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eMethods and eMaterials 
 
Results and Discussion 

1.1. RNA sequencing of Toca 5 tumor biopsies 

 Total RNA was isolated from frozen tumor biopsies at Tocagen. RNA from one to six frozen biopsies per tumor 
was profiled in order to account for intra-tumor heterogeneity. Illumina sequencing libraries were prepared and 
sequenced by Cofactor Genomics in a CLIA-like setting. Sequencing results were obtained from 957 samples, 
representing 335 patients (175 on Toca 511/FC arm, and 160 in standard of care arm). Single-end 75-base reads 
were aligned to annotated protein coding genes (GRCh38.87) and the human genome using STAR (eFigure 3).1 
Nineteen million reads mapped, on average, to the human genome (interquartile range: 16-21 x 106), with 33% of 
reads, on average, mapping to protein coding exons (interquartile range: 28-39%). Transcript per million (TPM) 
expression values were generated using the pseudoalignment program Kallisto. 2  

1.2. Quality Control Assessment of Toca 5 RNA sequencing 

 Variation in RNA quality, RNA isolation and sequencing library preparation can have profound effects on RNA 
sequencing results. Unless accounted for, and if necessary, batch-corrected or compromised samples removed, these 
technical factors confound subsequent analyses. In order to identify potential confounding technical issues and 
affected samples we collected a number of quality-related parameters and asked how these parameters tracked with 
variation in RNA sequencing results. These parameters include initial RNA quantity and quality, measured by RNA 
integrity number (RIN),3 as well as sequencing/mapping parameters including RNA strand bias, 5’ to 3’ bias, total 
number of mapped reads (reads aligned), the fraction of reads mapping to protein coding exons (exon_frac), introns 
(intron_frac), intergenic regions (intergenic_frac), ribosomal RNAs (rRNA_frac), and the mitochondrial genome 
(chrM_frac) (eDataset 1). Following initial quality assessment of the phase 2 RNA sequencing results, we increased 
the RIN threshold for generating RNA sequencing libraries from two to four and added an additional DNA removal 
step in the RNA isolation procedure. As such the RIN values for phase 3 samples (median 8.0) is higher than phase 
2 samples (median 6.4), as illustrated by the violin plots in eFigure 4A. The distributions of other quality parameters 
are comparable between phase 2 and phase 3 samples (eFigure 4B-D). As shown in eFigure 4E, RNA sequencing 
results from phase 2 (red) and phase 3 (blue) were indistinguishable based on a scatterplot of the first two principle 
components (PCs) of the RNA sequencing dataset. 

In order to relate quality metrics to variation in mRNA expression, we calculated the first ten PCs of the RNA 
expression dataset. The first PC accounts for 9% of variation in expression, and the first ten in sum only account for 
37% of variation in expression, highlighting the multidimensionality of the dataset (eFigure 5B). eFigure 5A shows 
a heatmap representation of the pairwise Spearman rank correlations between quality metrics and the first 10 PCs. 
PC1 negatively correlated with exon_frac (r= -0.74) and RIN (r= -0.56), and positively correlated with 
intergenic_frac (r=0.66), highlighting the influence of RNA quality on RNA sequencing results. PC3 negatively 
tracked with intron_frac (r=-0.79). No other pairwise correlations between quality metrics and PC 1-10 are greater 
than 0.5. Thus, while quality metrics track with the first and third PCs, their overall contribution to variation in 
mRNA expression is small. 

We next identified and removed outlier samples based on quality metrics. A scatterplot of PC1 and PC3 
highlighted a number of outlier samples, a disproportionate fraction of which had exon_frac < 0.20 and/or RIN < 4 
(red) (eFigure 5C). Using these criteria as cut-offs, 838 of 957 samples were retained for further analyses. 

1.3. Toca 5 HGG tumor mRNA expression programs  

The first hypothesis we tested was whether mRNA expression profiles of samples taken from the same tumor 
biopsy were invariably more similar to each other than to tumor samples taken from other patients. In order to test 
this hypothesis, the pairwise Pearson correlations between all samples’ normalized mRNA expression was 
calculated (TPM values for transcript isoforms were summed, filtered to remove mRNAs with TPM < 3, log2+1 
transformed, and each mRNA was mean centered across samples), and the intra-sample correlations were plotted vs 
inter-sample correlations (eFigure 6). The median intra-tumor Pearson correlation was 0.58 (interquartile range of 
0.34-0.74) compared to a median inter-tumor correlation of -0.01 (interquartile range of -0.17-0.16). Thus, samples 
from the same biopsy tended to have a higher correlation in RNA expression, but with many exceptions (TPM 
values in eDataset 2). 
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As a first pass analysis, the 2794 mRNAs with the greatest variation in expression (top 25% of all mRNAs with 
average TPM > 3) were retrieved and their relative expression was used as a metric of similarity for hierarchical 
clustering (eFigure 7). Many of the mRNAs in this set fell into one of seven distinct clusters (color bars to left of 
heatmap); the five largest clusters include mRNAs with common functional themes. For instance, many of the 
mRNAs in the cluster marked with orange bar encode proteins involved in “cell cycle” functions (83 of 396, p <1e-
16 hypergeometric distribution), likely highlighting tumor samples with a higher fraction of proliferating cells. The 
cluster marked by the turquoise bar includes a disproportionate number of mRNAs encoding proteins linked to 
“immune response” (153 of 599, p <1e-67), including “innate immune response” (87, p < 1e-37). The salmon cluster 
includes many mRNAs encoding proteins involved in neuronal functions, including “synaptic signaling” (95 of 975, 
p<1e-37) and “neurogenesis” (143, p < 1e-14). We have previously shown that these mRNAs track with non-
enhancing regions of the tumor and may be preferentially expressed in samples with a higher fraction of non-
neoplastic cells.4 

1.4. Molecular classification of Toca 5 tumor samples 

HGG tumors’ mRNA expression profiles tend to segregate into three to six groups, coinciding with specific 
genomic alterations and potential cell-type of origin of the tumors.5-8 The Cancer Genome Atlas (TCGA) originally 
proposed a four-class grouping based on clustering analyses (herein referred to as “clustering”) called “classical” -- 
astrocytes, “mesenchymal” – microglia, “proneural” – oligodendrocytes and “neural” – neurons. They are often 
found at roughly equal proportions in large scale profiling studies.5,7 Subsequently, TCGA struck out the “neural” 
group, suggesting it was largely driven by expression of non-neoplastic neuronal cells. They moved to a single 
sample gene set enrichment method (herein referred to as “TCGA”) to classify samples into the three groups with an 
associated p-value obtained from resampling.8 Recently, Neftel, et al. used an integrative approach spanning single-
cell RNA-sequencing of 26 tumors, bulk genetic and expression analysis of 401 specimens and defined six types of 
cellular states of GBM tumor cells (herein referred to as “sc-Seq”). The four main classifications are, mesenchymal-
like (MES-like), neural-progenitor-like (NPC-like), Oligodendrocyte-progenitor-like (OPC-like), and astrocyte-like 
(AC-like). The MES-like samples are further subdivided into hypoxia-independent (MES1) and hypoxia-dependent 
(MES2) and NPC-like was further subdivided into OPC-related NPC1 and neuronal NPC2.6 

