Pharmacophore-based virtual screening, synthesis, biological evaluation, and molecular docking study of novel pyrrolizines bearing urea/thiourea moieties with potential anticancer and CDK inhibitory activities

Ahmed M. Shawky¹, Nashwa A. Ibrahim², Mohammed A. S. Abourehab³, Ashraf N. Abdalla⁴ Ahmed M. Gouda^{2,5,*}

¹Science and Technology Unit (STU), Umm Al-Qura University, Makkah 21955, Saudi Arabia
²Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
³Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
⁴Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
⁵Department of Medicinal Chemistry, Faculty of pharmacy, Beni-Suef University, Beni-Suef

62514, Egypt

*Correspondence: Ahmed M. Gouda: Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
Scopus ID: 26321547200
ORCID: 0000-0003-4527-8885

Tel.: (002)-01126897483

Fax: (002)-082-2162133

E-mail address: <u>ahmed.gouda@pharm.bsu.edu.eg</u> or <u>amsaid@uqu.edu.sa</u>

Table of contents

No	Item	Figure No	Page No
1	Chemical structures of the compound library	S1-S42	3-44
2	IR spectra of the new compounds 16-20a-c.	S43-S57	45-60
3	¹ H-NMR, ¹³ C-NMR, and DEPT C ¹³⁵ (representative)	S58-S122	61-126
4	Mass spectra of the new compounds 16-20a-c.	S123-137	127-142
5	Validation of the docking study into CDK-2 (2VTP)	S138	143
6	Table S1. Docking results into CDK-2 (2VTP)	-	144
7	2/3D binding modes of the new compounds into CDK-2	S139-150	145-148
8	Validation of the docking study into CDK-6 (pdb: 2EUF)	S151	149
9	Validation of the docking study into CDK-9 (pdb: 3TNH)	S152	149
10	Table S2. DLS of the new compounds	-	150-151
11	Table S3. physicochemical space and boiled-egg models	-	152-156

Chemical structures of the compound library

Figure S1. Chemical structure of compound 1-31 (Etiso)

Figure S2. Chemical structure of compound 32-62 (Propyliso)

Figure S3. Chemical structure of compound 63-93 (Isopropyliso)

Figure S4. Chemical structure of compound 94-124 (allyliso)

Figure S5. Chemical structure of compound 125-155 (butyliso)

Figure S6. Chemical structure of compound 156-186 (pentyliso)

Figure S7. Chemical structure of compound 187-217 (hexyliso)

Figure S8. Chemical structure of compound 218-248 (heptyliso)

Figure S9. Chemical structure of compound 249-279 (tertbutyl)

Figure S10. Chemical structure of compound 280-310 (cyclopentyl)

Figure S11. Chemical structure of compound 311-341 (cyclohexyl)

Figure S12. Chemical structure of compound 342-372 (cycloheptyl)

Figure S13. Chemical structure of compound 373-403 (phenyliso)

Figure S14. Chemical structure of compound 404-434 (1naphthyliso)

Figure S15. Chemical structure of compound 435-465 (2naphthyliso)

Figure S16. Chemical structure of compound 466-496 (4methylphenyliso)

Figure S17. Chemical structure of compound 497-527 (3methylphenyliso)

Figure S18. Chemical structure of compound 528-558 (2methylphenyliso)

Figure S19. Chemical structure of compound 559-589 (2nitrophenyliso)

Figure S20. Chemical structure of compound 590-620 (2bromophenyliso)

Figure S21. Chemical structure of compound 621-651 (2fluorophenyliso)

Figure S22. Chemical structure of compound 652-682 (2chlorophenyliso)

Figure S23. Chemical structure of compound 683-713 (2iodophenyliso)

Figure S24. Chemical structure of compound 714-744 (2cyanophenyliso)

OCH₃

Figure S25. Chemical structure of compound 745-775 (2methoxyphenyliso)

NO₂

Figure S26. Chemical structure of compound 776-806 (3nitrophenyliso)

Figure S27. Chemical structure of compound 807-837 (3bromophenyliso)

Figure S28. Chemical structure of compound 838-868 (3fluorophenyliso)

Figure S29. Chemical structure of compound 869-899 (3chlorophenyliso)

Figure S30. Chemical structure of compound 900-930 (3methoxyphenyliso)

Figure S31. Chemical structure of compound 931-961 (3cyanophenyliso)

