
REVIEWERS' COMMENTS: 

 

Reviewer #1 (Remarks to the Author): 

 

I read with interest the manuscript "A general-purpose machine-learning force field for bulk and 

nanostructured phosphorus" by Deringer, Caro and Csanyi. The noteworthy result of this article is the 

development and validation of a machine-learning force field for phosphorus. It also showcases applications 

of the model to the study of the liquid-liquid transition and a phosphorene nanoribbon. From the 

methodological point of view it seems to me that little is added with respect to existing literature, but in 

order to develop such a force field the authors had to harness many state of the art techniques (DFT 

calculations at the PBE+MBD level, GAP potentials with long range vdW interactions, Random structure 

searching). The development of this kind of force field is an important direction of research nowadays and 

this manuscript describes careful and thorough work that, in my opinion, pushes the field of molecular 

simulations forward. 

 

This work will probably stimulate more research in the future both from the point of view of force field 

development and the application of this model to study other phenomena. Recently, similar papers that 

develop machine learning models for other systems have been published and they have garnered 

considerable attention. 

 

The data shown in the paper supports the conclusions and the technical details seem to be correct. As far as 

I can see, enough details are provided to reproduce the work and the fact that the authors make the data 

and software available guarantees the reproducibility. The manuscript is very well written and accessible for 

people working in related fields. This work definitely meets the standards of quality in the field and probably 

exceeds them. 

 

My recommendation is to accept this article after the authors consider the suggestions that I mention below. 

 

1) I assume the regularisation described in page 7 was needed in order to achieve low errors in energies and 

forces of configurations in the most important regions of configuration space (bulk and 2 structures). The 

authors justify this procedure with the argument that it is hard to interpolate between "rapidly fluctuating 

liquid configurations". However I suspect that the GAP+R6 might lack the flexibility to fit all these 

configurations with low error. How did the GAP+R6 perform without the regularisation? If the performance 

was poor, I suggest that you state it and then describe the regularisation as a solution to this problem. GAP 

is a very useful and established framework and I think it would be useful to clarify this point. 

 

2) From the plots in Figure 3 it is hard to understand how large the deviations of the forces are. I suggest 

that you include histograms of the errors in the forces so it is easier to interpret their magnitude and 

distribution. 

 

3) I suggest that the authors report the performance of the GAP-MD simulations in ns/day or ps/day. The 

trajectories of the liquid liquid transition and the phosphorene nanoribbon are rather short ~ 100 ps and 

make me wonder if the wall time in these simulations is 1 day or 2 months. In the latter case the potential 

would not be very useful for real applications. 

 

4) In the abstract the authors mention that the force field was trained on "highly converged data"? I fear 

that this is a claim that might not be substantiated. What do the authors mean? Perhaps some convergence 

of the DFT error below some threshold? If this is the case, does it make sense to state it considering that the 

errors in some regions of configuration space are rather large? My suggestion is to drop the "highly 

converged" from the phrase unless this point is clarified. 

 

Dr. Pablo Piaggi 

Postdoctoral Research Fellow 

Department of Chemistry 

Princeton University 



 

Reviewer #2 (Remarks to the Author): 

 

This paper presents a machine learning manybody classical potential energy surface for multiple phases and 

allotropes of phosphorous. This is a prominent result given the complexity of phosphorous interactions, 

which show a potent mix of covalent bonding and non-bonded London forces, all of which are sensitive to 

the local arrangement of the atoms in space. Prior to this work, atomistic simulations of phosphorous fell 

into two distinct classes: small-scale high-accuracy quantum electronic structure calculations based on 

Density Functional Theory or large-scale calculations based on empirical potential energy surfaces. The latter 

can be accurate in particular regions of configuration space (e.g. particular allotropes) but typically fail to 

accurately represent the energies of diverse structures, including liquid states and multiple allotropes. The 

former are accurate over a diverse range of configurations, but become computationally intractable beyond 

a few hundred atoms, too small to observe many of the collective rearrangements of phosphorous that drive 

the interesting macroscopically observable behaviors, including the formation of 2D materials, as well as the 

existence of multiple liquid states at relatively low pressures. 

