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SECTION S1: STATISTICAL ANALYSES FOR EXPERIMENT 1 1 

 2 

 The rationale for using linear mixed effects modelling over the traditional 3 

ANOVAs is detailed in the main text. Here we describe the basic LMM framework and 4 

include detailed statistical reports for each of the analyses described in the main text.  5 

 6 

 7 

METHODS 8 

 9 

Software. We used the R programming language version 3.6.3 with R studio version 10 

1.3.959 for all statistical analyses. We used the lme4 package (Baayen et al., 2008; 11 

Bates et al., 2015) for Linear Mixed Modelling. Since the lme4 package does not output 12 

statistical significance, we used the lmerTest package (Kuznetsova et al., 2017) and 13 

Car package (Fox and Weisberg, 2018). We report the partial eta-squared (𝜂𝑝
2) as a 14 

measure of effect size since it can be compared across experiments (Richardson, 15 

2011; Lakens, 2013). We used the effectsize package to calculate partial eta-squared 16 

from a Linear Mixed Model. For graphical summaries of the data we used fitdistrplus, 17 

ggplot, mass and ggpubr R packages (Venables and Ripley, 2002; Wickham, 2009; 18 

Delignette-Muller and Dutang, 2015).  19 

   20 

Linear Mixed effects Model. The basic LMM model for the GDLD pairs was specified 21 

in the R environment as Model = lmer(y~Block*ImagePair +(1|Subject), contrast = 22 

list(Block = ‘contr.sum’, ImagePair = ‘contr.sum’), data = <data>, REML =False), 23 

where y is either the response time or inverse response time, which specifies that the 24 

responses are driven by main and interaction effects of Block and Image pair, with 25 

Participant as a random intercept factor (which specifies that it introduces unknown 26 

random shifts from each participant). 27 

Since the residuals of the LMM models with inverse reaction times as 28 

dependent variable were normally distributed in most of the analyses ( Distributions of 29 

residuals of 9 out of 15 LMM models used in this study are not significantly deviating 30 

from normal distribution tested using Kolomogrov-smirnov test), we additionally used 31 

an ANOVA (anova function in R) to obtain the F-statistic and significance values.   32 

 33 

RESULTS  34 

 For the GDLD pairs in the global and local blocks, we had data from 16 35 

participants who made 2 responses for each of 147 image pairs, and we are interested 36 

in knowing whether responses are systematically different between the global and 37 

local blocks.  38 

  To investigate the validity of the assumptions underlying the LMM, we fit the 39 

LMM model on both RT and 1/RT to GDLD pairs, with blocks (global/local) and image 40 

pairs (147 levels) as fixed factors and participants as a random intercept factor. The 41 

residual errors of the LMM model are depicted in Figure S1. It can be seen that both 42 

the distribution and cumulative distribution of residual error deviate strongly from 43 

normal in the case of RT (Figure S1A), whereas the residual errors are much closer 44 

to the expected normal distribution for 1/RT based residuals (Figure S1B).  45 

 46 

 47 
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48 
Figure S1. Distribution of residual errors for LMMs using RT and 1/RT  49 

(A) Left: Histogram of residuals of an LMM model on RT data (GSLD pairs). This 50 

LMM has two fixed factors (blocks and image-pairs) and one random intercept 51 

factor (subjects). The red curve shows the normally distribution with the same 52 

mean and standard deviation as the residuals. Right: QQ plot of the residuals 53 

of the observed data plotted against that expected from a normal distribution. 54 

(B) Same as (A) but for the LMM fit to the 1/RT data.  55 

 56 

Comparison of statistical test results for RT vs 1/RT ANOVA & LMM models 57 

 As an illustrative example, we performed both repeated measures ANOVA as 58 

well as linear mixed effects model (LMM) on RT and 1/RT measures in the GDLD pairs 59 

in the global and local blocks. It can be seen that the LMM results yield stronger effect 60 

sizes with higher statistical significance, since it is based on using raw data, as 61 

opposed to the average data used for the repeated measures ANOVA. Further, using 62 
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1/RT in the analyses produced stronger effect sizes and higher statistical significance 63 

compared to RT-based analyses.   64 

 65 

Name of model Name of effect Results on RT Results on 1/RT 

F-stat p-value F-stat p-value 

Repeated measures 
ANOVA on averages 
Block*Imgpair + 
(Subject|(Block*Imgp
air)   

Block, F(1,15)  
Image Pairs F(146,2190) 
Interaction, F(146, 2190) 

5.22 
2.94 
1.62 

p < 0.05 
p < 0.00005 
p < 0.00005 
 

4.36  
3.94 
1.96 

p = 0.0543 
p < 0.00005 
p < 0.00005 
 

Linear mixed model  
(Block*Imagepair) + 
(1|Subject)  

Block, F(1,8602) 
Image Pairs, F(146, 8602) 
Interaction, F(146, 8602) 

124.24 
8.28  
4.92 

p < 0.00005 
p < 0.00005 
p < 0.00005 

97.75 
7.53  
3.59 

p < 0.00005 
p < 0.00005 
p < 0.00005 

Table S1. Comparison of various statistical models applied on RT & 1/RT. In each 66 

case, the F-statistic and p-value is reported for RT and 1/RT data. The linear mixed 67 

model on 1/RT was adjudged as the best model (highlighted in bold) since its residuals 68 

were closest to the theoretically expected normal distribution. In most cases, it also 69 

yielded larger F-values and higher statistical significance as well.  70 

 71 

Global advantage for GDLD pairs 72 

For GDLD pairs we modelled blocks (global/local) and image pairs (147 levels) 73 

as fixed factors with participants as a random intercept factor (see Methods). This 74 

revealed a significant main effect of blocks (F(1,8602) = 97.75; p < 0.00005; 𝜂𝑝
2 = 0.01) 75 

and image pairs (F(146, 8602) = 7.53; p < 0.00005; 𝜂𝑝
2 = 0.11) and an interaction 76 

between blocks and image pairs (F(146,8602) = 3.58; p < 0.00005; 𝜂𝑝
2 = 0.06). A post-77 

hoc analysis revealed that 97 of 147 (66%) image pairs had faster responses in the 78 

global block on GSLS pairs, suggesting that the interaction largely modified the 79 

magnitude but not the presence of the global advantage effect.  80 

 81 

Global advantage for GSLS pairs 82 

For the GSLS pairs, a similar analysis revealed a main effect of block 83 

(F(1,8647) = 413.06; p < 0.00005; 𝜂𝑝
2 = 0.05) and image pairs (F(48,8647) = 8.95; 84 

p<0.00005; 𝜂𝑝
2 = 0.05) and an interaction between blocks and image pairs (F(48,8647) 85 

= 6.53; p<0.00005; 𝜂𝑝
2 = 0.03). A post-hoc analysis revealed that 44 of 49 (90%) image 86 

pairs had faster responses in the global block on GDLD pairs, suggesting that the 87 

interaction largely modified the magnitude but not the presence of the global 88 

advantage effect.  89 

 90 

Local-to-global interference for GSLS vs GSLD pairs in global block 91 

Since there is no direct correspondence between the GSLS and GSLD pairs, 92 

we performed a linear mixed effects model analysis on inverse response times with 93 

interference (GSLS vs GSLD) as a fixed factor and participants as a random intercept 94 

factor. This revealed a main effect of interference (F(1, 8772) = 433.18; 95 

p<0.00005; 𝜂𝑝
2 = 0.05).  96 

 97 

Global-to-local interference for GSLS vs GDLS pairs in local block 98 

As before, we performed a linear mixed effects model analysis on inverse 99 

response times with interference (GSLS vs GDLS) as a fixed factor and participants 100 

as a random intercept factor. This revealed a main effect of interference (F(1,8564) = 101 