Figure S32. Chemical structure of compound 962-992 (3iodophenyliso)

Figure S33. Chemical structure of compound 993-1023 (4nitrophenyliso)

Figure S34. Chemical structure of compound 1024-1054 (4bromophenyliso)

Figure S35. Chemical structure of compound 1055-1085 (4fluorophenyliso)

Figure S36. Chemical structure of compound 1086-1116 (4chlorophenyliso)

Figure S37. Chemical structure of compound 1117-1147 (4methoxyphenyliso)

Page **39** of **159**

Figure S38. Chemical structure of compound 1148-1178 (4cyanohenyliso)

Figure S39. Chemical structure of compound 1179-1209 (4iodophenyliso)

Figure S40. Chemical structure of compound 1210-1240 (benzyliso)

Figure S41. Chemical structure of compound 1241-1271 (phenylethyl)

Figure S42. Chemical structure of compound 1272-1302 (phenylethyl)

Page **44** of **159**

IR Spectra

Infrared spectra (IR) were done using BRUKER TENSOR 37 spectrophotometer and absorption were expressed in wave number (cm⁻¹) using KBr Disk.

Figure S43. IR spectrum of compound 16a

Figure S44. IR spectrum of compound 16b

Figure S45. IR spectrum of compound 16c

Figure S46. IR spectrum of compound 17a

Figure S47. IR spectrum of compound 17b

Figure S48. IR spectrum of compound 17c

Figure S49. IR spectrum of compound 18a

Figure S50. IR spectrum of compound 18b

Figure S51. IR spectrum of compound 18c

Figure S52. IR spectrum of compound 19a

Figure S53. IR spectrum of compound 19b

Figure S54. IR spectrum of compound 19c

Figure S55. IR spectrum of compound 20a

Figure S56. IR spectrum of compound 20b

Page 1/1

Figure S57. IR spectrum of compound 20c

¹H-NMR, ¹³C-NMR and DEPT C¹³⁵ Spectra

¹H-NMR spectra were recorded on a BRUKER AVANCE III spectrometer (at the faculty of pharmacy, Umm Al-Qura University) at 500 MHz in the specified solvent, chemical shifts were reported on the δ (ppm) scale and were related to that of the solvent and J values are given in Hz. ¹³C NMR and DEPT C¹³⁵ spectra were obtained on a BRUKER AVANCE III at 125 MHz (at the faculty of pharmacy, Umm Al-Qura University).

Figure S58. ¹H-NMR (DMSO, 500 MHz, δ ppm) spectrum of compound **16a**

Figure S59. ¹H-NMR (DMSO, 500 MHz, δ ppm) spectrum of compound 16a (zoom on aliphatic Hs)

Figure S60. ¹H-NMR (DMSO, 500 MHz, *δ* ppm) spectrum of compound **16a** (zoom on aliphatic Hs)

Figure S62. ¹H-NMR (DMSO, 500 MHz, *δ* ppm) spectrum of compound **16a** (zoom on NHs & aromatic Hs)

Page 66 of 159

Figure S63. ¹³C-NMR (DMSO, 125 MHz, δ ppm) spectrum of compound 16a

Page 67 of 159

Figure S64. ¹³C-NMR (DMSO, 125 MHz, δ ppm) spectrum of compound 16a (zoom on aliphatic Cs)

Figure S65. ¹³C-NMR (DMSO, 125 MHz, δ ppm) spectrum of compound 16a (zoom on aromatic Cs)

Figure S66. DEPT C¹³⁵ (DMSO, 125 MHz, δ ppm) of compound **16a**.

Figure S67. ¹H-NMR (DMSO, 500 MHz, δ ppm) spectrum of compound 16b.

Page **71** of **159**

Figure S68. ¹H-NMR (DMSO, 500 MHz, δ ppm) spectrum of compound 16b (zoom on aliphatic Hs).

Figure S69. ¹H-NMR (DMSO, 500 MHz, δ ppm) spectrum of compound 16b (zoom on aliphatic Hs).

Page **73** of **159**

Figure S70. ¹H-NMR (DMSO, 500 MHz, δ ppm) spectrum of compound 16b (zoom on aromatic Hs).

Page **74** of **159**

Figure S71. ¹³C-NMR (DMSO, 125 MHz, δ ppm) spectrum of compound 16b.

Page **75** of **159**

Figure S72. ¹³C-NMR (DMSO, 125 MHz, δ ppm) spectrum of compound 16b (zoom on aliphatic Cs).

