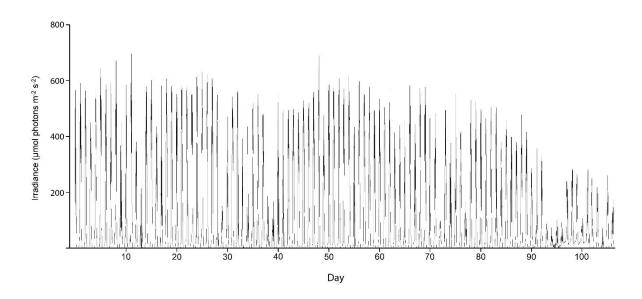
Anemonefish facilitate bleaching recovery in a host sea anemone

Sophie H Pryor¹, Ross Hill², Danielle L Dixson³, Nicola J Fraser¹, Brendan P Kelaher¹, Anna Scott^{1*}


¹National Marine Science Centre, Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 4321, Coffs Harbour, NSW, 2450, Australia

²Macquarie University, Sydney, NSW, 2109, Australia

³School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, USA

*Corresponding author email: anna.scott@scu.edu.au

Supporting information

Supporting Figure 1: Irradiance (μ mol photons m $^{\text{-2}}$ s $^{\text{-2}}$) during the bleaching recovery period.

Supporting Table 1: P-values calculated from PERMANOVA to test hypotheses. Asterisks (*) indicate where the null hypothesis was rejected. \pm = SE.

Hypothesis	Symbiodiniaceae	Total chlorophyll mg	Colour score
	density	host protein ⁻¹	
Treatment effect	P = 0.003*	P < 0.001*	P < 0.001*
Bleached control = bleached	0.2888	0.4178	0.9214
procedural control			
Unbleached control =	0.2694	0.9708	0.7200
Unbleached procedural			
control			
Bleached with fish =	P = 0.877*	P = 0.005	P = 0.609*
unbleached controls (pooled)	Means = 1232242 ±	Means = 8.98 ± 1.610 ,	Means = 4.75 ± 0.299 ,
	291741.0, 1017974 ±	5.42 ± 0.373	4.94 ± 0.144
	120879.8		

Bleached controls (pooled) <	P = 0.002*	P = 0.125	P < 0.001*
unbleached controls (pooled)	$Means = 228801 \pm$	Means = 2.71 ± 0.434 ,	Means = 2.66 ± 0.338 ,
	98744.2, 1017974 ±	5.42 ± 0.373	4.94 ± 0.144
	120879.8		
Unbleached with fish >	P = 0.021*	P= 0.106	P = 0.033
Bleached with fish	Means = 2152018 ±	Means = 11.78 ± 1.057 ,	Means = 5.63 ± 0.183 ,
	223212.0, 1232242 ±	8.98 ± 1.610	4.75 ± 0.299
	291741.0		
Unbleached with fish >	P < 0.001*	P < 0.001*	P = 0.004*
Unbleached controls (pooled)	$Means = 2152018 \pm$	Means = 11.78 ± 1.057 ,	Means = 5.63 ± 0.183 ,
	223212.0, 1017974 \pm	5.42 ± 0.373	4.94 ± 0.144
	120879.8		