We classified Toca 5 samples using the three methods and color-coded each sample’s classification above the 
overview heatmap (eFigure 7) (eDataset 3). Classical/AC samples are black, mesenchymal/MES samples are red, 
proneural/NPC1 samples are blue and neural/NPC2 samples are green. Classical/AC and neural/NPC1 are enriched 
in samples that have relatively high expression of “cell cycle” mRNAs; mesenchymal/MES are enriched in samples 
that have relatively high expression of “immune response” mRNAs; neural/NPC2 are enriched in samples that have 
relatively high expression of neuron-related mRNAs. Consistent with published results, samples from AA tumors 
were predominantly proneural/NPC1 (eFigure 8 A-C). There was a similar distribution of subtypes in 1st and 2nd 
recurrence patients (eFigure 8 D-F). Among second recurrence only tumors, there was a similar distribution of 
subtypes in standard of care and Toca 511 and Toca FC treatment arms (eFigure 8 G-I). 

We next asked if a tumor’s molecular subtype tracked with treatment-related clinical outcomes. We performed 
univariate Cox proportional hazards regression comparing survival times of patients classified to each molecular 
subtype (highest quality RNA sample used for each patient/tumor). As shown in the forest plot in eFigure 9, 
molecular subtype did not track with treatment-related survival. 

 

1.5. IDH1 mutant tumors have a distinct expression profile 

We performed a supervised analysis to identify mRNAs whose expression tracked with IDH1 R132H/S/C 
mutations. We identified hundreds of such mRNAs using Sleuth (eFigure 22).9 A disproportionate number of the 
mRNAs whose relative expression was higher in IDH1 mutant tumors encode proteins involved in “translation 
initiation” and “CNS development”. Conversely, mRNAs whose relative expression was higher in IDH1 wild-type 
tumors encode an abundance of proteins involved “innate immune response”, “regulation of cell shape” and “cell 
adhesion”. 
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1.6. Leukocyte populations in Toca 5 tumors 

Tumor immune cells contribute to bulk RNA expression profiles and play important roles in patient outcomes 
and response to therapy. We collaborated with Cibermed to de-convolute immune cell composition in Toca 5 tumors 
using iSort, the gold-standard method for enumeration of cell subsets from whole tissue RNA expression profiles.10-

12 

iSort takes raw RNA sequencing data as input and outputs estimates of the relative and absolute abundance of 
23 immune cell types (eDataset 4 and eDataset 5). According to iSort, monocyte-derived cells are the major immune 
cell population in Toca 5 tumors regardless of molecular subtype (eFigure 21A), including M2 macrophages (28% 
of all 23 immune cells on average), monocytes (12%), MDSCs (7%), M0 macrophages (7%) and M1 macrophages 
(1%). In sum the monocyte-derived cells account for ~55% of the 23 immune cells on average. Among T-cell 
populations, resting memory CD4+ cells were most abundant (7% on average), followed by CD4+ naïve (4%) and 
CD8+ cells (3%). The relative abundance of immune cells did not track with RNA subtype (determined by 
clustering method). However, on an absolute scale, there were more noticeable differences in the estimated total 
percentage of these immune cells in tumors according to molecular subtype (eFigure 21B); for example, immune 
cells were estimated to account for 17% of all cells in mesenchymal tumor samples on average, 11% in neural, 10% 
in classical and 10% in proneural. The higher abundance of monocyte-derived immune cell types is consistent with 
molecular profiles of mesenchymal tumors. Tumor immune cell levels were indistinguishable between the two 
treatment arms (eFigure 23). We observed differences in the relative levels of seven immune cell types comparing 
tumors from AA patients and GBM patients (eFigure 25). Similar to what we observed comparing IDH1 wild-type 
tumors and IDH1 mutant tumors (Figure 3), GBM tumors tended to have higher levels of M0 macrophages and 
follicular helper T-cells  than AA tumors, whereas AA tumors tended to have higher levels of naïve B cells, 
memory-resting CD4 T-cells, monocytes, activated dendritic cells and resting NK cells. We also observed 
differences in the relative levels of five immune cell populations in second recurrence tumors compared to first 
recurrence tumors (eFigure 27). 

 The levels of specific immune cell types in patients’ tumors could, in principle, can be used to identify patients 
most likely to benefit from Toca 511 and Toca FC therapy in subsequent trials. In order to test this hypothesis, we 
utilized Lasso regression to build a predictive model based on the relative iSort dataset using only patients on the 
Toca 511 and Toca FC arm. This analysis led to an “optimized” model utilizing CD4 memory activated T-cells 
(weight = -25.6), M1 macrophages (-5.0), memory B-cells (-1.9), plasma cells (-1.0), monocytes (-0.51), activated 
dendritic cells (4.3), activated mast cells (3.9) and M2 macrophages (0.62). The optimized threshold to stratify the 
Toca 511 and Toca FC patients into two groups resulted in 48 patients in the “low” group and 114 patients in the 
“high” group. We then compared the four survival curves after splitting patients by treatment and the iSort 
classification (eFigure 24). Compared to each of the other three groups patients classified as Low/Toca5 lived 
significantly longer with a median OS of 19 months (CI 17.2-32); median OS for Low/SoC was 11.6 months (CI 
8.3-28.1); median OS for High/Toca5 was 10.1 months (CI 8.4-11.6); median OS for High/SoC was 12.8 months 
(CI 10.7-15.4) (eFigure 24B). While the survival curves that were significantly difference, the performance of the 
signature as a potential predictive marker were modest, with a sensitivity of 0.47, a specificity of 0.58 and an AUC 
of 0.56 (eFigure 24C). Nonetheless, this work provides an interesting lead towards a potential Toca 511 and FC 
predictive immune marker. 

1.7. Exome sequencing of Toca 5 tumor biopsies and paired blood samples 

Paired tumor-whole blood exome sequencing on 148 Phase 2 and 179 Phase 3 Toca 5 patient samples was 
performed by Siemens utilizing the SureSelect V7 exome capture kit (Agilent). The analysis workflow to map reads 
to the genome and call somatic variants was developed on the DNAnexus platform and described in M&M. Briefly, 
paired-end sequencing reads were mapped to the human genome (hg19) with BWA-MEM, refined/realigned with 
Picardtools, duplicates removed, variants called and then filtered (eFigure 3). We primarily used a single variant 
caller, Sentieon, which mirrors the GATK workflow, but we also used results from MuSE to filter lower quality 
single-nucleotide variants (SNVs). Filtered variants were annotated with SNPeff (eDataset 6). 

In targeted regions, tumor samples have a mean coverage of 133x, and on average 94% of targeted bases have 
at least 30x coverage and 85% of targeted bases have at least 50x coverage. Blood samples have a mean coverage of 
70x, and on average 82% of targeted bases have at least 30x coverage and 60% of targeted bases have at least 50x 
coverage (eFigure 10 and eDataset 7).  
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Given that hundreds of samples were retrieved and processed in parallel, it’s likely some sample mix-ups 
occurred. We therefore performed pairwise correlation analyses of germline mutations to validate tumor-normal 
sample pairings. This analysis identified 33 sample mix-ups, 18 of which we were able to unambiguously resolve. 