Figure S73. ¹³C-NMR (DMSO, 125 MHz, δ ppm) spectrum of compound 16b (zoom on aromatic Cs).

Figure S75. DEPT C¹³⁵ (DMSO, 125 MHz, δ ppm) of compound **16b** (zoom on aliphatic Cs).

Figure S76. DEPT C¹³⁵ (DMSO, 125 MHz, δ ppm) of compound **16b** (zoom on aliphatic Cs).

Figure S77. ¹H-NMR (DMSO, 500 MHz, δ ppm) spectrum of compound 16c.

Page **81** of **159**

Figure S78. ¹H-NMR (DMSO, 500 MHz, δ ppm) spectrum of compound 16c (zoom on aliphatic Hs).

Figure S79. ¹H-NMR (DMSO, 500 MHz, δ ppm) spectrum of compound 16c (zoom on aliphatic Hs).

Figure S80. ¹H-NMR (DMSO, 500 MHz, δ ppm) spectrum of compound 16c (zoom on aliphatic/aromatic Hs).

Figure S81. ¹³C-NMR (DMSO, 125 MHz, δ ppm) spectrum of compound 16c.

Page **85** of **159**

Figure S82. ¹³C-NMR (DMSO, 125 MHz, *δ* ppm) spectrum of compound 16c (zoom on aliphatic/aromatic Cs).

Figure S83. DEPT C¹³⁵ (DMSO, 125 MHz, δ ppm) of compound **16c**.

Figure S84. ¹H-NMR (DMSO, 500 MHz, δ ppm) spectrum of compound 17a.

Figure S85. ¹³C-NMR (DMSO, 125 MHz, δ ppm) spectrum of compound 17a.

Figure S86. DEPT C¹³⁵ (DMSO, 125 MHz, δ ppm) of compound 17a.

Figure S87. ¹H-NMR (DMSO, 500 MHz, δ ppm) spectrum of compound 17b

Figure S88. ¹H-NMR (DMSO, 500 MHz, δ ppm) spectrum of compound 17b (zoom on aliphatic Hs).

Page **92** of **159**

Figure S89. ¹H-NMR (DMSO, 500 MHz, δ ppm) spectrum of compound 17b (zoom on aliphatic/aromatic Hs).

Figure S90. ¹³C-NMR (DMSO, 125 MHz, δ ppm) spectrum of compound 17b.

Figure S91. DEPT C¹³⁵ (DMSO, 125 MHz, δ ppm) of compound **17b**.

Figure S92. ¹H-NMR (DMSO, 500 MHz, δ ppm) spectrum of compound 18a

Figure S93. ¹H-NMR (DMSO, 500 MHz, *δ* ppm) spectrum of compound **18a** (ZOOM on aliphatic Hs)

Page **99** of **159**

Figure S95. ¹H-NMR (DMSO, 500 MHz, δ ppm) spectrum of compound 16a (ZOOM on aromatic Hs)

Page 100 of 159

Figure S96. ¹³C-NMR (DMSO, 125 MHz, δ ppm) spectrum of compound 18a

Figure S97. ¹³C-NMR (DMSO, 125 MHz, δ ppm) spectrum of compound 18a (ZOOM on aliphatic Cs)

Figure S98. ¹³C-NMR (DMSO, 125 MHz, δ ppm) spectrum of compound 18a (ZOOM on aromatic Cs)

Page 104 of 159

Figure S99. DEPT C¹³⁵ (DMSO, 125 MHz, δ ppm) of compound **18a**.

Figure S100. DEPT C¹³⁵ spectrum of compound **18a** (zoom, aliphatic CH₂ groups)

Page 106 of 159

Figure S101. DEPT C¹³⁵ spectrum of compound **18a** (zoom, aromatic CH groups)

Figure S102. ¹H-NMR (DMSO, 500 MHz, δ ppm) spectrum of compound **18b**

Figure S103. ¹H-NMR (DMSO, 500 MHz, *δ* ppm) spectrum of compound 18b (zoom on aliphatic/aromatic Hs)

Page **109** of **159**

Figure S104. ¹³C-NMR (DMSO, 125 MHz, δ ppm) spectrum of compound **18b**

Page **110** of **159**

Figure S105. ¹³C-NMR (DMSO, 125 MHz, δ ppm) spectrum of compound 18b (zoom on aliphatic Cs)

Page **111** of **159**

Figure S106. ¹³C-NMR (DMSO, 125 MHz, δ ppm) spectrum of compound 18b (zoom on aromatic Cs)

Page **112** of **159**

Figure S107. ¹³C-NMR (DMSO, 125 MHz, δ ppm) spectrum of compound 18b (zoom on aromatic Cs)

Page **113** of **159**

Figure S109. DEPT C¹³⁵ spectrum of compound 18b (zoom on aromatic Cs)

Page **115** of **159**

Figure S110. ¹H-NMR (DMSO, 500 MHz, δ ppm) spectrum of compound 18c.