351.16; p < 0.00005; 𝜂𝑝
2 = 0.04). 102 

 103 
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Comparing global-local interference and local-global interference 104 

To establish whether the global-to-local interference effect is stronger than the local-105 

to-global interference effect, we compared inverse response times using a linear 106 

mixed effects model with block (global/local) and interference (present/absent) as fixed 107 

factors and participants as a random intercept factor. This revealed main effects of 108 

block (F(1,26015) = 1449.56, p < 0.000005; 𝜂𝑝
2 = 0.05) and interference (F(1,26015) = 109 

723.08, p < 0.00005; 𝜂𝑝
2 = 0.03). Importantly, this revealed a significant but relatively 110 

weaker interaction effect between block and interference (F(1,26015) = 11.79; 111 

p<0.005; 𝜂𝑝
2 = 0.00045).  112 

 113 

Congruence effect for GDLD pairs 114 

To assess the statistical significance of these effects in each task block, we fit 115 

a linear mixed effects model on the inverse response times with congruence (2 levels), 116 

image pair (7C2 = 21 levels) as fixed factors and participants as a random intercept 117 

factor. This revealed a significant main effect of congruence (F(1,1212) = 36.33; p < 118 

0.00005;𝜂𝑝
2 = 0.029 in the global block & F(1,1206) =31.95; p < 0.00005; 𝜂𝑝

2 = 0.026 119 

in the local block). We also found significant effects of image pair (F(20,1212) =11.8; 120 

p < 0.00005; 𝜂𝑝
2 = 0.163 for global block & F(20,1206) =14.1; p < 0.00005; 𝜂𝑝

2 = 0.189 121 

for local block). Finally, there was a relatively weak but significant interaction effect 122 

between congruence and image pairs in local block (F(20,1212) = 1.13; p > 0.05; 𝜂𝑝
2 =123 

0.018 in the global block & F(20, 1206) = 1.79; p < 0.05; 𝜂𝑝
2 = 0.029 in the local block). 124 

A post-hoc analysis revealed that the incongruence effect was present for 18 of the 21 125 

(86%) image pairs in the global block and 16 of 21 (76%) image pairs in the local block. 126 

Thus, the interaction largely modified the magnitude but not direction of the 127 

incongruence effect.  128 

 129 

Congruence effect for GSLS pairs 130 

To assess the statistical significance of the congruence effect in each block, we 131 

performed a linear mixed effects model analysis on inverse response times with 132 

congruence (2 levels) as fixed factor and participant as random intercept factor. This 133 

revealed a significant main effect of congruence (F(1, 4362) =24.39; p < 0.0005; 𝜂𝑝
2 =134 

0.01  in the global block & F(1, 4269) = 38.85; p < 0.0005; 𝜂𝑝
2 = 0.009 in the local 135 

block).  136 

 137 

Is there a greater effect of stimulus congruence in the global block?  138 

 We wondered whether participants showed a larger advantage for the 139 

congruent stimuli in the global compared to the local block. To this end, we performed 140 

a linear mixed effects model analysis on inverse reaction times to GDLD pairs with 141 

block (2 levels), congruence (2 levels), shape pair (21 levels) as fixed-factors and 142 

participant as a random intercept factor. This revealed a significant main effect of block 143 

(F(1, 2434) =45.75; p < 0.00005; 𝜂𝑝
2 = 0.018), congruence (F(1, 2434) =66.79; p < 144 

0.00005; 𝜂𝑝
2 = 0.026) and shape pair (F(20,2434) =21.36; p < 0.00005 ; 𝜂𝑝

2 = 0.149), 145 

block shape pair interaction (F(20, 2434) = 4.26, p < 0.00005 ; 𝜂𝑝
2 = 0.034) and a 146 

congruence- shape pair interaction (F(20, 2434) =1.94, p < 0.05; 𝜂𝑝
2 = 0.016). 147 

Importantly, we observed no significant interaction between block and congruence as 148 

would be expected if there was a larger congruent advantage in one block over the 149 

other ( F(1, 2434) = 0.03; p = 0.86).  150 
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For GSLS pairs, we performed a linear mixed effects model analysis on inverse 151 

reaction times with block (2 levels), congruence (2 levels) as fixed factors and 152 

participants as random intercept factor (we did not include image as a factor because 153 

it was unbalanced). This revealed a significant main effect of block (F(1,8647) = 154 

171.61; p < 0.00005; 𝜂𝑝
2 = 0.019) and congruence (F(1,8647) =58.69; p < 0.00005; 155 

𝜂𝑝
2 =  0.007). As before we observed no interaction between block and congruence 156 

(F(1,8647) = 0.83; p =0.36). 157 

We conclude that congruent pairs have an equivalent advantage over 158 

incongruent pairs in both global and local task blocks. 159 

  160 
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SECTION S2: RT CONSISTENCY & RELATIONS BETWEEN BLOCKS (EXPT 1) 161 

 162 

Do response times in Experiment 1 vary systematically across image pairs?  163 

The subjects showed a global advantage and incongruence effects in the same-164 

different task but we wondered whether there were any other systematic variations in 165 

response times across image pairs. Specifically, we asked whether image pairs that 166 

evoked fast responses in one group of subjects would also elicit a fast response in 167 

another group of subjects. This was indeed the case: we found a significant correlation 168 

between the average response times of the first and second half of all subjects in both 169 

the global block (r = 0.74, p < 0.00005 across 490 pairs; Figure S2) and the local block 170 

(r = 0.75, p < 0.000005 across 490 pairs; Figure S2B). This correlation was present in 171 

all four image types as well in both blocks (Figure S2). 172 

 173 

 174 
Figure S2. Consistency of response times in the same-different task 175 

(A) Average response times for one half of the subjects in the global block of the same-176 

different task plotted against those of the other half. Asterisks indicate statistical 177 

significance (* is p < 0.05, ** is p < 0.005 etc).  178 

(B) Same as (A) but for the local block.  179 

 180 

Are responses in the global and local block related?  181 

 Having established that response times are systematic within each block 182 

(Section S2), we next investigated how responses in the global and local block are 183 

related for the same image pairs presented in both blocks. First, we compared 184 

responses to image pairs that elicit identical responses in both blocks. These are the 185 

GSLS pairs (which elicit a SAME response in both blocks) and GDLD pairs (that elicit 186 

a DIFFERENT response in both blocks). This revealed a positive but not significant 187 

correlation between the responses to the GSLS pairs in both blocks (r = 0.15, p = 0.32 188 

across 49 image pairs; Figure S3A). By contrast the responses to the GDLD pairs, 189 

which were many more in number (n = 147), showed a significant positive correlation 190 

between the global and local blocks (r = 0.24, p < 0.005; Figure S3A). Second, we 191 

compared image pairs that elicited opposite responses in the global and local blocks, 192 

namely the GSLD and GDLS pairs. This revealed a significant negative correlation in 193 

both cases (r = -0.20, p < 0.05 for 147 GSLD pairs, r = -0.23, p < 0.0005 for 147 GDLS 194 

pairs; Figure S3B). Thus, image pairs that are hard to categorize as SAME are easier 195 

to categorize as DIFFERENT.  196 

 Note that in all cases, the correlation between responses in the global and local 197 

blocks were relatively small (only r = ~0.2; Figure S3) compared to the consistency of 198 
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the responses within each block (split-half correlation = 0.75 in the global block; 0.74 199 

in the local block; n = 490 & p < 0.00005 for both the conditions; Figure S2). These 200 

low correlations suggest that responses in the global and local blocks are qualitatively 201 

different.  202 

 203 

 204 
Figure S3. Responses to hierarchical stimuli in global and local blocks.  205 

(A) Average response times in the local block plotted against the global block, for 206 

image pairs with identical responses in the global and local blocks. These are the 207 

