OMTN, Volume 22

## **Supplemental Information**

### m5UPred: A Web Server for the Prediction

### of RNA 5-Methyluridine Sites from Sequences

Jie Jiang, Bowen Song, Yujiao Tang, Kunqi Chen, Zhen Wei, and Jia Meng

| Separation Method | Mode | Condition  | Site # | Overlap # | Total # |
|-------------------|------|------------|--------|-----------|---------|
| Technique         | Full | miCLIP-Seq | 2,225  | 521       | 3,696   |
|                   |      | FICC-Seq   | 1,471  |           |         |
| Cell type         | Full | HEK293     | 2,467  | 732       | 3,696   |
|                   |      | HAP1       | 1,229  |           |         |

Table S1. Overlapped Positive m5U Sites Between Different Techniques and Cell Types

Table S2. Positive m5U Sites in Different RNAs Families

| Gene               | CDS | Intergenic | Intronic | ncRNA_i | Ipstream | 3'UTR | 5'UTR |
|--------------------|-----|------------|----------|---------|----------|-------|-------|
| region             |     |            |          | ntronic |          |       |       |
| Number<br>of sites | 175 | 1,880      | 654      | 232     | 277      | 50    | 29    |

 Table S3. Performance Evaluation of m5UPred by Cross-technique and Cross-cell Type Validation Using

 Different Machine Learning Classifiers

|            | Mode       | Classifier | Sn (%) | Sp (%) | ACC (%) | MCC   | AUC   |
|------------|------------|------------|--------|--------|---------|-------|-------|
|            | Full       | SVM        | 75.87% | 85.47% | 80.67%  | 0.616 | 0.896 |
|            | transcript | RF         | 69.61% | 85.08% | 77.35%  | 0.554 | 0.870 |
| Cross-     |            | NB         | 80.99% | 57.76% | 69.37%  | 0.400 | 0.785 |
| technique  |            | GLM        | 77.51% | 81.07% | 79.29%  | 0.586 | 0.876 |
| validation | Mature     | SVM        | 88.48% | 89.05% | 88.77%  | 0.775 | 0.962 |
|            | mRNA       | RF         | 81.42% | 92.69% | 87.05%  | 0.746 | 0.955 |
|            |            | NB         | 91.83% | 52.81% | 72.32%  | 0.485 | 0.855 |
|            |            | GLM        | 89.63% | 84.43% | 87.03%  | 0.742 | 0.949 |
|            | Full       | SVM        | 80.13% | 85.98% | 83.06%  | 0.662 | 0.918 |
|            | transcript | RF         | 73.05% | 85.63% | 79.34%  | 0.592 | 0.890 |
| Cross-cell |            | NB         | 81.64% | 59.12% | 70.38%  | 0.420 | 0.805 |
| type       |            | GLM        | 80.31% | 81.64% | 80.98%  | 0.620 | 0.894 |
| validation | Mature     | SVM        | 93.87% | 86.15% | 90.01%  | 0.803 | 0.970 |
|            | mRNA       | RF         | 89.15% | 92.36% | 90.76%  | 0.816 | 0.969 |
|            |            | NB         | 91.54% | 53.08% | 72.31%  | 0.483 | 0.860 |
|            |            | GLM        | 93.63% | 81.04% | 87.34%  | 0.753 | 0.953 |

Note: We randomly selected 80% of experimentally validated m5U sites as training dataset and the performance of predictors were evaluated by the rest of 20% of m5U sites as independent testing data.

# Table S4. Whole Dataset Performance evaluation

|       | evaluation |        |        |        |        |        |        |        |        |        |         |  |
|-------|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--|
| Full  | 1          | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | Average |  |
| AUROC | 0.960      | 0.960  | 0.955  | 0.953  | 0.950  | 0.957  | 0.950  | 0.954  | 0.961  | 0.956  | 0.956   |  |
| 11100 |            | 0.701  |        |        |        |        |        |        |        |        | 0.767   |  |
| SEN   | 89.72%     | 87.82% |        |        |        |        |        |        |        |        |         |  |
| ~12   | 88.63%     |        |        |        |        |        |        |        |        |        | 88.80%  |  |
| ACC   | 89.17%     | 89.04% | 88.50% | 87.75% | 87.35% | 88.43% | 87.42% | 88.63% | 89.04% | 88.16% | 88.35%  |  |

#### Table S5. Whole Dataset Performance

| 1    | •      |
|------|--------|
| eva  | uation |
| Cval | uation |
|      |        |

| Mature | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | Average |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| AUROC  | 0.957  | 0.959  | 0.937  | 0.956  | 0.960  | 0.954  | 0.943  | 0.960  | 0.955  | 0.961  | 0.954   |
| MCC    | 0.786  | 0.794  | 0.765  | 0.793  | 0.773  | 0.805  | 0.789  | 0.814  | 0.819  | 0.811  | 0.795   |
| ~      | 86.18% |        | 85.37% |        |        |        |        |        |        |        |         |
| SPE    | 92.28% |        |        |        |        |        |        |        |        |        | 91.95%  |
| ACC    | 89.23% | 89.63% | 88.21% | 89.63% | 88.62% | 90.24% | 89.43% | 90.65% | 90.85% | 90.45% | 89.70%  |