 

Through careful application of a hybrid approach for generating training data (random structure generation 

augmented by targeted specific phases and structural motifs), as well as a well-established approach to 

generating local structural fingerprints (descriptors), the authors have constructed a potential energy model 

that combines the accuracy of the quantum methods for diverse structures with the scalability of an 

empirical potential. The efficacy of this approach is demonstrated first by comparison with the diverse 

training data e.g. white, fibrous, Hittorf's and black phosphorous allotropes. This is further reinforced by 

validation of selected results against larger-scale quantum calculations, including calculations of liquid 

structure (rdf, adf) for two distinct liquid phases, as well as puckered phosphorene nanoribbons. Finally, the 

authors have used the new potential to directly simulate the liquid-liquid phase transition under 

compression, in which the low density molecular liquid of P4 molecules switches to a high-density network 

liquid. 

 

This diversity of structures captured by a single potential energy model is unprecedented in the rapidly 

evolving field of machine-learning interatomic potentials, and paves the way for more systematic 

explorations of phosphorous polymorphs, as well as many other exotic materials. 

 

The paper is technically sound and carefully written. I have no suggestions for improvement. 

 

 

Reviewer #3 (Remarks to the Author): 

 

This work focuses on the fitting of a classical force field (FF) for elemental phosphorus in its bulk and nano-

structures. The force field is developed using a machine-learning (ML) approach, so the development of a 

large database of structure to fit on is necessary. The authors clearly put a lot of effort in developing such a 

database, and the fact that the testing data is available to the public is greatly appreciated. I’m not clear if 

only the validation data is available, or also the data used for the ML fitting, so that should be made clearer. 

Obviously, it would be appreciated if the whole database would be available to the public. 

The paper covers an important topic and provides an improved tool to the computational community, to 

facilitate the investigation of such an elusive, and allotropic-rich, element. This work is well written, clear, 

and extensively validated. It is worth publishing, if the author can provide a few extra clarifications/details. 

The ML-part of the work needs more details. While I understand it relies on previous publications, the paper 

should provide a self-contained description of the ML model used, parameters fitted and specifics on how the 

reported RMSE were obtained (80-10 split?, 90-10?, cross validation? etc.), even if only in the SI. Also, 

explicitly telling the number of validation structures versus fitting ones would be interesting. As the forces in 

Figure 3 are large with respect to what is considered necessary for structural convergence, it is not 

immediate to translate these results into force-field predictability. It would be more useful to show the same 

scatterplot type of comparison between the DFT formation energies of the validation structures and the 

corresponding GAP energies, once the initial structures are allowed to relax using the newly developed force 

field. 



Lastly, it is common to use force fields to investigate temperature-dependent phenomena. While this work 

addresses temperature effects in the case of the liquid, it doesn’t discuss how well this new force field 

performs for solids. For instance, thermal conductivity of black phosphorus nanosheets is of interest. Is this 

FF a good tool for such a study or not? These types of applications should be discussed. 
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Response to Reviewers’ Comments – Manuscript NCOMMS-20-28827 
 
We thank all three reviewers for their constructive and helpful comments. Below, we quote 
their reports in full; our point-by-point response is interspersed in blue, and action taken is 
detailed in red. 
 
 
Reviewer #1 (Remarks to the Author): 
 
I read with interest the manuscript "A general-purpose machine-learning force field for bulk 
and nanostructured phosphorus" by Deringer, Caro and Csanyi. The noteworthy result of this 
article is the development and validation of a machine-learning force field for phosphorus. It 
also showcases applications of the model to the study of the liquid-liquid transition and a 
phosphorene nanoribbon. From the methodological point of view it seems to me that little is 
added with respect to existing literature, but in order to develop such a force field the authors 
had to harness many state of the art techniques (DFT calculations at the PBE+MBD level, GAP 
potentials with long range vdW interactions, Random structure searching). The development 
of this kind of force field is an important direction of research nowadays and this manuscript 
describes careful and thorough work that, in my opinion, pushes the field of molecular 
simulations forward. 
 