Figure S111. ¹H-NMR (DMSO, 500 MHz, δ ppm) spectrum of compound 18c (zoom on aromatic Hs)

Page **117** of **159**

Figure S112. ¹H-NMR (DMSO, 500 MHz, δ ppm) spectrum of compound 18c (zoom on aliphatic/aromatic Hs)

Figure S113. ¹³C-NMR (DMSO, 125 MHz, δ ppm) spectrum of compound 18c

Page **119** of **159**

Figure S114. ¹³C-NMR (DMSO, 125 MHz, δ ppm) spectrum of compound 18c (zoom on aromatic C-F Cs)

Page 120 of 159

Figure S115. ¹³C-NMR (DMSO, 125 MHz, δ ppm) spectrum of compound 18c (zoom on aromatic <u>C</u>-F Cs)

Page 121 of 159

Figure S116. DEPT C¹³⁵ (DMSO, 125 MHz, δ ppm) of compound **18c**

Page **122** of **159**

Figure S117. DEPT C¹³⁵ (DMSO, 125 MHz, *δ* ppm) of compound **18c** (zoom on aromatic <u>C</u>-F Cs)

Figure S118. ¹H-NMR (DMSO, 500 MHz, δ ppm) spectrum of compound 19c

Figure S119. ¹H-NMR (DMSO, 500 MHz, δ ppm) spectrum of compound 19c (zoom on aliphatic Hs)

Figure S120. ¹H-NMR (DMSO, 500 MHz, δ ppm) spectrum of compound 19c (zoom on aromatic Hs)

Page **126** of **159**

Figure S121. ¹³C-NMR (DMSO, 125 MHz, δ ppm) spectrum of compound 19c

Mass Spectra

Mass spectra were recorded on Shimadzu GCMS QP5050A spectrometer, at 70 eV (EI) at the regional center for mycology and biotechnology, Al-Azhar University.

Figure S123. Mass spectrum of compound 16a

Page **130** of **159**

Figure S124. Mass spectrum of compound 16b

Page **131** of **159**

Figure S125. Mass spectrum of compound **16c**

Page 132 of 159

Figure S126. Mass spectrum of compound 17a

Page **133** of **159**

Page 134 of 159

Figure S128. Mass spectrum of compound 17c

Page 135 of 159

Figure S129. Mass spectrum of compound 18a

Page **136** of **159**

Figure S130. Mass spectrum of compound 18b

Page 137 of 159

Figure S131. Mass spectrum of compound 18c

Page **138** of **159**

Figure S132. Mass spectrum of compound 19a

Page **139** of **159**

Figure S133. Mass spectrum of compound 19b

Page 140 of 159

Page 141 of 159

Figure S135. Mass spectrum of compound 20a

Page 142 of 159

Figure S136. Mass spectrum of compound 20b

Figure S137. Mass spectrum of compound 20b

Page 144 of 159

Figure S138. Binding modes/interactions of re-docked/bound LZ9 (compound **3**) into CDK-2 (pdb 2VTP): A) 3D binding mode of re-docked LZ9 (shown as sticks colored by element) into CDK-2 overlaid with the native ligand, LZ9 shown as yellow sticks; B) 3D binding mode of re-docked LZ9 (shown as sticks colored by element) overlaid with the native ligand (shown as yellow sticks) into CDK-2, the native ligand LZ9 shown as yellow sticks, receptor shown as hydrogen-bond surface, hydrogen atoms were omitted for clarity.