Table S6. miCLIP F train&FICC F test

|       | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | Average |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| AUROC | 0.908  | 0.915  | 0.907  | 0.912  | 0.912  | 0.908  | 0.910  | 0.916  | 0.904  | 0.911  | 0.910   |
|       | 0.632  | 0.650  | 0.001  | 0.663  | 0.0.7  | 0.002  |        | 0.000  | 0.637  | 0.002  | 0.652   |
| SEN   | 74.03% |        |        |        |        |        |        |        |        |        | 75.36%  |
| ~12   | 88.51% | 88.51% | 88.72% | 90.21% | 90.35% | 89.80% | 88.44% | 90.35% | 88.04% | 89.33% | 89.23%  |
| ACC   | 81.27% | 82.26% | 82.26% | 82.77% | 81.99% | 82.60% | 81.54% | 83.85% | 81.58% | 82.80% | 82.29%  |

<sup>a</sup> miCLIP F dataset as train dataset and FICC F dataset as an independent dataset

Table S7. miCLIP M train&FICC M test

|       |         |        |        |        |        | _      |        | _      |        |        |         |
|-------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
|       | 1       | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | Average |
| AUROC | 0.972   | 0.971  | 0.967  | 0.978  | 0.966  | 0.969  | 0.970  | 0.984  | 0.961  | 0.966  | 0.970   |
| MCC   | 0.824   | 0.822  | 0.0    | 0.854  | 0.000  |        | 0.121  | 0.0    | 0.7.0  | 0.720  | 0.809   |
| ~     | 0,0,0,0 |        |        |        |        |        |        |        |        |        | 90.07%  |
| SPE   | 92.42%  |        |        |        |        |        |        |        |        |        | 90.86%  |
| ACC   | 91.20%  | 91.08% | 91.08% | 92.67% | 89.98% | 89.61% | 89.85% | 92.18% | 87.16% | 89.85% | 90.46%  |

<sup>a</sup> miCLIP\_M dataset as train dataset and FICC\_M dataset as an independent dataset

|       | Table S8. FICC_F_train&miCLIP_F_test |        |        |        |        |        |        |        |        |        |         |  |  |
|-------|--------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--|--|
|       | 1                                    | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | Average |  |  |
| AUROC | 0.852                                | 0.853  | 0.851  | 0.852  | 0.859  | 0.844  | 0.860  | 0.858  | 0.849  | 0.851  | 0.853   |  |  |
| MCC   | 0.487                                | 0.504  | 0.494  | 0.493  | 0.494  | 0.476  | 0.509  | 0.500  | 0.488  | 0.502  | 0.495   |  |  |
| SEN   | 56.58%                               | 57.75% | 56.40% | 55.87% | 56.76% | 55.24% | 56.45% | 58.11% | 54.97% | 56.63% | 56.48%  |  |  |
| SPE   | 89.44%                               | 89.93% | 90.07% | 90.38% | 89.89% | 89.48% | 91.24% | 89.39% | 90.61% | 90.61% | 90.10%  |  |  |
| ACC   | 73.01%                               | 73.84% | 73.24% | 73.12% | 73.33% | 72.36% | 73.84% | 73.75% | 72.79% | 73.62% | 73.29%  |  |  |

<sup>a</sup> FICC F dataset as train dataset and miCLIP F dataset as an independent dataset

|       | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | Average |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| AUROC | 0.881  | 0.884  | 0.866  | 0.877  | 0.868  | 0.883  | 0.881  | 0.857  | 0.868  | 0.863  | 0.873   |
| 11100 | ····   | 00     | ···    | 0      |        | 0.457  |        | 0      | 000    | 0      | 0.449   |
| ~     |        | 38.40% |        |        |        |        |        |        |        |        |         |
| ~1 =  |        | 98.42% |        |        |        |        |        |        |        |        |         |
| ACC   | 68.23% | 68.41% | 67.13% | 69.93% | 67.07% | 68.83% | 67.50% | 67.56% | 69.08% | 67.86% | 68.16%  |

Table S9. FICC\_M\_train&miCLIP\_M\_test

<sup>a</sup> FICC\_M dataset as train dataset and miCLIP\_M dataset as an independent dataset

|       | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | Average |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| AUROC | 0.940  | 0.940  | 0.933  | 0.940  | 0.940  | 0.947  | 0.946  | 0.942  | 0.943  | 0.943  | 0.941   |
| MCC   | 0.715  | 0.729  | 0.721  | 0.720  | 0.729  | 0.737  | 0.734  | 0.717  | 0.720  | 0.737  | 0.726   |
| SEN   | 83.48% |        | 82.83% |        |        |        |        |        |        |        |         |
| ~1 2  | 87.96% |        | 89.10% |        |        |        |        |        |        |        |         |
| ACC   | 85.72% | 86.33% | 85.96% | 85.96% | 86.41% | 86.74% | 86.57% | 85.72% | 85.80% | 86.82% | 86.20%  |

