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Additional Models: 
SIR Model with Changing Population Size 
We assume a population similar to the SIR model in the main text, with the exception that the 
per capita birth and death rate are allowed to differ.  We have 

 

𝑆̇ = 𝑏𝑁 − 𝜇𝑆 − 𝛽
𝑆(𝐼 + 𝐼,)

𝑁  

𝐼̇ = b
𝑆(𝐼 + 𝐼,)

𝑁 − (g+ µ)𝐼 
𝑁̇ = (𝑏 − µ)𝑁. 

(S1) 

   
Here b is the per capita birth rate and µ is the per capita death rate.  For illustration, we take 
two values of b, 𝑏 = 1.25µ	and	𝑏 = .75µ, corresponding to 25% population growth or 
reduction per year.  While this is an extreme case, we expect that any effect on the magnitude 
of the divorce effect would most likely be seen in the extremes.  Since the endemic equilibrium 
is not well defined for a changing population, we simulate the population for a thousand years 
before starting control.  Initial values of N were chosen so that at the end of the thousand 
years, the population size was 1 × 10:.  We see that the growth (Figure S16a), or decline 
(Figure S16b), of the population does not eliminate the divorce effect, but does affect the 
magnitude and timing of the post-control outbreak, with a larger and earlier post-control 
outbreak in the growing population due to a larger number of susceptible individuals being 
born. 
 
SIR Model with Vaccination 
To model vaccination against infection, we assume that some portion, 𝑣, of births enter the 
recovered class instead of the susceptible class, while all other dynamics proceed similarly to 
the SIR model (Equations S2).  For illustration, we take 𝑣 = .5 and assume the vaccination 
campaign lasts one year before being discontinued.  We see that during the control period the 
proportion of the population that is infective falls significantly more slowly than with 
transmission reduction (Figure S17).  Following the end of control, we see a series of post-
control outbreaks that bring the infective proportion of the population above endemic levels, 
but they are not large enough to bring RCI above 1.  This lack of divorce effect is due directly to 
the maintenance of population level immunity due to the vaccination, which keeps the 
susceptible population from being able to build sufficiently.  It is important to note that, as 
shown in Okamoto et al. [1], it is possible to see the divorce effect in combined controls that 
involve both immunizing and non-immunizing controls. 

 
𝑆̇ = 𝑏(1 − 𝑣)(𝑁 − 𝑆) − 𝛽

𝑆(𝐼 + 𝐼,)
𝑁  

𝐼̇ = b
𝑆(𝐼 + 𝐼,)

𝑁 − (g+ µ)𝐼 
(S2) 
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SIRS Model 
We assume a well-mixed population with parameters defined as in the main text.  However, 
instead of permanent immunity, we assume that immunity is lost at per-capita rate 𝑙, such that 
the average length of immunity following an infection is 1/l (Equation S3).  For the sake of 
illustration, 𝑙 = 1/10	yearAB, corresponding to an average of 10 years of immunity following 
recovery. 

 

𝑆̇ = µ(𝑁 − 𝑆) − b
𝑆(𝐼 + 𝐼,)

𝑁 	+ 𝑙𝑅  

𝐼̇ = b
𝑆(𝐼 + 𝐼,)

𝑁 − (g+ µ)𝐼 
𝑅̇ = 𝛾𝐼 − (𝜇 + 𝑙)𝑅 

(S3) 

   
Similar to the SIR model, we see suppression of the infection for a period of time during and 
immediately following the control (Figure S18).  A large post-control outbreak is seen about 3 
months after the end of treatment.  This outbreak is sufficiently large to bring the RCI above 1, 
to about 1.45, before the outbreak subsides and prevalence and RCI fall again.  As the immune 
period following infection shrinks towards zero, the SIRS model approaches the behavior of an 
SIS model. This results in the magnitude of the divorce effect being reduced as the immune 
period, and the population of immune individuals, becomes smaller. 
  
