S1 Appendix

	NSIR (network), $p = 0$				SIR (uniform), $p = 1$			
	change relative to no testing				change relative to no testing			
testing rate, $\theta =$	0.1%	2%	5%	10%	0.1%	2%	5%	10%
total infected $\%$	-0.3%	-5.1%	-14%	-30%	-0.2%	-3.6%	-9.9%	-23%
infection peak $\%$	-0.4%	-13%	-31%	-56%	-0.4%	-10%	-25%	-48%
total deaths $\%$	-3.9%	-8.3%	-16%	-30%	-0.6%	-7.1%	-9.2%	-20%
duration, days	-0.6%	+7.6%	+22%	+41%	-0.6%	+4.1%	+13%	+31%

Table 1. Testing, network vs. uniform transmission

Table 2. Contact tracing, network vs. uniform transmission.

	NSIR (network), $p = 0$				SIR (uniform), $p = 1$			
	change relative to no contact tracing				change relative to no contact tracing			
tracing rate, $\phi =$	0.01	0.1	0.2	0.5	0.01	0.1	0.2	0.5
total infected, %	-1.1%	-8.5%	-15%	-27%	-0.4%	-3.8%	-7.1%	-13%
infection peak, $\%$	-2.9%	-16%	-30%	-51%	-0.7%	-6.5%	-12%	-24%
total deaths, $\%$	-1.6%	-8.1%	-11%	-28%	-1.9%	-5.7%	-8.4%	-15%
duration, days	-2.0%	+7.5%	+21%	+45%	+0.2%	+4.3%	+10%	+23%

Note: all results in this table use testing rate $\theta = 5\%$.

Fig A. Role of superspreaders (single initial case, no intervention). Notes: The dashed line corresponds to infection starting from node 21 ('average' spreader with 10 social contacts); the solid red line corresponds to infection starting from node 34 ('superspreader' with 200 contacts). The lines coincide in the SIR model (p = 1).

Fig B. Baseline graph G vs. Albert-Barabasi and Watts-Strogatz graphs.

Fig C. Baseline graph G and close-contacts graph Q.

Fig D. Lockdown exit, mass testing and contact tracing – global transmission only, p = 1.

Fig E. Network path dependency - 10 different distancing policy J simulation runs.