Ligand	ΔG_b^{a}	K_i^{b}	HBs ^c	Atoms in H-bonding		Length ^d
				In ligand	In protein	(Å)
16a	-8.92	288.31 nM	4	CN	Thr14	2.17
				Urea NH	Lys33	1.95
				Urea NH	Asp145	1.78
				Urea NH	Asp145	1.97
16b	-8.73	398.11 nM	3	Urea NH	Asp86	2.04
				Urea NH	Gln131	2.13
				CONH	Asp145	2.10
16c	-8.60	500.18 nM	4	CN	Lys129	2.84
				CN	Gln131	2.36
				Urea NH	Asn132	2.36
				Urea NH	Asp145	1.84
17a	-9.84	60.97 nM	3	CN	Thr14	2.10
				Urea CO	Lys33	1.75
				Urea NH	Asp145	2.05
17b	-9.65	85.09 nM	2	Urea CO	Leu83	1.92
				CONH	Gln131	2.24
17c	-9.48	111.80 nM	2	CN	Leu83	2.09
				Urea NH	Asp86	2.06
18a	-8.89	301.92 nM	2	CN	Leu83	1.91
				Urea NH	Leu83	2.06
18c	-9.54	101.92 nM	3	Urea NH	Leu83	2.27
				CN	Leu83	2.19
				CONH	Gln131	2.15
19b	-10.41	23.47 nM	3	CN	Leu83	2.17
				Urea NH	Asp86	2.08
				CONH	Gln131	2.81
19c	-10.67	15.06 nM	2	Urea CO	Lys33	2.34
				Urea NH	Asp145	2.04
20b	-10.10	39.21 nM	4	CN	Leu83	2.05
				Thiourea S	Leu83	2.86
				Thiourea NH	Asp86	3.06
				CONH	Gln131	2.39
20c	-9.76	70.64 nM	2	Urea NH	Asp86	2.09
				CONH	Gln131	1.96

Table S1. Docking results of the new compounds into CDK-2 (pdb: 2VTP).

^a Binding free energy (kcal/mol); ^b Inhibition constant (n/μM) ^cHBs, number of hydrogen bonds ^d length in angstrom (Å)

Figure S139. Binding modes/interactions of compound **16a** into CDK-2 (pdb: 2VTP): A) 3D binding mode of compound **16a** into the active site of CDK-2, receptor shown as hydrogen-bond surface, hydrogen atoms were omitted for clarity; B) 3D binding mode of compound **16a** into CDK-2 showing different types of hydrogen bonding and hydrophobic interactions.

Figure S140. Binding modes/interactions of compound **16b** into CDK-2 (pdb: 2VTP): A) 3D binding mode of compound **16b** into the active site of CDK-2, receptor shown as hydrogen-bond surface, hydrogen atoms were omitted for clarity; B) 3D binding mode of compound **16b** into CDK-2 showing different types of hydrogen bonding and hydrophobic interactions.

Figure S141. Binding modes/interactions of compound **16c** into CDK-2 (pdb: 2VTP): A) 3D binding mode of compound **16c** into the active site of CDK-2, receptor shown as hydrogen-bond surface, hydrogen atoms were omitted for clarity; B) 3D binding mode of compound **16c** into CDK-2 showing different types of hydrogen bonding and hydrophobic interactions.

Figure S142. Binding modes/interactions of compound **17a** into CDK-2 (pdb: 2VTP): A) 3D binding mode of compound **17a** into the active site of CDK-2, receptor shown as hydrogen-bond surface, hydrogen atoms were omitted for clarity; B) 3D binding mode of compound **17a** into CDK-2 showing different types of hydrogen bonding and hydrophobic interactions.

Figure S143. Binding modes/interactions of compound **17b** into CDK-2 (pdb: 2VTP): A) 3D binding mode of compound **17b** into the active site of CDK-2, receptor shown as hydrogen-bond surface, hydrogen atoms were omitted for clarity; B) 3D binding mode of compound **17b** into CDK-2 showing different types of hydrogen bonding and hydrophobic interactions.

Figure S144. Binding modes/interactions of compound **17c** into CDK-2 (pdb: 2VTP): A) 3D binding mode of compound **17c** into the active site of CDK-2, receptor shown as hydrogen-bond surface, hydrogen atoms were omitted for clarity; B) 3D binding mode of compound **17c** into CDK-2 showing different types of hydrogen bonding and hydrophobic interactions.

Figure S145. Binding modes/interactions of compound **18a** into CDK-2 (pdb: 2VTP): A) 3D binding mode of compound **18a** into the active site of CDK-2, receptor shown as hydrogen-bond surface, hydrogen atoms were omitted for clarity; B) 3D binding mode of compound **18a** into CDK-2 showing different types of hydrogen bonding and hydrophobic interactions.