1.8. Identification of driver mutations  

 GBM tumors frequently have mutations and/or copy number variants (CNVs) in EGFR and/or p53, Rb, and 
receptor tyrosine kinase (RTK)/Ras/phosphoinositide 3-kinase (PI3K) signaling pathways.5,13 According to our 
variant calling criteria, 70% of Toca 5 tumors had CNVs or mutations in the p53 pathway (MDM2, MDM4, TP53, 
CDKN2A), 66% had alterations in the Rb pathway (CDK4, CDK6, CCND2, CDKN2A/B and RB1), 27% had 
alterations in the PI3K pathway (PIK3CA, PIK3R1, PIK3C2G, PIK3CG, PIK3CB, PIK3C2B, PIK3C2A, PIK3R2), 
70% had alterations in either the PI3K pathway or PTEN, and 73% had alterations in the RTK pathway (EGFR, 
PDGFRA, MET, FGFR1/2/3). RTK alterations are largely accounted for by EGFR mutations or CNVs (65% of 
tumors). These include 62% of tumors with focal amplifications of EGFR, 25% of tumors with mutations in EGFR 
and 49% with whole chromosome 7 amplifications (eFigure 16). 

 Driver mutations in IDH1, usually R132H, are common in lower grade gliomas and AA (~75%),14,15 but less 
frequent in GBM (<10%).5 IDH1 mutation is a positive prognostic marker for survival; IDH1 mutant tumors should 
be viewed as categorically different from IDH1 wild-type tumors. Thus it is important to evaluate which patients’ 
tumors are IDH1 mutant. Of 323 patients evaluated for IDH1 mutations, 36 patients were identified with R132 
mutations; 32 had the IDH1-R132H mutation, two had an IDH1-R132G mutation, and two patients had an IDH1-
R132C mutation. Twenty-one of the 36 tumors with IDH1 mutations were classified as AA. Of 34 IDH1 mutants 
that had blood samples available for sequencing and had somatic variant calling performed, 33 patients also had 
mutations in TP53. 

 Telomerase reverse transcriptase (TERT) promoter mutations are present in ~55% of GBM tumors and are 
associated with a poor prognosis, possibly due to their inverse correlation with IDH1 mutations.16 In our cohort, at 
least 19% of patients had TERT promoter mutations (C228T, C250T), although coverage in this region was 
insufficient to determine the presence of TERT promoter mutations in most samples: at either given locus, 48-60% 
of samples were covered at <=1x. TERT promoter mutations were observed exclusively in IDH1-R132H/G/S 
wildtype patients. 

 We failed to identify a putative GBM driver mutation or copy number variant (CNV) in 37 tumors (11%), even 
when expanding the list of putative GBM-associated gene targets. Tumors with no known driver had lower tumor 
purity than other samples (p <1e-4), and tumors with RNA-seq data available were classified almost exclusively as 
neural (36%) or mesenchymal (44%) subtype, or a mix of neural and mesenchymal (17%); a single sample was 
classified as neural/classical. It was previously determined that even in samples with no other known drivers, small 
CNVs at 8p11.22 affecting the gene ADAM3A were common in tumors from our phase 1 study (manuscript in 
preparation). A similar pattern was observed in Toca 5 patients: losses were observed in 64% of tumors, gains in 
34% of tumors, and only seven tumors did not have a CNV altering ADAM3A. Among patients with no known 
driver mutations or CNVs, 16 had a gain of ADAM3A (43%) and 21 had a loss (57%). Various ADAM family 
proteins have been implicated in cancer: ADAM3A deletions are frequently observed in gliomas, and relatively low 
expression levels of ADAM3A and ADAM33 correlate with poor prognosis in other cancers.17-20 

 We next asked how driver mutations tracked with various clinical features. The most abundant driver mutations 
had similar frequencies between first and second recurrence tumors (eFigure 12) and between treatment arms 
(eFigure 13). We performed univariate cox regression analyses to determine if driver mutations tracked with 
differences in treatment-related outcomes. Patients’ whose tumors had IDH1, ATRX and/or TP53 mutations (which 
often co-occur) tended to live longer on the Toca 511/FC arm (eFigure 14). Similar trends were seen for patients 
with PTEN or EGFR mutations. 

1.9. DNA copy number changes in tumor samples 

 Whole exome sequencing data was used to identify tumor CNVs. We observed well-known GBM-associated 
CNVs, such as chromosome 7 amplifications, chromosome 10 deletions, EGFR focal amplification and NF1 focal 
deletion (eFigure 11, eFigure 15, and eDataset 8).  

 Certain commonly observed tumor CNVs have prognostic value. IDH1-wildtype GBM patients can be stratified 
into three distinct prognostic subtypes based on the presence or absence of whole chromosome 1 gain, whole 
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chromosome 19 gain, and co-amplification of CDK4 and MDM2: W1 (worst survival), W2 (intermediate survival), 
and W3 (best survival).21 As an example, W2, the most common subtype in GBM, is characterized by no whole 
chromosome 1 gain, no whole chromosome 19 gain, and no co-amplification of CDK4 and MDM2. Clinical trials 
often disproportionately enroll patients with the W3 subtype, complicating comparisons to historical results.22 Toca 
5 patients were biased towards the W1 and W2 subtypes, while W3 subtype patients were underrepresented 
compared to the expected distribution (eFigure 16). Specifically, in two GBM patient cohorts, TCGA (n=256) and 
German Glioma Network (GGN) (n=243), 34% and 32% of patients belonged to the W3 copy number subtype, 
respectively.22 In Toca 5, 24% of IDH1-wildtype tumors were classified as W3 (eFigure 16). CNV subtype was 
biased for IDH1 mutant tumors in second recurrence (eFigure 12), but balanced between the two treatment arms 
(eFigure 13). 

 We did not observe significant treatment-related survival differences for patients whose tumors had EGFR 
amplification, CDk4 amplification, PDGFRA amplification or PTEN deletion, nor for patients whose tumors had 
W1, W2 or W3 CNV subtype (eFigure 14). 

1.10. Tumor mutation burden and sources of hypermutation  

Previous reports on mutation profiles of primary and recurrent HGG tumors suggest (i) most primary and 
recurrent tumors have relatively low tumor mutation burden compared to other tumor types and (ii) a small subset of 
patients exhibit “TMZ-induced hypermutation” phenotype at recurrence, whereby mutation of one or more DNA 
damage genes leads to a dramatic increase in the number of mutations following TMZ treatment.23,24 Two hundred 
ninety-four of 318 tumors (93%) had fewer than 400 high-confidence SNVs and indels (~10/Mb), ranging from 2 to 
389, median = 137 (eFigure 11). Thirteen tumors exhibited the hypermutation phenotype, which we defined as 
having over 1000 high-confidence SNVs or indels.  