This work will probably stimulate more research in the future both from the point of view of 
force field development and the application of this model to study other phenomena. 
Recently, similar papers that develop machine learning models for other systems have been 
published and they have garnered considerable attention. 
 
The data shown in the paper supports the conclusions and the technical details seem to be 
correct. As far as I can see, enough details are provided to reproduce the work and the fact 
that the authors make the data and software available guarantees the reproducibility. The 
manuscript is very well written and accessible for people working in related fields. This work 
definitely meets the standards of quality in the field and probably exceeds them. 
 
Response: Thank you very much. 
 
My recommendation is to accept this article after the authors consider the suggestions that I 
mention below. 
 
1) I assume the regularisation described in page 7 was needed in order to achieve low errors 
in energies and forces of configurations in the most important regions of configuration space 
(bulk and 2 structures). The authors justify this procedure with the argument that it is hard to 
interpolate between "rapidly fluctuating liquid configurations". However I suspect that the 
GAP+R6 might lack the flexibility to fit all these configurations with low error. How did the 
GAP+R6 perform without the regularisation? If the performance was poor, I suggest that you 
state it and then describe the regularisation as a solution to this problem. GAP is a very useful 
and established framework and I think it would be useful to clarify this point. 
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Response: As the reviewer correctly states, the regularisation is a key component of the 
approach, because it allows us to “tighten” the fit for configurations where this is needed. In 
fact, without any regularisation, the method would not be usable in practice: it would 
perfectly fit the input data but lead to uncontrolled errors even for slightly different atomistic 
configurations (“overfitting”).  
 
An interesting test, inspired by the reviewer’s suggestion, is to fit a version of the potential 
where no custom regularisation is used (small for crystalline phases, large for random 
structures, etc.), but instead the same regularisation is used throughout, keeping all other 
parameters of the fit unchanged. We performed such tests and found that, indeed, the quality 
of such a potential is worse for the crystalline phases: e.g., with RMS energy and force errors 
of {0.006 eV, 0.16 eV Å–1} for a uniform large expected error, compared to the result of the 
custom regularisation of {0.001 eV, 0.06 eV Å–1}. 
 
Action taken: We now state more clearly that the regularisation “is required to avoid 
overfitting (a GAP fit without regularisation would perfectly reproduce the input data, but 
lead to uncontrolled errors for even slightly different atomistic configurations)” (p. 8).  
 
We added a more detailed discussion to the Supplementary Information, including new data 
for more loosely or more tightly regularised fits that do not adapt to different classes of input 
data, demonstrating that this leads to a detriment in performance for the 2D and crystalline 
phases (new Supplementary Note 2). 
 
2) From the plots in Figure 3 it is hard to understand how large the deviations of the forces 
are. I suggest that you include histograms of the errors in the forces so it is easier to interpret 
their magnitude and distribution. 
 
Response: This is a good suggestion. 
 
Action taken: We added kernel density estimates (“smoothed histograms”) for the different 
parts of the dataset as insets to Figure 3. 
 
3) I suggest that the authors report the performance of the GAP-MD simulations in ns/day or 
ps/day. The trajectories of the liquid liquid transition and the phosphorene nanoribbon are 
rather short ~ 100 ps and make me wonder if the wall time in these simulations is 1 day or 2 
months. In the latter case the potential would not be very useful for real applications. 
 