GSLS pairs (red crosses, n = 49) which elicited the “SAME” response in both 208 

blocks, and the GDLD pairs (blue crosses, n = 147) which elicited the 209 

“DIFFERENT” responses in both blocks.  210 

(B) Average response times in the local block plotted against the global block, for 211 

image pairs with opposite responses in the global and local blocks. These are the 212 

GSLD pairs (open circles, n = 147) which elicit the “SAME” response in the global 213 

block but the “DIFFERENT” response in the local block, and the GDLS pairs (filled 214 

circles, n = 147) which likewise elicit opposite responses in the two blocks.   215 



 Page 9 of 29 
 

SECTION S3: DISTINCTIVENESS ANALYSES (EXPT 1) 216 

 217 

Effect of distinctiveness on same-different responses in the global block 218 

We estimated distinctiveness of a given image as the inverse response time on 219 

trials where the image is presented as a GSLS identical image pair. The estimated 220 

distinctiveness for the hierarchical stimuli in the global block is depicted in Figure 3A. 221 

It can be seen that shapes with a global circle (“O”) are more distinctive than shapes 222 

containing the global shape “A”. In other words, participants responded faster when 223 

they saw these shapes.  224 

Having estimated distinctiveness of each image using the GSLS pairs, we 225 

asked whether it would predict responses to other pairs. For each image pair 226 

containing two different images, we calculated the net distinctiveness as the sum of 227 

the distinctiveness of the two individual images. We then plotted the average response 228 

times for each GSLD pair (which evoked a “SAME” response) in the global block 229 

against the net distinctiveness. This revealed a striking negative correlation (r = -0.71, 230 

n = 147 & p < 0.00005; Figure S4A). In other words, participants responded quickly 231 

when a given image pair contained distinctive images. We performed a similar analysis 232 

for the GDLS and GDLD pairs (which evoke a “DIFFERENT” response). This too 233 

revealed a negative correlation (r = -0.46, p < 0.00005 across 294  GDLS and GDLD 234 

pairs; Figure S4B; r = -0.38, n = 147 & p < 0.0005 for GDLS pairs; r = -0.54, n = 147 235 

& p <0.0005 for GDLD pairs).  236 

If distinctiveness measured from GSLS pairs is so effective in predicting 237 

responses to all other pairs, we wondered whether it can also explain the 238 

incongruence effect. To do so, we compared the net distinctiveness of congruent pairs 239 

with that of the incongruent pairs. Indeed, congruent pairs were more distinctive 240 

(average distinctiveness, mean ± sd: 3.31 ± 0.11 s-1 for congruent pairs, 3.17 ± 0.14 241 

s-1 for incongruent pairs, p < 0.005, sign-rank test across 21 image pairs; Figure S4C).  242 

 243 

Effect of distinctiveness on same-different responses in the local block  244 

We observed similar trends in the local block. Again, we estimated 245 

distinctiveness for each image as the reciprocal of the response time to the GSLS 246 

trials in the local block (Figure 3B). It can be seen that shapes containing a local circle 247 

were more distinctive compared to shapes containing a local diamond (Figure 3B). 248 

Interestingly, the distinctiveness estimated in the local block was uncorrelated with the 249 

distinctiveness estimated in the global block (r = 0.16, p = 0.25).  250 

As with the global block, we obtained a significant negative correlation between 251 

the response times for GDLS pairs (which evoked a “SAME” response) and the net 252 

distinctiveness (r = -0.58, n = 147 & p < 0.00005; Figure S4D). Likewise, we obtained 253 

a significant negative correlation between the response times of GSLD and GDLD 254 

pairs (both of which evoke “DIFFERENT” responses in the local block) with net 255 

distinctiveness (r = -0.22, p < 0.0005 across 294 GSLD and GDLD pairs; Figure S4E; 256 

r = -0.24, n = 147 & p < 0.005 for GSLD pairs; r = -0.18, n = 147 & p < 0.05 for GDLD 257 

pairs). We conclude that distinctive images elicit faster responses.  258 

Finally, we asked whether differences in net distinctiveness can explain the 259 

difference between congruent and incongruent pairs. As expected, local 260 

distinctiveness was significantly larger for congruent compared to incongruent pairs 261 

(average distinctiveness, mean ± sd: 3.08 ± 0.05 s-1 for congruent pairs, 2.91 ± 0.11 262 

s-1 for incongruent pairs, p < 0.00005, sign-rank test across 21 image pairs; Figure 263 

S4F).  264 

 265 
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 266 
Figure S4. Distinctiveness from GSLS pairs predicts responses to other pairs 267 

(A) Observed response times for GSLD pairs in the global block plotted against 268 

the net global distinctiveness estimated from GSLS pairs in the local block.  269 

(B) Observed response times for GDLS and GDLD pairs plotted against net global 270 

distinctiveness estimated from panel A. Congruent pairs (red circles) and 271 

incongruent pairs (blue circles) are highlighted.  272 

(C) Net global distinctiveness calculated for congruent and incongruent image 273 

pairs. Error bars represents standard deviation across pairs.   274 

(D) Observed response times for GDLS pairs in the local block plotted against the 275 

net local distinctiveness estimated from GSLS pairs in the local block.  276 

(E) Observed response times for GSLD & GDLD pairs in the local block plotted 277 

against the net local distinctiveness estimated as in panel D. Congruent pairs 278 

(red circles) and incongruent pairs (blue circles) are highlighted.   279 

(F) Net local distinctiveness calculated for congruent and incongruent image pairs. 280 

Error bar represents standard deviation across pairs.  281 

 282 

 283 

  284 
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SECTION S4: STATISTICAL ANALYSES FOR EXPERIMENT 2 285 

 286 

Global advantage effect in visual search 287 

 To establish the statistical significance of the global advantage effect in visual 288 

search, we performed a linear mixed effects model analysis on inverse RT with scale 289 

of change (global vs local), shape pair (21 levels), common shape (7 levels) as fixed 290 

factors and participants as a random intercept factors. This revealed a main effect of 291 

scale (F(1,4696) = 163.24; p < 0.00005; 𝜂𝑝
2 = 0.034), shape pair (F(20,4696) = 80.13; 292 

p < 0.00005; 𝜂𝑝
2 = 0.254) and interaction effects for scale & shape pair (F(20,4696) = 293 

24.38; p < 0.00005; 𝜂𝑝
2 = 0.094), scale and common shape (F(6,4696) = 2.41; p < 0.05; 294 

𝜂𝑝
2 = 0.003) and shape pair and common shape (F(120,4696) = 1.37; p <0.05; 𝜂𝑝

2 =295 

0.034). There was no main effect of common shape (F(6,4696) = 0.88, p = 0.051; 𝜂𝑝
2 =296 