Mutations can arise from many different processes, each of which leaves a “mutational signature” in the form of 
biases in the specific point mutation as well as the trinucleotide context surrounding a mutation.25 We were 
particularly interested in the mechanisms that gave rise to so-called hypermutant tumors. We filtered the dataset for 
high-confidence SNVs and used SigProfiler to deconvolute mutation signatures (eTable 6).26 Ten of the 13 
hypermutated tumors had a signature indicating that the mutations arose from an alkylating agent such as TMZ 
(eFigure 17); these tumors are characterized by an excess of C to T and G to A mutations. Only two of these ten 
patients had IDH1 R132H/G/C mutations, which are associated with TMZ-induced hypermutation. The eight IDH1-
wildtype patients  exhibiting a TMZ hypermutation signature each had several mutations in the p53 and AKT-
mTOR signaling pathways (including genes TP53, PIK3CA, PTEN, PIK3R1, PIK3C2G, PIK3CG, PIK3CB, 
PIK3C2B, PIK3C2A, PIK3R2, MDM2, MDM1, PDGFRA, MET, and FGFR3) and DNA repair pathways 
(including genes MSH6, MSH2, MLH1, PMS2), which are commonly affected in hypermutated recurrent 
gliomas;27,28 the average number of mutations in these pathways combined were 4.25 mutations per patient, 
compared to 0.5 mutations per patient in all other IDH1-wildtype patients. A single patient with the greatest tumor 
mutation burden (16,530 high-confidence SNVs or indels) had a unique signature indicating concurrent polymerase 
epsilon mutation and defective DNA mismatch repair. This patient’s tumor was the only sample with missense 
mutations in two of four subunits of Pol ε (POLE and POLE2). Two hypermutated tumors had a strong SBS 07b 
mutation signature that is observed nearly exclusively in skin cancers and are thought to arise from exposure to 
ultraviolet light. However, the specific trinucleotide mutation distribution differed from specific skin cancer / UV 
light signatures, and appears more similar to a signature characterizing either an alkylating agent or prior treatment 
with ionizing radiation, as determined from previous studies,29,30 but with a greater number of CC>TC and CC>TT 
mutations. A signature with a high number of CC>TC and CC>TT mutations has been associated with treatment 
with platinum-based drugs cisplatin or carboplatin,31 but neither of these two patients had received prior treatment 
using carboplatin. Furthermore, both patients had IDH1-R132H mutations. Therefore, these patients might be 
exhibiting a combination of different signatures, including TMZ-induced hypermutation that was not accurately 
resolved. 

 Thus, consistent with previous reports, Toca 5 tumors generally displayed relatively low mutation levels, with a 
small subset of tumors displaying hypermutation phenotype, in most cases likely linked to TMZ treatment. We did 
not observe treatment related differences in survival for patients with hypermutated tumors (eFigure 14). 
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1.11. HLA alleles 

 The human leukocyte antigen (HLA) gene complex on human chromosome 6 is one of the most polymorphic 
regions in the genome and contributes to inter-individual variation in immune responses. Class I (HLA-A, -B, and -
C) and class II (HLA-DR, -DP, and -DQ) HLA gene products function by presenting foreign antigens to T cells to 
trigger immune responses.32 Patient HLA class I genotype influences response to immunotherapy in various cancer 
types, and loss of heterozygosity at HLA-I loci in tumors is linked to decreased survival, especially among patients 
whose tumors had a low tumor mutation burden.33 In addition, certain HLA alleles are associated with favorable 
prognosis in GBM.34,35 Specifically, previous studies have found correlations between OS or GBM occurrence and 
HLA alleles Cw*01, A*32 (specifically A*3201), B*55, the HLA-B62 supertype (including HLA-B*15:01), B*13, 
B*07, and B*07-Cw*07.33-35  

 We performed HLA class I and II genotyping from the whole exome sequencing data. Of 327 patients tested, 66 
patients (20%) were homozygous for at least one HLA class I locus (HLA-A, -B or -C), and 261 patients (80%) 
were heterozygous for all three loci. 164 patients (50%) had the HLA-B44 supertype, and 55 patients (17%) had the 
B*07-Cw*07 haplotype. In previous studies, patients with B44 subtype have been shown to have extended survival 
in melanoma cohorts of patients treated with immune checkpoint blockade,33 and the B*07-Cw*07 haplotype, a 
common haplotype in Caucasian populations, was positively associated with the occurrence of GBM.35 No HLA 
supertype was associated with survival. 

1.12. Driver mutations are common sources of tumor neoantigens 

 Tumor-specific antigens, referred to as neoantigens, represent novel peptide sequences encoded by somatic 
mutations in the cancer genome. Neoantigens may be recognized as foreign by T-cells, enabling an immune 
response against the tumor. Across a patient population, those whose tumors have a relatively higher number of 
potential neoantigens are often more likely to respond to immunotherapy, such as checkpoint inhibitors, in various 
cancers.36-38  We performed in silico neoantigen discovery from RNA and DNA sequencing data. Putative tumor-
specific neoantigens derived from expressed, nonsynonymous missense or frameshift mutations are prioritized based 
on predicted expression and binding affinity. We also predicted putative antigens derived from the Toca 511 viral 
genome, which provides another source of potential neoantigens. 

 The number of predicted neoantigens derived from mutated peptides binding to MHC class I or II alleles were 
positively correlated with tumor mutational burden (eFigure 18). Neoantigens in non-hypermutated samples most 
frequently arose from mutations in the following genes, when predicting binding to MHC class II alleles: EGFR (38 
patients), TP53 (31 patients), PTEN (20 patients), IDH1 (17 patients), PIK3CA (6 patients); and when predicting 
binding to MHC class I alleles: TP53 (11 patients), EGFR (11 patients), PTEN (11 patients), PIK3CA (7 patients), 
TTN (6 patients), PTPRZ1 (5 patients) and IDH1 (5 patients). 

 We did not observe treatment related differences in survival for patients with relatively high levels of MHCI (> 
6) or MHCII (> 14) neoantigens (eFigure 20). 

  

1.13. Assessment of tumor purity 

 The tumor microenvironment is a complex milieu including non-neoplastic cells such as fibroblasts, infiltrating 
immune cells, endothelial cells and epithelial cells.39 The fraction of cancer cells in a tumor, called tumor purity, is 
often associated with clinical outcomes.40 We estimated tumor purity from whole exome sequencing data. Tumors 
classified as neural or mesenchymal subtype had significantly lower tumor purity than proneural or classical subtype 
tumors (eFigure 19A), and overall, there was a positive correlation between the total number of mutations called and 
tumor purity (R2=0.22, eFigure 19B). Tumors with no identified driver mutations had lower tumor purity estimates. 
There was a negative correlation between estimated tumor purity and the absolute abundance levels of nearly every 
immune cell type, and total abundance, as determined by iSort (eFigure 19C & D), indicating that tumor purity is in 
large part determined by the abundance of immune infiltrates in Toca 5 tumor samples. 