Response: This is a very important point that we should clarify. The simulation of the liquid–
liquid transition, encompassing 125 ps of simulation time (125,000 timesteps), took about 40 
hours on a local computing environment. In response to the reviewer’s comment, to obtain 
more widely comparable “benchmark” data, we repeated the simulation on the ARCHER UK 
national supercomputing service (Cray XC30) where it took 5:55:12 (h:min:sec) on 288 cores. 
With such low runtime requirements, we expect that the potential will indeed be useful for 
real-world applications. 
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Action taken: We now state on p. 23 that “To benchmark the computational performance of 
GAP-MD, we repeated this simulation using 288 cores on the UK national supercomputer, 
ARCHER, where it required 6 hours (corresponding to 0.5 ns of MD per day)”. 
 
4) In the abstract the authors mention that the force field was trained on "highly converged 
data"? I fear that this is a claim that might not be substantiated. What do the authors mean? 
Perhaps some convergence of the DFT error below some threshold? If this is the case, does it 
make sense to state it considering that the errors in some regions of configuration space are 
rather large? My suggestion is to drop the "highly converged" from the phrase unless this 
point is clarified. 
 
Response: Good point. We mean that dense k-point grids are used for the DFT single-point 
computations, which makes them “highly converged” in terms of noise in energies and forces. 
We agree, however, that this would need clarification (which would detract from the main 
message of the abstract). 
 
Action taken: We removed the phrase “highly converged” from the abstract, as suggested. 
 
Dr. Pablo Piaggi 
Postdoctoral Research Fellow 
Department of Chemistry 
Princeton University 
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Reviewer #2 (Remarks to the Author): 
 
This paper presents a machine learning manybody classical potential energy surface for 
multiple phases and allotropes of phosphorous. This is a prominent result given the 
complexity of phosphorous interactions, which show a potent mix of covalent bonding and 
non-bonded London forces, all of which are sensitive to the local arrangement of the atoms 
in space. Prior to this work, atomistic simulations of phosphorous fell into two distinct classes: 
small-scale high-accuracy quantum electronic structure calculations based on Density 
Functional Theory or large-scale calculations based on empirical potential energy surfaces. 
The latter can be accurate in particular regions of configuration space (e.g. particular 
allotropes) but typically fail to accurately represent the energies of diverse structures, 
including liquid states and multiple allotropes. The former are accurate over a diverse range 
of configurations, but become computationally intractable beyond a few hundred atoms, too 
small to observe many of the collective rearrangements of phosphorous that drive the 
interesting macroscopically observable behaviors, including the formation of 2D materials, as 
well as the existence of multiple liquid states at relatively low pressures. 
 
Through careful application of a hybrid approach for generating training data (random 
structure generation augmented by targeted specific phases and structural motifs), as well as 
a well-established approach to generating local structural fingerprints (descriptors), the 
authors have constructed a potential energy model that combines the accuracy of the 
quantum methods for diverse structures with the scalability of an empirical potential. The 
efficacy of this approach is demonstrated first by comparison with the diverse training data 
e.g. white, fibrous, Hittorf's and black phosphorous allotropes. This is further reinforced by 
validation of selected results against larger-scale quantum calculations, including calculations 
of liquid structure (rdf, adf) for two distinct liquid phases, as well as puckered phosphorene 
nanoribbons. Finally, the authors have used the new potential to directly simulate the liquid-
liquid phase transition under compression, in which the low density 
molecular liquid of P4 molecules switches to a high-density network liquid. 
 
This diversity of structures captured by a single potential energy model is unprecedented in 
the rapidly evolving field of machine-learning interatomic potentials, and paves the way for 
more systematic explorations of phosphorous polymorphs, as well as many other exotic 
materials.  
 
The paper is technically sound and carefully written. I have no suggestions for improvement. 
 
Response: Thank you very much. 
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Reviewer #3 (Remarks to the Author): 
 
This work focuses on the fitting of a classical force field (FF) for elemental phosphorus in its 
bulk and nano-structures. The force field is developed using a machine-learning (ML) 
approach, so the development of a large database of structure to fit on is necessary. The 
authors clearly put a lot of effort in developing such a database, and the fact that the testing 
data is available to the public is greatly appreciated. I’m not clear if only the validation data is 
available, or also the data used for the ML fitting, so that should be made clearer. Obviously, 
it would be appreciated if the whole database would be available to the public. 
 