0.001). A post-hoc analysis revealed that 87 of 147 (59%) of all the matched GDLS-297 

GSLD pairs had a larger average RT for the GDLS pairs, suggesting that these 298 

interactions modified the magnitude but not the direction of the effect.  299 

 300 

Congruence effect in visual search 301 

To establish the statistical significance of the congruent effect, we performed a 302 

linear mixed effects model analysis with congruence, shape pairs as fixed factor and 303 

participants as random intercept factor on the inverse reaction times. This analysis 304 

revealed a main-effect of congruence (F(1,664) = 35.87, p < 0.00005 ; 𝜂𝑝
2 = 0.051) and 305 

shape pair (F(20,664) = 10.93, p< 0.0005; 𝜂𝑝 
2 = 0.248) and an interaction between 306 

congruence and shape pair (F(20,664) = 2.62; p<0.0005; 𝜂𝑝
2 = 0.073). A post-hoc 307 

analysis revealed that 18 of 21 (86%) of all congruent pairs had faster response times 308 

than their corresponding incongruent pairs, suggesting that the interactions modified 309 

the magnitude but not the direction of the congruence effect.  310 

 311 

Target congruence effect in visual search 312 

To investigate the statistical significance of the congruent target effect, we 313 

performed a linear mixed effects model analysis with congruence (2 levels), shape 314 

pairs (7C2 = 21 levels) as fixed factors and participants as random intercept factor on 315 

the inverse of mean reaction times (for each shape pair congruent and incongruent 316 

reaction times are estimated by averaging across 5P2 x 2 searches). This analysis 317 

revealed a main-effect of shape pair (F(20,328) = 21.99, p< 0.00005; 𝜂𝑝
2 = 0.573), and 318 

an interaction between distractor congruence and shape pair (F(20,328) = 6.96, p < 319 

0.00005; 𝜂𝑝
2 = 0.298). There was no main effect of target congruence (F(1, 328) = 320 

3.73, p =  0.054; 𝜂𝑝
2 = 0.011). 321 

 322 

Distractor congruence effect in visual search 323 

 To establish the statistical significance of the congruent distractor effect, we 324 

performed a linear mixed effects model analysis with congruence (2 levels), shape 325 

pairs (7C2 = 21 levels) as fixed factors and participants as random intercept factor on 326 

the inverse of mean reaction times (for each shape pair congruent and incongruent 327 

reaction times are estimated by averaging across 5P2 x 2 searches). This analysis 328 

revealed a main-effect of distractor congruence (F(1, 328) = 34.85, p< 0.00005; 𝜂𝑝
2 =329 

0.096) and shape pair (F(20,328) = 18.45,p< 0.00005; 𝜂𝑝
2 = 0.529), and an interaction 330 

between distractor congruence and shape pair (F(20,328) = 3.28, p< 0.00005 𝜂𝑝
2 =331 

0.167).   332 
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SECTION S5: VISUALIZATION OF SEARCH SPACE 333 

 334 

We used the reaction times from Experiment-2 to estimate the dissimilarity 335 

between shape pairs. Previous studies have shown that 1/RT is a good estimate of 336 

dissimilarity between shapes. Multidimensional scaling technique estimates the 2D 337 

coordinates of each stimulus such that distances between these coordinates match 338 

best with the observed distances. In two dimensions with 49 hierarchical stimuli, there 339 

are only 49 x 2 = 98 unknown coordinates that have to match the 49C2 = 1,176 340 

observed distances. We emphasize that multidimensional scaling only offers a way to 341 

visualize the representation of the hierarchical stimuli at a glance; we did not use the 342 

estimated 2D coordinates for any subsequent analysis but rather used the directly 343 

observed distances themselves. Two interesting patterns can be seen. First, stimuli 344 

with the same global shape clustered together, indicating that these are hard 345 

searches. Second, congruent stimuli (i.e. with the same shape at the global and local 346 

levels) were further apart compared to incongruent stimuli (with different shapes at the 347 

two levels), indicating that searches involving congruent stimuli are easier than 348 

incongruent stimuli. These observations concur with the global advantage and 349 

incongruence effect described above in visual search.  350 

 351 

 352 

 353 
Figure S4. Visualization of hierarchical stimuli in visual search space. 354 

Representation of hierarchical stimuli in visual search space, as obtained using 355 

multidimensional scaling. Stimuli of the same colour correspond to the same global 356 

shape for ease of visualization. The actual stimuli were white shapes on a black 357 

background in the actual experiment. In this plot, nearby points represent hard 358 

searches. The correlation coefficient at the top right indicates the degree of match 359 

between the two-dimensional distances depicted here with the observed search 360 

dissimilarities in the experiment. Asterisks indicate statistical significance: **** is p < 361 

0.00005.  362 

  363 
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SECTION S6: COMPARISON WITH OTHER MODELS 364 

 365 

Is search for hierarchical stimuli explained better using RT or 1/RT models?  366 

The results in the main text show that search for hierarchical stimuli is best 367 

explained using the reciprocal of search time (1/RT), or search dissimilarity. That 368 

models based on 1/RT provides a better account than RT-based models was based 369 

on our previous findings (Vighneshvel and Arun, 2013; Pramod and Arun, 2014, 2016; 370 

Sunder and Arun, 2016). Here we reconfirmed this finding on the visual search 371 

experiment in this study (i.e. Experiment 2).  372 

We tested models based on both search response times (RT) and search 373 

dissimilarity (1/RT) to identify the best model that accounts for the data. In each case, 374 

we fit the full model, in which the net RT or 1/RT corresponding to the search for two 375 

hierarchical stimuli is a weighted sum of shape differences at the global and local level 376 

as well as cross-scale terms across and within objects (Figure 7B). Because the two 377 

models have the same number of free parameters, we compared their quality of fit 378 

directly using their overall correlation with the observed data as well as using their 379 

residual errors.  380 

Our main finding is that the 1/RT model outperformed the RT model both in 381 

predicting the RT and the 1/RT data in terms of correlations (correlations with 1/RT 382 

data: 0.88 and 0.81 for the 1/RT and RT models, p < 0.00005, Fisher’s z-test; 383 

correlations with RT data: 0.88 & 0.87 for the 1/RT and RT models, p = 0.2). For a 384 

finer-grained comparison between the RT and 1/RT models, we compared their 385 

residual errors. Here too, the residual error for the 1/RT model was lower than the RT 386 

model for both RT & 1/RT data (average absolute error in RT: 0.21 & 0.28 s for the 387 

1/RT and RT models, p < 0.00005, rank-sum test across 1176 observations; average 388 

absolute error in 1/RT: 0.09 & 0.13 s-1 for the 1/RT and RT models, p < 0.00005). We 389 

conclude that the 1/RT based model provided a better fit to the search data.  390 

  391 

Can a simpler multiscale model account for the data?  392 

 In the full model described above, the dissimilarity between hierarchical stimuli 393 

was taken as a weighted sum of local and global shape differences as well as cross-394 

scale differences both within and across objects. This model yielded excellent fits to 395 

the data, but it is possible that a simpler model (using only a subset of these terms) 396 

performs just as well.  397 

 Comparing the full model with simpler sub-models containing only some types 398 

of terms is non-trivial because a complex model will always yield better fits to a given 399 

set of data than a simple model by virtue of having more degrees of freedom. 400 

Therefore we used a quality of fit measure known as the Akaike’s Information Criterion 401 

or AICc (Pramod and Arun, 2014, 2016) that penalizes the overall model error by its 402 

complexity. The AICc of any model can be calculated as: 𝐴𝐼𝐶𝑐 = 𝑎𝑏𝑠 (𝑁 log (
𝑆𝑆

𝑁
) + 2𝐾 +403 

2𝐾(𝐾+1)