 We split patients into four groups based on their tumor purity (quartiles) and compared survival curves between 
treatment arms. There was no clear relationship between tumor purity and treatment-related survival (eFigure 14). 
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1.14. Interrelationships among genetic alterations, RNA subtypes and histology 

 There are well-documented inter-relationships among tumor histology, genetic alterations and RNA subtypes in 
HGG.5 We explored these relationships among Toca 5 tumors using pairwise Jaccard correlations as a metric of 
similarity for hierarchical clustering (eFigure 20). The correlations, represented as a heatmap, affirm many 
previously documented observations. For instance, AA histology tracks with mutations in IDH1, TP53 and ATRX 
and is enriched for tumors with a proneural RNA subtype. EGFR mutations and amplification track with the 
classical/AC RNA subtype, W3 CNV subtype, high tumor purity and PTEN deletion. Mesenchymal RNA subtype 
tracks with W2 CNV subtype. Neural/NPC2 RNA subtype is associated with low tumor purity and is not associated 
with specific genetic alterations. 
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2. METHODS AND MATERIALS 

2.1. RNA sequencing 

Tumor pieces were separated from bulk tumor on dry ice and total RNA was subsequently isolated using 
Maxwell 16 Total RNA Purification Kit (Promega AS1050). Phase 3 RNA samples were also further purified using 
Zymo RNA Clean and Concentrator-5 (R1014). RNA integrity was determined using the Tapestation 4200 (Agilent) 
following manufacturer’s recommendations.  

Total RNA was shipped to Cofactor Genomics (http://cofactorgenomics.com, St. Louis, MO) to perform library 
construction and sequencing. Total RNA sample quantity and quality was determined by Qubit 4 Fluorometer 
(Invitrogen, Carlsbad, CA) and Agilent RNA 6000 Nano assay (Agilent Technologies, Sanata Clara, CA) 
respectively. Total RNA library construction was performed using TruSeq Stranded Total RNA Library Prep Gold 
Kit (Illumina, San Diego, CA) according to manufacturer’s instructions: Briefly, rRNA-probes were hybridized to 
total RNA in order to remove nuclear-encoded and mitochondrial contaminating ribosomal RNA from the sample. 
The resulting ribo-depleted RNA was then fragmented. First-strand cDNA synthesis was performed using reverse 
transcriptase and random primers in the presence of Actinomycin D, followed by second-strand cDNA synthesis 
with DNA polymerase I and RNase H. Double-stranded cDNA was end-repaired and A-tailed for subsequent 
adaptor ligation. Indexed adaptors were ligated to the A-tailed cDNA.  Enrichment by PCR was performed to 
generate the final cDNA sequencing library. Libraries were quantified using Qubit 4 Fluorometer (Invitrogen, 
Carlsbad, CA) and quality assessed using Agilent D1000 assay (Agilent Technologies, Sanata Clara, CA). Libraries 
were sequenced as single-end 75 base pair reads on an Illumina NextSeq500 following the manufacturer's protocols. 

2.2. RNA sequencing analysis workflow 

Quantification of RNA expression levels was performed with Kallisto 0.46.0 against “protein coding” 
transcripts in Ensembl GRCh38.87 using the following command line options: --single -b 100 -l 220 -s 60 --rf-
stranded.2  Normalized RNA expression values in the form of TPMs were combined into a dataframe (eDataset 2). 
For gene-centric analyses TPMs for transcripts corresponding to a single ENSEMBL gene_id were summed. TPM 
data were filtered to remove unreliable measurements (average TPM < 3), log2+1 transformed, then mean centered 
across each gene/transcript. 

Sequencing reads were also aligned to the human ENSEMBL reference RNA database and then the human 
genome using STAR,1 on DNAnexus (Palo Alto, CA, USA) platform (version 1.2.0: --quantMode 
TranscriptomeSAM  --outSAMunmapped Within --outSAMattributes NH HI AS NM MD --outSAMstrandField 
intronMotif --outSAMtype BAM SortedByCoordinate --quantMode TranscriptomeSAM GeneCounts).  

Sequencing metrics were obtained using several methods. Qualimap2 was used to obtain basic alignment and 
coverage statistics (rnaseq -a proportional).41 We calculated the fraction of reads mapping to the mitochondrial 
genome (chrM_frac) from the Samtools (version 1.1) idxstats file. We estimated the fraction of reads mapping to 
ribosomal RNAs (rRNA_frac) by mapping the first 1e6 reads in each fastq to a reference genome containing human 
5S, 5.8S, 18S and 28S sequences using BWA mem under default conditions. Quality metrics for each sample are 
available in eDataset 1. 

We used Sleuth v0.30.0 identify mRNAs whose expression tracks with IDH1 mutation status.9 Sleuth was run 
in “gene mode”, such that p-values for transcripts mapping to a single gene were aggregated.  

Identification of functional themes associated with specific sets of mRNAs was performed using the 
hypergeometric distribution using mRNAs with reliable measurements as background. P-values were adjusted with 
Benjamini-Hochberg procedure. Gene sets were obtained from MSigDB: “c5.bp.v6.2.symbols.gmt”. 

 

2.3. Tumor molecular classification 

Four-class gene lists were provided by TCGA GBM consortium leader Roel Veerhak in August 2014. We 
performed hierarchical clustering using the union of the four gene lists (Pearson correlation, average linkage) and 
assigned samples using the top nodes in the dendrogram. An R script for assigning samples to TCGA’s newer 3-
class system was obtained from Wang et al.8 We used a p-value cut-off of 0.2. The six-class classification method 
was based on Neftel, et al.6  
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2.4. Deconvolution of leukocyte populations in tumors using iSort 

Tumor infiltrating leukocytes were enumerated from bulk tumor RNA sequencing using iSortTM (CiberMed, 
Inc.), a gene expression deconvolution framework based on CIBERSORT technology that currently supports the 
detection of twenty-three functionally-defined human immune subsets in bulk tumor expression data, and allows for 
the “relative” quantification of leukocyte composition in relation to total immune content and “absolute” 
quantification of leukocytes in relation to total tumor cellularity.11,12 

 

2.5. Identification of a potential predictive iSort signature 

 For these analyses we used relative iSort values from each patient’s highest quality RNA sample (RIN + 
exon_frac). The R package “glmnet” was used for Cox Lasso regression.42 We identified the optimal binary 
threshold based on finding the maximal log-rank statistic (“maxstat” package in R). Performance metrics were 
determined using R packages “survivalROC” and “riskRegression”. 

 

2.6. Exome sequencing 

Genomic DNA was extracted from tumor or blood using Qiagen Blood and Tissue DNA Purification Kit 
(Qiagen, 69506) and sent to Siemens Healthineers (Berkeley, CA) for library preparation and sequencing. 

Isolated genomic DNA was assessed for quantity and quality using the Agilent 2200 TapeStation with Genomic 
DNA ScreenTape (Agilent, 5067-5365). DNA was sheared using the Covaris M220 Focused-Ultrasonicator to yield 
fragments in the range of 150 to 200 bp, which was confirmed using the D1000 ScreenTape (Agilent, 5067-5582). 
Following end repair, A-tailing, and ligation with sequencing adapters, the libraries were amplified by PCR and 
purified using AMPure XP paramagnetic particles (Beckman Coulter, A63881). 