Response: Thank you. We will, indeed, also provide the whole ML fitting database online upon 
publication of the work.  
 
Action taken: We updated the Data Availability statement to now read “The potential model 
described herein as well as the DFT+MBD data used for fitting the model are openly available 
through the Zenodo repository (DOI: 10.5281/zenodo.4003703)”. (Note that this DOI link will 
be made active upon publication of the work.) 
 
The paper covers an important topic and provides an improved tool to the computational 
community, to facilitate the investigation of such an elusive, and allotropic-rich, element. This 
work is well written, clear, and extensively validated. It is worth publishing, if the author can 
provide a few extra clarifications/details.  
 
Response: Thank you very much. 
 
The ML-part of the work needs more details. While I understand it relies on previous 
publications, the paper should provide a self-contained description of the ML model used, 
parameters fitted and specifics on how the reported RMSE were obtained (80-10 split?, 90-
10?, cross validation? etc.), even if only in the SI. Also, explicitly telling the number of 
validation structures versus fitting ones would be interesting.  
 
Response: This is indeed worth adding, and we have done so.  
 
Action taken: In line with the reviewer’s comments (and the editorial requests), we moved 
the details of the methodology to a newly added Methods section at the end of the main text. 
We also added a footnote to Table 1 giving details of how the RMSE values were obtained 
and specifying the number of structures in the training and testing sets. 
 
As the forces in Figure 3 are large with respect to what is considered necessary for structural 
convergence, it is not immediate to translate these results into force-field predictability. It 
would be more useful to show the same scatterplot type of comparison between the DFT 
formation energies of the validation structures and the corresponding GAP energies, once the 
initial structures are allowed to relax using the newly developed force field.  
 
Response: We note that one of the reasons why the forces in Figure 3 are indeed rather large 
is that these structures are distorted on purpose, to sample more diverse atomic 
environments. (The energies of the fully relaxed crystal structures are given in Table 2, and 
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they reproduce the DFT results very accurately, within a few meV per atom.) We now make 
this clearer in the revised manuscript. 
 
Action taken: To the discussion of Fig. 3, we added a statement that “the test structures are 
not fully relaxed, on purpose (and neither are those used in the ML fit): they serve to sample 
slightly distorted environments where there are non-zero forces on atoms” (p. 13). 
 
Lastly, it is common to use force fields to investigate temperature-dependent phenomena. 
While this work addresses temperature effects in the case of the liquid, it doesn’t discuss how 
well this new force field performs for solids. For instance, thermal conductivity of black 
phosphorus nanosheets is of interest. Is this FF a good tool for such a study or not? These 
types of applications should be discussed. 
 
Response: Thermal conductivity is indeed an important application area of ML force fields, 
and we envision that the phosphorus model introduced here will be used for that in the 
future. We are not able to perform a full study of thermal conductivity in the timescale of the 
present revision, so we would like to avoid undue speculation at this stage. We may, however, 
mention previous successful studies of the thermal conductivity of silicon with the same ML 
force field fitting framework. We added a carefully worded discussion to the revised 
manuscript, as requested. 
 
Action taken: We amended the statement at the end of the corresponding subsection to now 
read: 
 

“The high accuracy of our ML model for predicting interatomic forces (0.07 eV Å–1 for 
the 2D configurations; Table 1) allows one to anticipate a good performance for 
properties that are directly derived from the force constants, viz. phonon dispersions 
and thermal transport, as demonstrated previously for silicon (see refs. 60 and 70, and 
references therein). A rigorous study of phonons and thermal transport in phosphorene 
with GAP+R6 is envisioned for the future” (p. 19–20). 

 
Finally, we thank all three reviewers again for their comments, which have helped us to 
improve the manuscript further. 