(𝑁−𝐾−1)
), where N is the number of observations, SS is the sum of squared errors 404 

between the model and data across all observations, and K is the number of free 405 

parameters in the model. A larger AICc implies a better model.  406 

 To compare the quality of fit of two models, we performed a bootstrap analysis. 407 

We first resampled the observations with replacement, fit each model and calculated 408 

the AICc for each iteration. We then calculated the fraction of bootstrap samples 409 

(across 1176 iterations) in which the AICc of one model was larger than that of the 410 

other. If this fraction was larger than 95% or smaller than 5% we deemed one model 411 

to be superior to the other in terms of the quality of fit. 412 
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 We fit a number of sub-models that contained various subsets of terms from 413 

the full model. Comparing these models on their performance is however not 414 

straightforward because some models may have naturally better fits to the data owing 415 

to their greater degrees of freedom. We therefore compared the Akaike’s Information 416 

Criterion or AICc (see above), which takes into account not only the overall residual 417 

error between the model predictions and the data, but also penalizes models for 418 

having greater degrees of freedom. The results are summarized in Table S1. It can be 419 

seen that the full model explains the data better than all sub-models and is superior 420 

both in terms of the overall correlation as well as the AICc quality of fit. It can also be 421 

seen that global terms contribute the most to the fit, followed by local terms and then 422 

by the cross-scale interactions. 423 

 424 

Model dof Model Correlation Quality of fit  
AICc (mean ± sd) 

G 22 0.67**** 3550 ± 44** 

L 22 0.45**** 3114 ± 38** 

X 22 0.34**** 2989 ± 46** 

W 22 0.30**** 2952 ± 42** 

GL 43 0.83**** 4194 ± 53** 

GX 43 0.71**** 3619 ± 44** 

GW 43 0.71**** 3608 ± 44** 

LX 43 0.55**** 3232 ± 47** 

LW 43 0.52**** 3175 ± 42** 

XW 43 0.39**** 2998 ± 45** 

GLX 64 0.85*   4298 ± 52* 

GLW 64 0.85* 4291 ± 50* 

GXW  64 0.74**** 3676 ± 44** 

LXW 64 0.59**** 3250 ± 49** 

Full Model (GLXW) 85 0.88 4430 ± 52 

Table S1. Comparison of submodels with the full 1/RT model. In each case the 425 

1/RT model containing a subset of the model terms was fit to the full set of 1176 search 426 

dissimilarities. The best model, depicted in bold face, was the full model containing 427 

global (G), local (L), cross-scale across object (X) and cross-scale within object (W) 428 

terms. Asterisks in the model correlation column indicate the statistical significance of 429 

comparing each model with the best model using a Fisher’s z-test on correlation 430 

coefficients (* is p < 0.05, ** is p < 0.005 etc). Asterisks in the AICc column indicate 431 

statistical significance of comparing each model with the best model, calculated as the 432 

fraction of bootstrap samples in which the AICc was larger than the AICc of the best 433 

model. 434 

 435 

 436 

437 
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SECTION S7: SIMPLIFYING HIERARCHICAL STIMULI (EXPT S1) 438 

 439 

Having characterized how global and local shape combine in hierarchical 440 

stimuli, we wondered whether we can obtain further insights by varying their 441 

component properties. One fundamental issue with hierarchical stimuli is that the 442 

global shape is formed using the local shapes, making them inextricably linked. We 443 

therefore wondered whether hierarchical stimuli can be systematically related to 444 

simpler stimuli in which the global and local shape are independent of each other.  445 

These simpler stimuli are shown in Figure S5A. For each hierarchical stimulus, 446 

we created an equivalent “interior-exterior” stimulus in which an external contour with 447 

the same shape as the global shape encloses a random arrangement of interior 448 

elements with the same number and local shape (Figure S5A). We repeated this for 449 

two element sizes because the grouping of local elements into a global shape is 450 

affected by size (Figure S5B). This design allowed us to ask whether feature 451 

integration is similar in hierarchical stimuli compared to the interior-exterior stimuli.  452 

 453 

METHODS 454 

Subjects. Eight right-handed human subjects (7 male, aged 23-28 years) participated 455 

in the study. All other details were as in Experiment 2.  456 

 457 

Stimuli. We designed hierarchical stimuli (H) and matched interior-exterior (IE) stimuli. 458 

The hierarchical stimuli were created by combining 5 shapes at the local and global 459 

levels in all possible combinations, resulting in a total of 25 stimuli. The interior-exterior 460 

(IE) stimuli were derived from the hierarchical stimuli by arranging the local shapes in 461 

a fixed configuration, and replacing the global form of the hierarchical stimulus by a 462 

solid closed contour (Figure S1A). Shapes were chosen such that their exterior/global 463 

version was large enough to accommodate 8 local shapes without intersecting with 464 

the local shapes. To investigate how the size of the local elements influences the 465 

overall dissimilarity, we created a new set of hierarchical and interior-exterior stimuli 466 

in which the local elements were 75% of their original size (size 2; Figure S1B). Thus 467 

there were four sets of 25 stimuli used in the experiment (hierarchical and interior-468 

exterior at 2 sizes each). Subjects performed visual search involving all possible pairs 469 

of stimuli within each set, with the result that there were 25C2 x 4 = 1200 unique 470 

searches in the experiment. All other details were identical to Experiment 2.  471 

 472 

Model fitting. We fit the multiscale model to all 300 searches corresponding to each 473 

stimulus set. Since there were 5 unique parts, there were 5C2 = 10 model parameters 474 

for each group of global, local, across and within terms. Together with a constant term, 475 

the multiscale model consisted of 41 free parameters in all. All other details are as in 476 

Experiment 2.   477 

 478 

RESULTS 479 

Subjects performed visual search using matched hierarchical stimuli and 480 

interior-exterior stimuli at two local element sizes (Figure S5A-B). For ease of 481 

exposition, we first describe results for the hierarchical and interior-exterior stimuli at 482 

the larger size (size 1), and then describe the effect of changing local element size 483 

(size 1 vs 2).  484 

  485 

 486 

 487 
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Is the representation of interior-exterior stimuli similar to hierarchical stimuli?  488 

 Subjects were highly consistent in their performance on searches involving both 489 

hierarchical and interior-exterior stimuli (split-half correlation between RT for odd and 490 

even subjects: 0.79 & 0.93 for hierarchical and interior-exterior stimuli both of size 1, 491 

p < 0.00005).  492 

 To visualize the underlying representation, we performed a multidimensional 493 

scaling analysis on the average search dissimilarities for each set separately. As 494 

before, the hierarchical stimuli tended to group according to the global shape (Figure 495 

S1C). This trend was even more evident for the interior-exterior stimuli (Figure S5D). 496 

Thus, hierarchical and interior-exterior stimuli have qualitatively similar 497 

representations.  498 

 To quantify these observations, we directly compared the pairwise 499 

dissimilarities between hierarchical stimulus pairs and interior-exterior pairs. This 500 

revealed a significant positive correlation (r = 0.65, p < 0.0005; Figure S5E). We note 501 

that this correlation is only modest even though the interior-exterior dissimilarities and 502 

hierarchical dissimilarities were themselves highly consistent. This implies that there 503 

are subtle representational differences between the two sets. We therefore wondered 504 

whether the multiscale model would be able to account for these differences. This was 505 

indeed the case: multiscale model predictions on both sets were excellent (r = 0.91 & 506 