SureSelectXT Human All Exon V6+Cosmic (Agilent, 5190-9307) and SureSelectXT2 Reagent Kits (Agilent, 
G9621B) were utilized for enrichment. After purification using Dynabeads Streptavidin T1 (Thermo Fisher, 65602), 
the libraries were amplified and enriched a second time.  

Libraries were then pooled at ratios to provide sufficient reads for both tumor (75% of targeted bases were 
covered at 50X) and blood (75% of targeted bases were covered at 30X for blood) samples. PhiX DNA (Illumina, 
FC-110-3001) was added before pair-end sequencing using Illumina NextSeq 500 sequencers and NextSeq® 
500/550 High Output v2 (150 cycles) flow cells (Illumina, FC-404-2002).  

 

2.7. Exome sequencing analysis workflow 

Sequencing data were processed on the DNAnexus platform. Reads were aligned to the human genome (hg19) 
with BWA-MEM (version 0.7.12) using default parameters.43,44 Duplicates were removed from sorted bam files 
(Samtools version 1.1)45 with PicardTools MarkDuplicates (version 2.0.1). Point mutations and indels were 
identified with MuSE (1.0rc) and Sentieon (201611) using default settings.46,47 VCF files were filtered against 
variants in dbSNP138 (after removing variants with SAO flags of 2 or 3), Exome Sequencing Project v. 6500, and 
1000 Genomes Project phase 1 indels, using VCFtools (version 0.1.15).48 VCF files were then filtered to retain only 
“PASS” variants and annotated using SnpEff (version 4.3.2).49 

We primarily utilized a single variant caller, Sentieon, which mirrors the GATK workflow, but also considered 
information from variant calls made by MuSE to filter out lower quality SNVs. The union of “moderate” and “high” 
impact mutations (called by SnpEff) from both variant callers, MuSE and Sentieon, was used to calculate the total 
number of mutations and identify driver mutations. Custom python scripts were used to parse annotated variant 
output, determine the trinucleotide context of each mutation, calculate information about driver mutations, and 
generate plots. Samtools (version 1.1) mpileup command was used to identify TERT promoter mutations.45 A 
sample was considered to contain a TERT promoter mutation C228 (chr5:1295228) or C250 (chr5:1295250) if the 
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alternate allele was present in at least one read. SigProfiler was used to deconvolute mutational signatures based on 
the trinucleotide context of mutations in a tumor sample.26 A diagram of the workflow is shown in eFigure 3. 

Qualimap2 (version 1.1.0) was used to obtain basic alignment and coverage statistics.41 Samples were flagged 
and re-sequenced if the variants called were unexpectedly high in number and were mostly annotated germline 
variants, indicating a possible sample mix-up. After re-sequencing these samples, tumor-normal pairings were 
confirmed by calculating the correlation between raw FASTQ files using NGSCheckMate (version 1.0).50 

2.8. Identification of copy number variants 

Exome data was analyzed for CNVs using CNVkit (version 0.9.1).51 Copy number subtypes were defined by 
four genetic loci: gain of whole chromosome 1 (gChr1), gain of whole chromosome 19 (gChr19), and co-
amplification of CDK4/MDM2 (caCDK4/MDM2); subtypes were called according to the algorithm described in 
Cimino et al. 2018,22 as follows: W1 = [No gChr1 + No gChr19 + caCDK4/MDM2] or [gChr1 + caCDK4/MDM2]; 
W2 = [No gChr1 + No gChr19 + No caCDK4/MDM2]; W3 = [No gChr1 + gChr19] or [gChr1 + No 
caCDK4/MDM2]. The copy number variant calling threshold was determined by calculating the threshold that 
would call a known 1p/q19 codeletion, which was identified in a pathology report, in one patient from a phase I 
study. This threshold was a log2-scale copy number ratio of 0.14. Copy number subtypes in TCGA dataset were 
obtained from Cimino et al. 2018.22 Heatmap plots were generated with the ‘heatmap’ command in CNVkit with 
segment files. 

2.9. Estimating tumor purity 

Tumor purity estimates were obtained using R packages BubbleTree (version 2.10.0) and SciClone (version 
1.1.0) (Bioconductor version 3.7).52,53 For SciClone, the highest cluster means under 0.5 were considered, and if one 
of the estimates was close to the estimated obtained using BubbleTree, that was considered to be the correct tumor 
purity estimate. If estimates between the two tools did not match, the entire range of possible tumor purity estimates 
was considered. The ranges for tumor purity indicated in eFigure 19 are the range of possible tumor purity estimates 
obtained by SciClone and BubbleTree. The mid-range was used for calculating correlation with other variables and 
for plotting figures. Calculating statistical significance for tumor purity versus expression-based molecular subtype 
was done using a one-way ANOVA, and pairwise t-tests between categories. 

2.10. Determining HLA allele zygosity 

Raw reads from blood and tumor sample whole exome sequencing data were merged using Samtools version 
1.1.45 HLA typing was performed on merged FASTQ files using HLA-HD version 1.2.0.154 using the IPD-
IMGT/HLA database version 3.36.0.55 The output was parsed using custom python scripts, and whether a patient 
was heterozygous or homozygous for a HLA class I allele was determined based on the 4-digit type. 

2.11. Neoantigen calling workflow 

We identified putative neoantigens by implementing the in silico workflow (strategy IV) described in Karasaki 
et al. 2017.56 Briefly, proteins were filtered for those that are expressed in RNA-seq data (average TPM  > 1) and 
also showing expression of the mutant peptide (threshold for mutant allele frequency > 0.04). Next, K-mers 
surrounding each mutation were generated using custom python scripts, and the binding strength between each K-
mer and a patient’s HLA alleles was calculated using NetMHCpan version 3.0 for HLA class I alleles and 
NetMHCIIpan version 4.0 for HLA class II alleles.57,58 Mutant peptides with a binding score > 0.5 were considered 
strong binders for MHC class I alleles, and peptides with an affinity IC50 < 500 nM were considered strong binders 
for MHC class II alleles. 

 

