar BR, Eide CR, Kreitman RJ, Vallera DA. A murine cytokine fusion toxin specifically targeting the murine granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor on normal committed bone marrow progenitor cells and GM-CSF-dependent tumor cells. *Blood.* 1995;86(7):2732-2740.

5. Sadovnik I, Hoelbl-Kovacic A, Herrmann H, et al. Identification of CD25 as STAT5-Dependent Growth Regulator of Leukemic Stem Cells in Ph+ CML. *Clin Cancer Res.* 2016;22(8):2051-2061.

6. Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. *Br J Haematol*. 1976;33(4):451-458.

7. Bennett JM, Catovsky D, Daniel MT, et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. *Ann Intern Med.* 1985;103(4):620-625.

8. Arber DA, Brunning RD, Le Beau MM, et al. Acute Myeloid Leukaemia and Related Precursor Neoplasms. In: Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th Edition. Lyon, France: IARC Press; 2008:109-148.

9. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. *Blood.* 2016;127(20):2391-2405.

10. Vardiman JW, Melo J, Baccarani M, Thiele J. Chronic myelogenous leukaemia, *BCR/ABL1* positive. In: Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th Edition. Lyon, France: IARC Press; 2008:32-37.

11. Bennett JM, Catovsky D, Daniel MT, et al. The chronic myeloid leukaemias: guidelines for distinguishing chronic granulocytic, atypical chronic myeloid, and

chronic myelomonocytic leukaemia. Proposals by the French-American-British Cooperative Leukaemia Group. *Br J Haematol*. 1994;87(4):746-754.

12. Baccarani M, Saglio G, Goldman J, et al. Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. *Blood*. 2006;108(6):1809-1820.

13. Baccarani M, Cortes J, Pane F, et al. Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. *J Clin Oncol.* 2009;27(35):6041-6051.

14. Mayer RJ, Davis RB, Schiffer CA, et al. Intensive postremission chemotherapy in adults with acute myeloid leukemia. Cancer and Leukemia Group B. *N Engl J Med.* 1994;331(14):896-903.

15. Sperr WR, Piribauer M, Wimazal F, et al. A novel effective and safe consolidation for patients over 60 years with acute myeloid leukemia: intermediate dose cytarabine (2 x 1 g/m2 on days 1, 3, and 5). *Clin Cancer Res.* 2004;10(12 Pt 1):3965-3971.

16. Schiller G, Gajewski J, Territo M, et al. Long-term outcome of high-dose cytarabine-based consolidation chemotherapy for adults with acute myelogenous leukemia. *Blood*. 1992;80(12):2977-2982.

17. Sierra J, Storer B, Hansen JA, et al. Unrelated donor marrow transplantation for acute myeloid leukemia: an update of the Seattle experience. *Bone Marrow Transplant*. 2000;26(4):397-404.

18. Greinix HT, Nachbaur D, Krieger O, et al. Factors affecting long-term outcome after allogeneic haematopoietic stem cell transplantation for acute myelogenous leukaemia: a retrospective study of 172 adult patients reported to the Austrian Stem Cell Transplantation Registry. *Br J Haematol.* 2002;117(4):914-923.

19. Cornelissen JJ, Blaise D., Hematopoietic stem cell transplantation for patients with AML in first complete remission. *Blood*. 2016;127(1):62-70.

20. Kassim AA, Savani BN. Hematopoietic stem cell transplantation for acute myeloid leukemia: A review. *Hematol Oncol Stem Cell Ther.* 2017;10(4):245-251.

21. Florian S, Sonneck K, Hauswirth AW, et al. Detection of molecular targets on the surface of CD34+/CD38- stem cells in various myeloid malignancies. *Leuk Lymphoma*. 2006;47(2):207-222.

22. Blatt K, Herrmann H, Hoermann G, et al. Identification of campath-1 (CD52) as novel drug target in neoplastic stem cells in 5q-patients with MDS and AML. *Clin Cancer Res.* 2014;20(13):3589-3602.

23. Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software development for computational biology and bioinformatics. *Genome Biol.* 2004;5(10):R80.

24. Bilban M, Haslinger P, Prast J, et al. Identification of novel trophoblast invasionrelated genes: heme oxygenase-1 controls motility via peroxisome proliferatoractivated receptor gamma. *Endocrinology*. 2009;150(2):1000-1013.

25. Astapova I, Lee LJ, Morales C, Tauber S, Bilban M, Hollenberg AN. The nuclear corepressor, NCoR, regulates thyroid hormone action in vivo. *Proc Natl Acad Sci U S A*. 2008;105(49):19544-19549.

26. Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. *Stat Appl Genet Mol Biol.* 2004;3:Article3.

27. Peter B, Gleixner KV, Cerny-Reiterer S, et al. Polo-like kinase-1 as a novel target in neoplastic mast cells:demonstration of growth-inhibitory effects of small interfering RNA and thePolo-like kinase-1 targeting drug BI 2536. *Haematologica*. 2011;96(5):672-680.

28. Martinelli G, Iacobucci I, Soverini S, et al. Monitoring minimal residual disease and controlling drug resistance in chronic myeloid leukaemia patients in treatment with imatinib as a guide to clinical management. *Hematol Oncol.* 2006;24(4):196-204.

29. Hughes T, Deininger M, Hochhaus A, et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. *Blood.* 2006;108(1):28-37.

30. Müller MC, Cross NC, Erben P, et al. Harmonization of molecular monitoring of CML therapy in Europe. *Leukemia*. 2009;23(11):1957-1963.

31. Brothman AR, Persons DL, Shaffer LG. Nomenclature evolution: Changes in the ISCN from the 2005 to the 2009 edition. *Cytogenet Genome Res.* 2009;127(1):1-4.

32. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society Series B*. 1995;57(1):289–300.

33. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

34. Stone RM, Manley PW, Larson RA, Capdeville R. Midostaurin: its odyssey from discovery to approval for treating acute myeloid leukemia and advanced systemic mastocytosis. *Blood Adv.* 2018;2(4):444-453. Erratum in: *Blood Adv.* 2018;2(7):787.

35. Mori M, Kaneko N, Ueno Y, et al. Gilteritinib, a FLT3/AXL inhibitor, shows antileukemic activity in mouse models of FLT3 mutated acute myeloid leukemia. *Invest New Drugs*. 2017;35(5):556-565.

36. Murphy JR, Bishai W, Williams D, et al. Genetic assembly and selective toxicity of diphtheria-toxin-related polypeptide hormone fusion proteins. *Biochem Soc Symp.* 1987;53:9-23.

37. Bernstein ID. Monoclonal antibodies to the myeloid stem cells: therapeutic implications of CMA-676, a humanized anti-CD33 antibody calicheamicin conjugate. *Leukemia*. 2000;14(3):474-475.

38. Frampton JE, Wagstaff AJ. Alemtuzumab. Drugs. 2003;63(12):1229-1246.