0.96 for hierarchical and interior-exterior sets; Figure S5F). These correlations were 507 

virtually the same as the reliability of the data itself (rc = 0.89 ± 0.008 for hierarchical 508 

stimuli; rc = 0.90 ± 0.003 for interior-exterior stimuli). Thus, the multiscale model 509 

explains nearly all the explainable variance in the data. This in turn implies that 510 

whatever subtle representational differences exist between hierarchical and interior-511 

exterior stimuli must arise from systematic differences in their model parameters.  512 

We therefore compared the model parameters for the two sets – and observed 513 

several interesting patterns (Figure S5G). First, model terms corresponding to global 514 

shape differences were stronger in the interior-exterior stimuli (average magnitude: 515 

0.47 & 0.94 for hierarchical and interior-exterior, p < 0.005, sign-rank test on 10 global 516 

terms). This is as expected given the stronger clustering by global shape for the 517 

interior-exterior stimuli. However the global terms for hierarchical and interior-exterior 518 

stimuli were significantly correlated, indicating that the underlying representation is 519 

similar (r = 0.73, p = 0.016). This correlation was even higher across all model terms 520 

(r = 0.85, p < 0.00005 across 41 model terms for hierarchical and interior-exterior 521 

stimuli).  522 

Second, model parameters corresponding to local shape differences and cross-523 

scale interactions were weaker in the interior-exterior stimuli (average magnitude of 524 

local terms: 0.13 & 0.045 for hierarchical and interior-exterior, p < 0.005, sign-rank 525 

test; cross-scale across object terms: 0.1 & 0.03, p < 0.005; cross-scale within-object: 526 

0.18 & 0.06, p < 0.005; Figure S5G). Third, as before, in both sets, model parameters 527 

corresponding to local and cross-scale terms were generally correlated with the global 528 

terms in the same way as in Experiment 1 (correlation with global terms for hierarchical 529 

stimuli across 5C2 = 10 shape pairs: r = 0.9, p < 0.005 for local, r = 0.86, p < 0.005 for 530 

across and r = -0.57 , p = 0.08 for within terms; for interior-exterior stimuli: r = 0.75, p 531 

< 0.05 for local, r = 0.33, p = 0.33 for across and r = -0.19, p = 0.5 for within terms). 532 

These correlations indicate that model parameters are driven by a common shape 533 

representation.  534 

 535 

 536 

 537 
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How do model parameters change when local shapes are made smaller?  538 

Next we asked how the estimated model parameters of the hierarchical and 539 

interior-exterior stimuli change if the local elements became smaller. In general search 540 

times with larger local elements was faster (average search times: 1.72 and 1.90 s for 541 

hierarchical stimuli size 1 and 2, p < 0.005, sign-rank test on mean response times; 542 

1.32 and 1.37 for interior-exterior stimuli size 1 & 2, p = 0.83, sign-rank test). The 543 

multiscale model again yielded excellent fits at this size too (correlation between 544 

observed & predicted dissimilarity for size 2: r = 0.93 for hierarchical stimuli, r = 0.96 545 

for interior-exterior stimuli, p < 0.00005 in both cases). Importantly, model parameters 546 

changed systematically when local elements were smaller (Figure S5H). These 547 

changes were similar for both sets of stimuli, suggesting that local element size 548 

influences both stimuli similarly. The general pattern is that, when local elements 549 

decrease in size, global terms become larger whereas local and cross-scale terms 550 

become weaker (Figure S5H).  551 

To summarize, the multiscale model provided excellent fits for searches 552 

involving both hierarchical and interior-exterior stimuli even across changes in local 553 

element size. Both stimuli were driven by a common underlying shape representation, 554 

and their differences were explained by systematic differences in model parameters. 555 

The differences in the model parameters indicate that interior-exterior stimuli have 556 

more salient exterior shapes with weaker local and cross-scale interactions. The 557 

weaker local and cross-scale interactions could be due to the increased salience of 558 

the global shape or due to the greater proximity of the local shapes to each other. In 559 

subsequent experiments we designed stimuli to distinguish between these 560 

possibilities. 561 

 562 

How do model parameters change with local shape properties?  563 

 The above findings suggest that the multiscale part sum model parameters 564 

change systematically with local element size. To further investigate how model 565 

parameters change with other local shape properties, we varied the size, position, 566 

number and grouping status of the local elements in the interior-exterior stimuli 567 

(Sections S2-4). We obtained excellent model fits in all cases, and model parameters 568 

varied systematically with these manipulations.  569 

 570 

  571 
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 572 
Figure S5. Simplifying hierarchical stimuli into interior-exterior stimuli  573 

(A) Example pair of hierarchical stimuli and interior-exterior stimuli. Understanding 574 

global and local shape integration in hierarchical stimuli is complicated by the fact 575 

that the global shape is inextricably linked to and formed by the local shape. We 576 

attempted to simplify each hierarchical stimulus into an “interior-exterior” stimulus 577 

in which the external contour matches the global shape and the shape and number 578 

of the internal elements matches the local shape.  579 
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(B) Example hierarchical and interior-exterior stimulus pairs with smaller size elements 580 

(size 2).  581 

(C) Visualization of the underlying shape representation for hierarchical stimuli (Size 582 

1), as obtained using multidimensional scaling.   583 

(D) Same as (C) but for the matched interior-exterior stimuli (Size 1).  584 

(E) Observed dissimilarities for hierarchical pairs plotted against that of Interior-585 

Exterior pairs (Size 1), with example pairs highlighted (red dotted lines). The solid 586 

line represents the best-fitting straight line and the dotted line is the y = x line.  587 

(F) Observed versus predicted dissimilarity for hierarchical stimuli (red) and interior-588 

exterior stimuli (black) for Size 1.   589 

(G) Average magnitude of model terms for hierarchical stimuli (H) and Interior-Exterior 590 

(IE) stimuli for Size 1. Note that within-object terms are generally negative but their 591 

magnitude is depicted for ease of comparison. Asterisks indicate statistical 592 

significance as calculated using a sign-rank test on the model parameters, with 593 

conventions as before.  594 

(H) Average magnitude of model parameters for Size 1 vs Size 2 for both hierarchical 595 

(H) and interior-exterior (IE) stimuli. Asterisks indicate statistical significance as 596 

calculated using a sign-rank test on the model parameters, with conventions as 597 

before.  598 

  599 
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SECTION S8. CHANGING ELEMENT SIZE, POSITION & NUMBER (EXPT S2) 

 600 

In Experiment 3, we demonstrated that hierarchical and interior-exterior stimuli 601 

are driven by a common shape representation. Here we manipulated the position, size 602 

and numerosity of local elements in highly simplified interior-exterior stimuli to 603 

understand how these changes affect the overall representation.  604 

 605 

METHODS 606 

Subjects. Eight right-handed human subjects (5 male, aged 21-28 years) participated 607 

in the study. All other details were as in Experiment 1.  608 

 609 

Stimuli. We created four sets each containing 25 stimuli. Set 1 was a reference set 610 

containing a single exterior shape and a single interior shape (Figure S2). In Set 2, all 611 

stimuli were identical to Set 1 except that the interior shape was shifted to the left. In 612 