2.12. Flow Cytometry immunophenotyping   

Peripheral blood mononuclear cells (PBMCs) were isolated from venous blood within 48 hours of collection using 
Vacutainer CPT™ Cell Preparation Tube with Sodium Heparin (BD Biosciences). PBMCs were cryopreserved in 
RPMI 1640 (Cellegro) with 12.5% human serum albumin (Gemini bio-products) and 10% DMSO (Sigma), and then 
stored in vapor phase liquid nitrogen until needed. Samples were de-identified during processing by assigning lab ID 
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numbers, and then analyzed in random order by technicians blind to sample identities. Thawed PBMCs were rested 
overnight (16-20 hours) at 37oC with 5% CO2 with a density of approximately 1E+06 cells per mL in 25cm2 flasks 
(Corning) in AIMV media (Gibco) containing  10% human serum, (Sigma) and ≥1000U/mL IL-2.  After resting, 
1E+05 to 5E+05 PBMCs were transferred to each well of 96-well U-bottom polypropylene plates (Costar). To 
prepare fluorescence minus one (FMO) controls, multiple PBMC samples were pooled from each batch. Single color 
controls were prepared using UltraComp eBeads (Invitrogen) and ArC Amine Reactive Compensation beads 
(Invitrogen) according to manufacturer’s instructions. In addition, a healthy PBMC control sample was run with 
every batch to track variability in results.  Samples were stained with LIVE/DEAD Fixable Green Dead Cell Stain 
kit (Invitrogen), Fc blocked using Human TruStain FcX™ (Biolegend), surface stained using fluorochrome-
conjugated antibodies (Biolegend, eBioscience and BD Biosciences), fixed and permeabilized using 
Foxp3/Transcription Factor Staining Buffer Set staining kit (eBioscience), and then stained intracellularly using 
fluorochrome-conjugated antibodies (Biolegend, eBioscience and BD Biosciences). Data were acquired using a BD 
Biosciences LSRFortessaTM X-20 flow cytometer equipped with high throughput sampler (HTS) and Fluidics Flow 
Supply System (FFSS). At least 10,000 events per sample replicate was acquired using BD FACSDiva software 
version 8.0.1. (BD Biosciences), and compensation was performed using single color controls prior to exporting 
FCS files. Cell population gating was carried out using FlowJo™ v10.5.3 (Tree Star Inc.) using FMO controls and 
unstained samples to determine cutoffs for positive and negative events. Statistical analyses and graphical 
visualizations were performed using R version 3.4.1 or later 59, with data converted from wide format to long format 
using the reshape and reshape2 packages60,61 in order to facilitate plotting using ggplot262 . 
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3. DATASETS 
eDataset 1. RNA sequencing quality metrics. 

eDataset 2. RNA sequencing TPM values. 

eDataset 3. Summary of patients RNA and DNA sequencing analyses. 

eDataset 4. Absolute iSort results. 

eDataset 5. Relative iSort results. 

eDataset 6. High-confidence protein impacting mutations. 

eDataset 7. Exome sequencing coverage summary. 

eDataset 8. CNV values for a subset of loci. 
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4. LIST OF ABBREVIATIONS 
 

AA anaplastic astrocytoma 

CNV copy number variant 

GATK Genome Analysis Tool Kit 

GBM glioblastoma 

HGG high-grade glioma 

NGS next-generation sequencing 

OS overall survival 

SNV single-nucleotide variant 

ssGSEA single sample Gene Set Enrichment Analysis 

TCGA The Cancer Genome Atlas 

Toca 511 vocimagene amiretrorepvec 

Toca FC extended-release 5-fluorocytosine 

TPM transcripts per million 
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eFigure 1. Kaplan-Meier overall survival curve with Toca FC cycle numbers.  
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eFigure 2. Kaplan-Meier overall survival curve for pre-planned subpopulations  

A. IDH1 mutant subpopulation 

B. AA subpopulation  

C. Second recurrence  
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eFigure 3. Kaplan-Meier overall survival curve for subpopulations within the 
second recurrence. 

A. IDH1 mutant subpopulation 

B. AA subpopulation  
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eFigure 4. Workflow for whole exome sequencing and RNA sequencing data 
analyses.  
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eFigure 5. Quality assessment of phase 2 and phase 3 portions of Toca 5 tumor 
RNA sequencing. 
(A) Violin plots of RIN values from phase 2 (red) and phase 3 (blue) tumor samples.   
(B) Violin plots of the number of reads that mapped to reference mRNA set and/or human genome 

from phase 2 and phase 3 tumor samples. 
(C) Violin plots of the fraction of mapped reads that mapped to annotated exons from phase 2 and 

phase 3 tumor samples. 
(D) Violin plots of the fraction of mapped reads that mapped to “intergenic regions” from phase 2 and 

phase 3 tumor samples. 
(E) Scatterplot of the first two principal components of the RNA sequencing dataset. Samples are 

color-coded by phase. 
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eFigure 6. Assessment of Toca 5 RNA sequencing data quality. 
(A) Heatmap representation of pairwise Spearman rank correlations between various RNA quality 

and sequencing metrics and the first ten principal components of the RNA expression dataset.  
(B) Barplot showing the variance explained by first ten principle components of Toca 5 RNA 

sequencing dataset. 
(C) Scatterplot between first and third principle components in RNA expression dataset highlighting 

that outlier samples tend to have anomalously low RNA quality (RIN < 4) and/or low fraction of 
reads that map to annotated protein coding exons (exon_frac < 0.2). Thus samples that met 
these criteria were flagged (red) and not used for subsequent analyses.  
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eFigure 7. Boxplot comparing intra-tumor Pearson correlations in mRNA 
expression versus inter-tumor Pearson correlations in mRNA expression.  
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eFigure 8. mRNA expression profiles of Toca 5 tumors. 
Unsupervised hierarchical clustering of mRNA expression across 838 Toca 5 tumor samples from 319 
biopsies. Many of the 2794 mRNAs in this set (selected for standard deviation in top quartile) fell into one 
of seven distinct clusters (marked by colored bars to the left of the heatmap) that included mRNAs with 
common functional themes, as indicated. Above the heatmap we included the cognate patient’s histology, 
recurrence and treatment response. Additionally, we show molecular classifications of the tumor samples 
using three different methods (4-class system based on clustering, 3-class system from TCGA using 
ssGSEA and 6-class system based on single cell RNA sequencing). 
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eFigure 9. Molecular classification of Toca 5 tumor samples. 
(A) Bar plot showing the number of AA and GBM samples in each molecular subtype as defined by 

clustering.  
(B) Bar plot showing the number of AA and GBM samples in each molecular subtype as defined by 

3-class TCGA method. 
(C) Bar plot showing the number of AA and GBM samples in each molecular subtype as defined by 

single-cell RNA sequencing. 
(D) Bar plot showing the number of 1st and 2nd recurrence samples in each molecular subtype as 

defined by clustering.  
(E) Bar plot showing the number of 1st and 2nd recurrence samples in each molecular subtype as 

defined by 3-class TCGA method. 
(F) Bar plot showing the number of 1st and 2nd recurrence samples in each molecular subtype as 

defined by single-cell RNA sequencing. 
(G) Bar plot showing the number of standard of care and Toca 511 and Toca FC treatment arm 

samples from 2nd recurrence tumors in each molecular subtype as defined by clustering.  
(H) Bar plot showing the number of standard of care and Toca 511 and Toca FC treatment arm 

samples from 2nd recurrence tumors in each molecular subtype as defined by 3-class TCGA 
method. 

(I) Bar plot showing the number of standard of care and Toca 511 and Toca FC treatment arm 
samples from 2nd recurrence tumors in each molecular subtype as defined by single-cell RNA 
sequencing.  
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eFigure 10. Relationships between patients’ tumor molecular classification and 
survival.  
For this analysis the tumor sample from each biopsy with the highest RNA quality (RIN + fraction of reads 
mapping to exons) was used. The forrest plots show the hazard ratio between the Toca 511/FC arm and 
standard of care along with 95% confidence intervals. 
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eFigure 11. Sequencing coverage metrics across targeted regions for normal and 
tumor samples. 
The target region comprises 66MB as defined by the Agilent SureSelect V6+ kit used for target capture. 