 
Within-Host Virus Dynamics (HIV) Model 
We examine the divorce effect in the model for the within-host dynamics of HIV presented in 
Rong and Perelson [2], with all equations and parameters taken directly from their text 
(Equations S4 and Table S1).  Here, T stands for the concentration of target cells, L for latently 
infected cells, T* for actively infected cells, VI for infectious virions, and VNI for non-infectious 
(defective) virions.  Parameter names and values are given in Table 1. Here, cumulative 
incidence is in terms of actively infectious T cells.  We see that the divorce effect does occur 
following a 25 day treatment that has both a protease inhibitor and reverse transcriptase 
inhibitor with efficacies of 50% (Figure S19). 

 

𝑇̇ = λ − 𝑑H𝑇 − (1 − ϵJH)𝑘𝑉M𝑇 
𝐿̇ = αP(1 − ϵJH)𝑘𝑉M𝑇 − 𝑑P𝐿 − 𝑎𝐿 
𝑇∗̇ = (1 − αP)(1 − ϵJH) − δ𝑇∗ + α𝐿 

𝑉Ṁ = (1 − ϵTM)𝑁δ𝑇∗ − 𝑐𝑉M 
𝑉VṀ = ϵTM𝑁δ𝑇∗ − 𝑐𝑉VM 

(S4) 

 
Age-structured Model with Realistic Mixing 
Here we show the presence of the divorce effect in an age-structured model with realistic 
mixing between groups.  This model, and code, is from a tutorial given by Aaron King and Helen 
Wearing [3].  We assume that there 30 age-groups, with ages 0-19 occurring as single year age 
groups, 20-75 as 5 year age groups.  Transitions between compartments occur according to 
Equation S5, note that we use ∘ to denote elementwise multiplication. In which A is a matrix 
describing transitions between age classes, e.g. aging and deaths, b is a matrix describing births 
with a constant birth rate as its first element and zeros everywhere else. New-born susceptibles 
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enter the youngest age class at a rate of b = 100/year, movement between the age classes 
takes on average 1 year for ages 0-20, 5 years for ages 21-75, and death occurs at a constant 
rate in the last age class, occurring on average after 15 years.  𝑆,	𝐼,	and	𝑅 are vectors containing 
the numbers of individuals of each age class that are susceptible, infective, or immune, 
respectively. β is a matrix containing the transmission parameters for infection occurring within 
and between age classes, and is constructed by taking a matrix of age-specific contact rates and 
multiplying it by a constant rate of infection per contact.  This contact network is based on [4] 
and freely available online, and the constant rate of infection per contact chosen so that 𝑅0 =
5.  γ is a vector containing the rate of recovery of individuals in each age class, but is assumed 
to be constant across all age classes and is the same as the main text (γ = 73	/year).  Control 
works, as in the SIR model, by reducing the transmission parameter by 50% and lasts one year.   
 

 
𝑆̇ = −β𝐼 ∘ 𝑆 + 𝐴𝑆 + b 
𝐼̇ = β𝐼 ∘ 𝑆 + 𝐴𝐼 − γ𝐼 

𝑅̇ = 𝐴𝑅 + γ𝐼 
(S5) 

 
We see that, similar to the non-structured SIR model, there is a period of time, lasting about 4 
years, in which RCI is falling, before a large outbreak brings RCI above 1 (Figure S20).  
Importantly, while the magnitude of the effect varies across groups, due to mixing, its presence 
does not. 
 
Analytical Approximation: 
Here we describe a crude analytical approximation for the magnitude of the divorce effect in 
the simplest setting of a non-seasonal directly transmitted infection (i.e. the SIR model), and 
based on the well-known analysis of the size of an outbreak in a closed population [5,6]. We 
assume that the post-control outbreak occurs immediately following the end of the control 
period and that the outbreak happens instantaneously.  Further, we assume that control is 
perfect, so that there are no new cases of infection during the control period, and that all 
individuals that are infective before the control begins recover by the end of the control period. 
When control begins, the population can be subdivided into individuals that are susceptible and 
those that have previously been exposed and will be immune when the control is ended. 
Assuming R0>1,  the numbers in these two groups are determined by the endemic equilibrium, 
where 𝑆∗ = 𝑁 𝑅^⁄  and 𝑅∗ = 𝑁(1 − 1 𝑅^⁄ ).  The number in the latter group decays 
exponentially due to mortality and the number of susceptibles grows at the same rate because 
of births (noting that the population size is taken to be constant).  This gives the number of 
susceptible individuals at the time control ends, tend, as 