Figure S146. Binding modes/interactions of compound **18c** into CDK-2 (pdb: 2VTP): A) 3D binding mode of compound **18c** into the active site of CDK-2, receptor shown as hydrogen-bond surface, hydrogen atoms were omitted for clarity; B) 3D binding mode of compound **18c** into CDK-2 showing different types of hydrogen bonding and hydrophobic interactions.

Figure S147. Binding modes/interactions of compound **19b** into CDK-2 (pdb: 2VTP): A) 3D binding mode of compound **19b** into the active site of CDK-2, receptor shown as hydrogen-bond surface, hydrogen atoms were omitted for clarity; B) 3D binding mode of compound **19b** into CDK-2 showing different types of hydrogen bonding and hydrophobic interactions.

Figure S148. Binding modes/interactions of compound **19c** into CDK-2 (pdb: 2VTP): A) 3D binding mode of compound **19c** into the active site of CDK-2, receptor shown as hydrogen-bond surface, hydrogen atoms were omitted for clarity; B) 3D binding mode of compound **19c** into CDK-2 showing different types of hydrogen bonding and hydrophobic interactions.

Figure S149. Binding modes/interactions of compound **20b** into CDK-2 (pdb: 2VTP): A) 3D binding mode of compound **20b** into the active site of CDK-2, receptor shown as hydrogen-bond surface, hydrogen atoms were omitted for clarity; B) 3D binding mode of compound **20b** into CDK-2 showing different types of hydrogen bonding and hydrophobic interactions.

Figure S150. Binding modes/interactions of compound **20c** into CDK-2 (pdb: 2VTP): A) 3D binding mode of compound **20c** into the active site of CDK-2, receptor shown as hydrogen-bond surface, hydrogen atoms were omitted for clarity; B) 3D binding mode of compound **20c** into CDK-2 showing different types of hydrogen bonding and hydrophobic interactions.

Figure S151. Binding modes/interactions of re-docked/bound palbociclib into CDK-6 (pdb 2EUF): A) 3D binding mode of re-docked palbociclib (shown as sticks colored by element) into CDK-6 overlaid with the native ligand (shown as yellow sticks); B) 3D binding mode of re-docked palbociclib (shown as sticks colored by element) overlaid with the native ligand (shown as yellow sticks) into CDK-6, the native ligand palbociclib shown as yellow sticks, receptor shown as hydrogen-bond surface, hydrogen atoms were omitted for clarity.

Figure S152. Binding modes/interactions of re-docked/bound palbociclib into CDK-9 (pdb 3TNH): A) 3D binding mode of re-docked CAN508 (shown as sticks colored by element) into CDK-9 overlaid with the native ligand (shown as yellow sticks); B) 3D binding mode of re-docked CAN508 (shown as sticks colored by element) overlaid with the native ligand (shown as yellow sticks) into CDK-9, the native ligand CAN508 shown as yellow sticks, receptor shown as hydrogen-bond surface, hydrogen atoms were omitted for clarity

Table S2. DLS figures and scores of compounds 9 and 16-20a-c.

Table S3. The suitable physicochemical space for oral bioavailability and Boiled-Egg models of compounds 9 and 16-20a-c.

Page **156** of **159**

Page **157** of **159**

The suitable physicochemical space figures and BOILED-Egg's models were calculated using SwissADME (http://www.swissadme.ch/)

The colored zone is the suitable physicochemical space for oral bioavailability

- LIPO (lipophilicity) -0.7 to +5.0
- SIZE (MW), 150g/mol to 500g/mol
- POLAR (polarity): $20 \text{ Å}^2 < \text{TPSA} < 130 \text{ Å}^2$.
- INSOLU (insolubility): 0< Log S (ESOL) < 6
- INSATU (insaturaion): 0.25 < Fraction Csp3 < 1
- Flex (flexibility): 0 < Num. rotatable bonds < 9

BOILED-Egg's models

- Points located in BOILED-Egg's yolk are molecules predicted to passively permeate through the blood-brain barrier (BBB).
- Points located in BOILED-Egg's white are molecules predicted to passively absorbed by the GIT.
- Blue dots are for molecules predicted to be effluated from the CNS by P-glycoprotein.
- Red dots are for molecules predicted not to be effluated from the CNS by P-glycoprotein.