Set 3, the interior shape was double the size of the Set 1 stimuli. In Set 4, there were 613 

two local elements of the same size as in Set 1.  614 

 615 

Procedure. Subjects performed searches involving all pairwise stimuli within each set. 616 

Thus in all there were 25C2 x 4 sets = 1200 searches. Subjects performed 98.3 617 

±0.001% correct trials for each unique search. All details were identical to Experiment 618 

1 except that the Set 1 stimuli measured 3.4° along the longest dimension, and the 619 

inter-item spacing was slightly smaller at 3.35°.  620 

 621 

RESULTS 622 

We measured visual search performance on four sets of stimuli in which local 623 

elements were varied in position, size and number (Figure S2A). Subjects were highly 624 

consistent in their search performance across all four sets (split-half correlation 625 

between RT of odd- and even-numbered subjects: r = 0.92, 0.92, 0.87 & 0.89 for Sets 626 

1-4 respectively, p < 0.00005 in all cases). Observed dissimilarity was also highly 627 

correlated across sets, indicating that the underlying shape representations are very 628 

similar (Figure S2B).  629 

To visualize the underlying shape representation we performed a 630 

multidimensional scaling as before. The resulting plot for Set 1 is shown in Figure S2C. 631 

It can be seen that stimuli with the same global shape cluster together, indicating that 632 

these are hard searches.  633 

As before, the multiscale model yielded excellent fits to the data (r = 0.95, 0.95, 634 

0.93 & 0.94 for Sets 1-4 respectively, p < 0.00005 in all cases; Figure S2D), implying 635 

that variations in the underlying representation across sets due to local element 636 

properties are captured by systematic changes in model parameters. These changes 637 

are summarized in Figure S2E. The most obvious pattern is that the global terms are 638 

substantially larger than all other model terms, indicating that search difficulty is 639 

dominated by differences in global shape (Figure S2E). However model parameters 640 

varied systematically across the four sets, as discussed below.  641 

We first asked what happens to the shape representation with a change in the 642 

local element position (Set 1 vs Set 2). Interestingly, when the local element is shifted 643 

away from the centre, local terms became smaller and within-object interactions 644 

increased (Figure S2E). However, the underlying shape representation was extremely 645 

similar, as evidenced by a strong correlation between the global terms across both 646 

sets (r = 0.96, p < 0.00005).  647 
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Next, we analysed how the shape representation changes when the local 648 

elements increase in size (Set 1 vs Set 3). We found that global terms decreased, 649 

whereas cross-scale interactions both across and within objects increased (Figure 650 

S2E). Because some of these changes tend to increase dissimilarity whereas others 651 

will cause a decrease, the overall dissimilarity is unlikely to change. Indeed, search 652 

times were not systematically different across the two sets (average search times: 653 

0.88 & 0.90 s for Sets 1 & 3 respectively, p = 0.11, rank sum test across 300 searches). 654 

Thus, increasing local element size increases cross-scale interactions across 655 

hierarchical levels.  656 

We then asked how the shape representation changes when the number of 657 

local elements increases from 1 to 2. The only significant change was that cross-scale 658 

across-object terms were larger in Set 4 compared to Set 1 (Figure S2E). Set 3 is also 659 

an interesting comparison with Set 4 because the total area of the local elements is 660 

the same in both Sets. Here, we found that global terms were larger, but within-object 661 

interactions were smaller for two local elements (Set 4) compared to one large element 662 

(Set 3). Taken together, these changes mean that increasing the number of elements 663 

increases cross-scale interactions compared to a single small element, but the net 664 

increase is still much smaller compared to having a single large element of the same 665 

size.  666 

To summarize, visual search for interior-exterior stimuli across changes in local 667 

element position, size and number is explained extremely well by the multiscale model. 668 

Moving local elements away from the centre (closer to the exterior shape), increasing 669 

their number, or increasing size all led to increased cross-scale interactions.  670 

 671 

  672 
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 673 
Figure S6: Effect of local element position, size and number 674 

(A) Example stimuli from Sets 1-4. Set 1 is the reference, with the local shape at the 675 

centre of the exterior contour. In Set 2 the interior shape is shifted away from the 676 

centre. In Set 3, the local shape is doubled in size. In Set 4, two local shapes are 677 

placed equidistant from the centre on either side. 678 

(B-D) Observed dissimilarity of all 300 pairs of stimuli in each set plotted against Set 679 

1. The solid line is the best-fitting line and the dotted line represents the unit line (y 680 

= x).  681 

(E) Visualization of the underlying shape representation for the reference set (Set 1), 682 

as obtained using multidimensional scaling. All conventions are as before.  683 

(F) Correlation between predicted and observed dissimilarities for each set.  684 

(G) Average magnitude of model parameters for Sets 1-4. Asterisks represent 685 

statistical significance assessed using a signed-rank test: * is p < 0.05, ** is p < 686 

0.005. All comparisons are not significant (p > 0.05) unless marked with an 687 

asterisk.  688 

  689 
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SECTION S9: CHANGING ELEMENT POSITION (EXPT S3) 690 

 691 

In the previous section, we showed that moving a local element away from the 692 

center of an exterior shape tended to increase cross-scale interactions. Here, we 693 

explored this issue further by asking what would happen if the local element was 694 

moved even further to intersect the exterior shape or even be located outside it.  695 

 696 

METHODS 697 

Subjects. Eight right-handed human subjects (6 male, aged 20-26 years) participated 698 

in the study. All other details are as in Experiment 1.  699 

 700 

Stimuli.  We created interior-exterior stimuli with a single local shape whose bounding 701 

box was quarter the area of that of the global shape (Figure S7A). We also modified 702 

the local shapes to be larger in size compared to the Experiment 3 so as to increase 703 

the salience of the local and cross-scale terms and reduce the dominance of the global 704 

terms. We created four sets of 25 stimuli each by combining five shapes in the interior 705 

with the same five shapes for the exterior contour in all possible ways. The four sets 706 

were identical except for the position of the local shape: it could be at the centre (Set 707 

1), between the centre and the left edge (Set 2), centred on the global shape contour 708 

(Set 3) and finally located outside the exterior shape (Set 4). These are depicted in 709 

Figure S7A. To avoid novel conjunctions with the exterior shapes as the interior shape 710 

is moved, we used shapes with vertical edges on both left and right sides, with the 711 

result that all shapes differed only in contours on the top or bottom sides. The interior 712 

shape was presented in a green colour to facilitate grouping particularly for Set 3 713 

where the interior and exterior contours overlap.  714 

 715 

Procedure. Subjects performed an oddball search task on 4 x 4 search arrays as 716 

before, with the largest item measuring 4.1°. All other details are same as that of 717 

Experiment 2.  718 

 719 

RESULTS 720 

In this experiment, subjects performed searches on sets of interior-exterior 721 

stimuli in which the center element varied in position. Subjects were highly consistent 722 

in their search performance on stimuli in each set (split-half correlation between RT of 723 

odd- and even-numbered subjects: r = 0.82, 0.87, 0.80 & 0.81 for Sets 1-4 724 

respectively, p < 0.0005 in all cases). The observed dissimilarity was also extremely 725 

similar across Sets, suggesting that the underlying shape representation is 726 

qualitatively similar (Figure S7B). However, search difficulty varied systematically 727 

across sets (average search times: 2.00, 1.97, 2.35 and 2.13 s for Sets 1-4), with Set 728 