 𝑆 = 𝑁 `
1
𝑅^
+ a1 −

1
𝑅^
b (1 − 𝑒Adefgh)i (S6) 

   
Once the control is ended, the infection is assumed to be reintroduced immediately by a small 
number of infectious individuals and occurs instantaneously, meaning that demography does 
not affect the final outbreak size.  This means that the post-control outbreak size, Z, can be 
found by solving the familiar transcendental equation: 
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 𝑍 = 𝑆 a1 − 𝑒AJkl
m
Vnb.	 (S7) 

   
The post-control outbreak size is then compared to the cumulative number of infections that 
would be expected in the endemic case to find the predicted RCI (Equation S8). 

 RCI =
𝑍

𝜇𝑁 l1 − 1
𝑅^
n 𝑡
	 (S8) 

   
Results of Analytical Approximation 
When compared to the simulations, our analytical approximation overestimates the magnitude 
of the divorce effect (Figure S21(a)).  This is in direct contrast to simulations where the 
outbreak requires a long accumulation of infectives, often happens years later, and takes some 
time to occur.  This approximation performs best in the most biologically relevant portion of 
parameter space (R0<10 and control lasting less than 20 years), where the error is generally 
below 20% (Figure S21(b)), however it performs very poorly for extremely short durations of 
control. 
 
Sensitivity to Background Force of Infection 
Deterministic compartmental epidemiological models suffer from the well-known weakness 
that the numbers of infectives can fall to arbitrarily low levels. To combat this, a background 
force of infection is often included in such models, representing infections due to contact with 
populations outside the focal population [7]. In our model, this process is accounted for by 
adding Ib to the number of infectives in the transmission term. The background force of 
infection, which is taken to be small compared to the within-patch force of infection at the 
endemic state, ensures that there is a low level of transmission in the population, even as the 
number of infectives falls during the control period, and acts to reseed infection following 
control. In doing this, the background force of infection controls how quickly an outbreak will 
occur following the end of control, and hence can play an important role in determining the 
magnitude of the divorce effect.  In general, a lower background force of infection means a 
later post-control outbreak, and often a larger divorce effect, while a higher background force 
of infection means an earlier post-control outbreak, less time for the build-up of the susceptible 
population, and a smaller divorce effect. These effects are most noticeable for a short-lived 
control. At a sufficient level, the background force of infection is large enough to drive the 
overall dynamics of the system, eliminating the divorce effect.  When this occurs, the dynamics 
become driven by exogenous factors, similar to a sylvatic infection, reducing the importance of 
local infections.  In addition to affecting the magnitude of the divorce effect, increasing Ib 
increases the rate at which the system approaches its endemic equilibrium following the end of 
control.  This results in subsequent outbreaks being increasingly diminished.  For our 
manuscript, we choose to use a realistic value of 𝐼, = 1 for our models, compared to an 
endemic level of 183 infective individuals for these parameter values in the nonseasonal model.  
Figure S22 shows that for values of 𝐼, that are sufficiently large to eliminate the divorce effect 
would require 𝐼, to be roughly the same size as the endemic infection level. 
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It is well known that seasonally forced models are even more prone to having their numbers of 
infectives falling to low levels between outbreaks, with a background force of infection being 
commonly employed to counter this effect. Stronger seasonality magnifies this effect. Hence 
the background force of infection impacts the magnitude of the divorce effect, and given that 
the timing of control plays an important role in seasonal settings, there is an interaction 
between seasonality, the timing of the control, and the background force of infection in such 
cases.  In general, as seasonality increases so does the difference between the maximum and 
minimum prevalence levels in the population.  This results in an interaction between the 
background force of infection, the magnitude of seasonality, and the timing of the control 
determining the final magnitude of the divorce effect (Figures S8 and S23).  This is important for 
predicting the magnitude of the divorce effect in real world situations, as there is a large 
amount of uncertainty associated with estimates of all three of these parameters.  Importantly, 
below a specific background force of infection, the divorce effect is seen for all values of these 
parameters. 
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