Table S10. HEK293\_F\_train&HAP1\_F\_test

<sup>a</sup> HEK293\_F dataset as train dataset and HAP1\_F test dataset as an independent dataset

|       | Table S11. HEK293_M_train&HAP1_M_test |        |        |        |        |        |        |        |        |        |         |  |  |
|-------|---------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--|--|
|       | 1                                     | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | Average |  |  |
| AUROC | 0.981                                 | 0.985  | 0.981  | 0.982  | 0.979  | 0.981  | 0.982  | 0.980  | 0.978  | 0.976  | 0.981   |  |  |
|       | 0.0 . <b>.</b>                        |        |        | 0.011  | •••=>  |        |        | 0.001  | 0.01   | 0.0.2  | 0.845   |  |  |
| ~     | 2010010                               |        | 94.51% |        |        |        |        |        |        |        |         |  |  |
|       |                                       | 86.81% |        |        |        |        |        |        |        |        |         |  |  |
| ACC   | 92.03%                                | 91.35% | 93.13% | 93.54% | 91.35% | 92.31% | 92.31% | 92.45% | 91.21% | 92.03% | 92.17%  |  |  |

Table S11. HEK293 M train&HAP1 M test

<sup>a</sup> HEK293\_M dataset as train dataset and HAP1\_M test dataset as an independent dataset

|--|

|       | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | Average |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| AUROC | 0.854  | 0.848  | 0.860  | 0.848  | 0.850  | 0.857  | 0.855  | 0.861  | 0.861  | 0.872  | 0.857   |
| MCC   | 0.504  | 0.493  | 0.505  | 0.487  | 0.510  | 0.509  | 0.508  | 0.504  | 0.524  | 0.530  | 0.507   |
| ~     | 55.17% |        | 56.51% |        |        |        |        |        |        |        |         |
| SPE   | 91.77% | 88.20% | 90.88% | 89.83% | 90.43% | 90.56% | 89.50% | 89.06% | 89.99% | 91.85% | 90.21%  |
| ACC   | 73.47% | 73.57% | 73.69% | 72.94% | 74.12% | 74.00% | 74.16% | 74.04% | 74.99% | 74.93% | 73.99%  |

<sup>a</sup> HAP1 F dataset as train dataset and HEK293 F test dataset as an independent dataset

|       | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | Average |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| AUROC | 0.863  | 0.877  | 0.870  | 0.867  | 0.875  | 0.869  | 0.894  | 0.854  | 0.861  | 0.878  | 0.871   |
|       | 0.450  | 0.470  | 0.456  |        | 0      |        | 0      | 00     | 00     | 000    | 0.461   |
| ~     | 41.24% |        |        |        |        |        |        |        |        |        | 39.01%  |
| SPE   | 96.31% |        |        |        |        |        |        |        |        |        | 98.12%  |
| ACC   | 68.78% | 68.61% | 68.43% | 69.93% | 68.38% | 69.01% | 67.91% | 67.57% | 67.68% | 69.35% | 68.57%  |

Table S13. HAP1 M train&HEK293 M test

<sup>a</sup> HAP1 M dataset as train dataset and HEK293 M test dataset as an independent dataset

| Mode            | Threshold | TPR   | FDR   | FOR   |
|-----------------|-----------|-------|-------|-------|
|                 | 0.1       | 0.985 | 0.322 | 0.027 |
|                 | 0.2       | 0.970 | 0.262 | 0.043 |
|                 | 0.3       | 0.958 | 0.212 | 0.053 |
|                 | 0.4       | 0.916 | 0.181 | 0.095 |
| Full Transcript | 0.5       | 0.876 | 0.140 | 0.127 |
|                 | 0.6       | 0.838 | 0.119 | 0.155 |
|                 | 0.7       | 0.773 | 0.089 | 0.197 |
|                 | 0.8       | 0.685 | 0.061 | 0.248 |
|                 | 0.9       | 0.463 | 0.037 | 0.354 |
|                 | 0.1       | 0.972 | 0.269 | 0.042 |
|                 | 0.2       | 0.931 | 0.196 | 0.082 |
|                 | 0.3       | 0.911 | 0.164 | 0.098 |
|                 | 0.4       | 0.862 | 0.142 | 0.139 |
| Mature mRNA     | 0.5       | 0.846 | 0.107 | 0.147 |
|                 | 0.6       | 0.821 | 0.082 | 0.162 |
|                 | 0.7       | 0.776 | 0.073 | 0.192 |
|                 | 0.8       | 0.720 | 0.048 | 0.225 |
|                 | 0.9       | 0.557 | 0.021 | 0.310 |

Table S14. Performance Evaluation by FDR and FOR at Different Thresholds

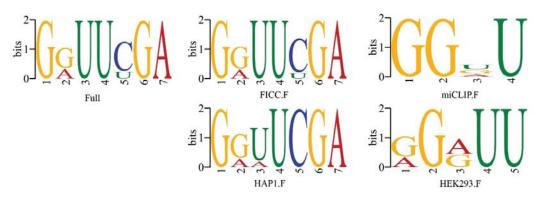



Figure S1. Motif analysis of positive m5U sites generated from different cell types and sequencing methods