2 being the easiest (p < 0.05, rank-sum test across 300 searches of Set 2 with all other 729 

sets) and Set 3 being the hardest (p < 0.00005, rank-sum test across 300 searches of 730 

Set 3 with all other sets).  731 

To visualize the underlying shape representation, we performed 732 

multidimensional scaling as before. In the resulting plot, shown for Set 1 (Figure S7C), 733 

it can be seen that stimuli are still clustered according to their global shapes but the 734 

grouping is not as strong as in Experiment 3 (i.e. compared to Figure S2C).  735 

As before, the multiscale model yielded excellent fits to the data (r = 0.93, 0.93, 736 

0.93 & 0.92 for Sets 1-4 respectively, p < 0.00005 in all cases; Figure S7D), implying 737 

that variations in the shape representation due to local element position is captured 738 

by systematic changes in model parameters. These changes are summarized in 739 
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Figure S7E. Unlike the previous experiment (Section S3) where global terms 740 

dominated all others, global terms were comparable in magnitude to other model terms 741 

and did not vary with element position (Figure S7E). We observed systematic changes 742 

in model parameters across sets, as detailed below.  743 

We observed a non-monotonic change in model parameters across sets: local 744 

terms became larger from Set 1 to Set 2 as in the previous experiment but became 745 

much smaller for Set 3 (where the local & global contours overlap) and increased again 746 

from Set 3 to 4 (Figure S7E). Cross-scale across-object terms also followed the same 747 

pattern although they did not show as big a drop for Set 3 as the local terms (Figure 748 

S7E). Cross-scale within-object interactions were strongest when the local shape was 749 

at the centre and decreased in magnitude as its position shifted to the left.  750 

Sets 2 & 4 are an interesting comparison because the local shape is equally far 751 

away from the edge of the exterior contour, but different both in terms of being inside 752 

vs outside as well as distance from the centre of the exterior contour. Compared to 753 

Set 2, local and cross-scale terms (both across and within) were smaller in Set 4 754 

(Figure S7E).  755 

To summarize, visual search for interior-exterior stimuli is explained extremely 756 

well by the multiscale model across changes in local element position. Overlaying the 757 

local shape on top of the exterior contour (Set 3) strongly reduced the contribution of 758 

local terms, indicative of interference due to contour grouping. Local elements 759 

enclosed within and near to the exterior contour yielded local and cross-scale terms 760 

that were the strongest in magnitude, whereas local elements situated outside the 761 

exterior contour yielded weak local and cross-scale terms. 762 

  763 



 Page 25 of 29 
 

 764 
Figure S7: Effect of local element position  765 

(A) Example stimuli from Sets 1-4, in which local elements were made larger compared 766 

to the previous experiments and were shifted along a much larger range of 767 

positions.  768 

(B-D) Observed dissimilarity of all 300 pairs of stimuli in each set plotted against Set 769 

1.  770 

(E) Visualization of the underlying shape representation for the reference set (Set 1), 771 

as obtained using multidimensional scaling. All conventions are as before.  772 

(F) Correlation between predicted and observed dissimilarities for each set.  773 

(G) Average magnitude of model parameters for Sets 1-4. Asterisks represent 774 

statistical significance assessed using a signed-rank test: * is p < 0.05, ** is p < 775 

0.005. All comparisons are not significant (p > 0.05) unless marked with an 776 

asterisk.  777 
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SECTION S10: CHANGING ELEMENT GROUPING  778 

 779 

Here, we examine one further influence on the shape representation, namely 780 

grouping, by creating stimuli containing identical shapes but differing in their grouping 781 

status.  782 

 783 

METHODS 784 

Subjects. Eight right-handed human subjects (6 male, aged 20-26 years) participated 785 

in the study. All other details are as in Experiment 1.  786 

 787 

Stimuli. We created four sets of interior-exterior shapes each containing 25 stimuli. 788 

Each stimulus contained four identical interior shapes (Figure S8A). Sets 1 & 2 789 

consisted of stimuli in which the local elements were identical in colour (red in Set 1, 790 

green in Set 2). Sets 3 & 4 consisted of stimuli in which two local elements were green 791 

and the other two red (Set 3: green along the main diagonal, Set 4: red along the main 792 

diagonal). Thus Sets 1-2 have local elements that group by colour and shape whereas 793 

Sets 3-4 have local elements that group by shape alone. Half of the subjects performed 794 

searches involving Sets 1 & 3 and the other half performed searches involving Sets 2 795 

& 4. In the results, we report the combined results across Sets 1 & 2 as Grouping 1 796 

(G1) and Sets 3 & 4 as Grouping 2 (G2).  797 

 798 

Procedure. Subjects performed oddball search exactly as before, with the largest item 799 

measuring 4.4°. All other details are identical to Experiment 2. 800 

 801 

RESULTS 802 

In this experiment, subjects performed oddball searches for interior-exterior 803 

stimuli that either contained local elements of identical colours (G1) or of different 804 

colours (G2). Figure S8A illustrates these two types of stimuli. Importantly because 805 

the colour and arrangement of the local elements was identical for the target and 806 

distractors, these could not serve as cues to guide visual search. Thus differences in 807 

search performance across sets can only be due to differences in grouping status.  808 

Subjects were highly consistent in their performance across the two groups 809 

(split-half correlation between RT of odd- and even-numbered subjects: r = 0.79 & 0.81 810 

for G1 & G2 respectively, p < 0.00005 in all cases). Observed dissimilarity was also 811 

extremely similar across the two sets, suggesting that the underlying shape 812 

representation is qualitatively similar across grouping status (Figure S8C). To visualize 813 

the underlying shape representation, we performed a multidimensional scaling as 814 

before on the search dissimilarities of G1 pairs. The resulting plot (Figure S8B) shows 815 

that stimuli tended to group together by their exterior shape.  816 

For both levels of grouping, the multiscale model yielded excellent fits to the 817 

data (r = 0.93 & 0.93 for G1 & G2, p < 0.00005) indicating that systematic variations 818 

across grouping must be captured by systematic variations in model parameters. 819 

Indeed, when grouping is disrupted, global and across-object terms increased 820 

whereas local and within-object terms decreased (Figure S8D). Thus, in terms of 821 

decreasing local & within-object terms, disrupting grouping has the same effect as 822 

decreasing local element size (Figure S7H). However, disrupting grouping appears to 823 

increase across-object interactions, an effect opposite to that observed with decreased 824 

element size (Figure S7H) – this is difficult to reconcile with the other changes.  825 
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Taken together, these results show that searches for interior-exterior stimuli are 826 

explained extremely well by the multiscale model across changes in the grouping 827 

status of local elements, and that grouping tends to make local elements more salient.  828 

 829 

 830 
Figure S8: Effect of element grouping on feature integration  831 

(A) Example stimuli from Sets 1&3 representing the two grouping levels (G1 & G2).  832 

(B) Visualization of the underlying shape representation for the reference set (G1), as 833 

obtained using multidimensional scaling. All conventions are as before.  834 

(C) Observed dissimilarity plotted against predicted dissimilarity for set G1.  835 
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(D) Average magnitude of model terms for sets G1 & G2. Asterisks represent statistical 836 

significance assessed using a signed-rank test: * is p < 0.05, ** is p < 0.005. All 837 

comparisons are not significant (p > 0.05) unless marked with an asterisk.  838 

  839 
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