(A) Mean depth of coverage across targeted regions. Samples on the left half are from DNA isolation 
from blood (normal) and samples on the right half are from DNA isolated from tumor. 

(B) Percentage of targeted bases covered at a given depth. The red dashed line indicates the target 
coverage threshold. For blood samples (left side of plot), the goal was at least 75% of targeted 
bases covered at 30x, and for tumor samples, at least 75% of targeted bases covered at 50x. 
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eFigure 12. Summary of DNA sequencing analyses of Toca 5 tumors. 
(left to right) Patients are ordered by number of recurrences and CNV subtype. The first four columns 
show clinical features, including eligibility for Phase III trial (Toca 5 eligible – green), tumor grade as 
determined by a clinical site pathologist (grade IV – grey, grade III – black), number of recurrences, 
response (CR – green, PR – yellow-green, SR – yellow, PD – orange). The next 6 columns summarize 
molecular subtype calculated from RNA sequencing results: molecular subtype (mesenchymal – red, 
classical – black, neural – green, proneural – blue). Molecular subtype was calculated according to three 
different methods, and different colors in the two columns for each method indicate that the classifications 
differed between samples from the same patient. The next column indicates CNV subtype, which was 
determined from exome data. The next column shows whether the patient was homozygous or 
heterozygous for an HLA class I or class II allele (heterozygous – green, homozygous – orange, 
indeterminate – yellow, data not available – light grey). The next block of columns summarizes mutations 
of key glioma-associated genes as determined by exome sequencing. Mutations are shown if a variant 
was called in either tumor sample by either variant caller. In case of multiple annotations, the most 
deleterious predicted consequence is indicated. The next two columns indicate whether there were TERT 
promoter mutations (C228T or C250T) present, if coverage was sufficient. The first bar plot shows the 
total number of high confidence mutations, and specifically, the union of moderate and high impact 
variants called from exome data by either variant caller, and in case of multiple samples, values indicate 
the mean of multiple samples. The second bar plots shows the number of predicted neoantigens based 
on binding of mutated peptides to HLA class II molecules. The last bar plot indicates the range of tumor 
purity estimates obtained by two different tools for each sample from a given patient. The heat map 
shows copy number variants commonly amplified or lost in GBM. Shades of red (gains) and blue (losses) 
indicate log2 ratios and are shown on a log scale. If a chromosomal region contains a gene associated 
with GBM, the gene name is given in parentheses. Abbreviations: OS, overall survival; CNV, copy 
number variant; mut, mutation; CR, complete response; PR, partial response; SD, stable disease; PD, 
progressive disease; HLA, human leukocyte antigen. 
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eFigure 13. Comparison of genetic profiles from 1st and 2nd recurrence tumors. 
(A) Barplot showing the percentage of patients in 1st (lighter blue) or 2nd (darker blue) recurrence 

with EGFR mutation (right). The numbers above the barplots are the number of patients 
represented in the bar. There is not a significantly higher fraction of patients with EGFR mutations 
in 2nd recurrence compared to 1st recurrence (Fisher Exact test). 

(B) Same as (A) except for TP53 mutations. No significant difference. 
(C) Same as (A) except for PIK3CA mutations. P = 0.007. 
(D) Same as (A) except for PTEN mutations. No significant difference. 
(E) Same as (A) except for NF1 mutations. P = 0.005 
(F) Same as (A) except for RB1 mutations. No significant difference. 
(G) Same as (A) except for CNV subtype. P = 0.02. 
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eFigure 14. Comparison of genetic profiles from 2nd recurrence patients in the two 
treatment arms. 
(A) Barplot showing the number of 2nd recurrence patients in standard of care (black) or Toca 

511/FC (green) arms with EGFR mutations (right). No significant difference. 
(B) Same as (A) except for TP53 mutations. No significant difference. 
(C) Same as (A) except for PIK3CA mutations. No significant difference. 
(D) Same as (A) except for PTEN mutations. No significant difference. 
(E) Same as (A) except for NF1 mutations. No significant difference. 
(F) Same as (A) except for RB1 mutations. No significant difference. 
(G) Same as (A) except for CNV subtype. No significant difference. 
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eFigure 15. Relationships between tumor DNA alterations and survival.  
For the mutation burden group, hypermutant tumor is defined as having > 1000 high-confidence 
mutations; for tumors with > 6 MHC1 neoantigens or > 14 MHCII neoantigens, hypermutant tumors were 
excluded. The forrest plots show the hazard ratio between the Toca 511/FC arm and standard of care 
along with 95% confidence intervals. 
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eFigure 16. Tumor copy number variants inferred from exome sequencing data. 
Red and blue lines indicate gain and loss events, respectively. 
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eFigure 17. CNV subtypes for IDH1-wildtype GBM patients. 
Barplots show the distribution of CNV subtypes in IDH1-wildtype Toca 5 patients compared to those of 
two published GBM cohorts from The Cancer Genome Atlas (TCGA) and German Glioma Network 
(GGN). The W3 subtype (best survival) is underrepresented in Toca 5 relative to the other two cohorts. 
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eFigure 18. Mutational signatures in hypermutated tumors. 
Barplots showing the number of high-confidence mutations color-coded by the predicted source, as 
determined by SigProfiler. Tumors with >1000 mutations are shown. The proposed etiology for each SBS 
signature, from COSMIC, is defined in eTable 6. SBS 11 exhibits a mutational pattern resembling that of 
alkylating agents. Patient histories indicate an association between previous treatment with the alkylating 
agent temozolomide and SBS11 mutations. 
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eFigure 19. Number of predicted tumor neoantigens correlates with tumor 
mutational burden. 
The number of neoantigens predicted to bind to a patient’s HLA molecules correlates with the number of 
high-confidence SNVs and indels called from exome data.  
(A) Neoantigens predicted to bind to MHC class I molecules only.  
(B) Neoantigens predicted to bind to MHC class II molecules only. 
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eFigure 20. Relationships between tumor purity and molecular subtype. 
(A) Box plot showing tumor purity estimates from whole-exome sequencing data categorized 

according to consensus molecular subtype based on RNA sequencing. Asterisks indicate p-value 
< 1e-8. 

(B) Scatterplot showing the correlation between tumor purity estimates (mid-range) and the mean 
number of somatic mutations. Green horizontal bars indicate the range of possible tumor purity 
estimates for a given patient, as calculated by two different tools. 

(C) Barplots showing correlations between tumor purity (mid-range) and absolute levels of various 
immune cell types in tumor samples as measured by iSort. 

(D) Scatterplot showing details of the correlation between tumor purity and total absolute levels of 
immune cells that was shown in (C). Each point represents a single patient, points are colored 
according to the consensus molecular subtype; split colors indicate a tie between two molecular 
subtypes. Colors indicate the following molecular cell types: green, neural; blue, proneural; red, 
mesenchymal; black, classical. 
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eFigure 21. Pairwise correlations among genetic alterations, RNA subtypes and 
histology.  
Genetic alterations and RNA subtypes are defined in eFigure 10 and eFigure 7, respectively. 
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eFigure 22. Relative and absolute abundance of leukocyte populations in Toca 5 
tumors. 
(A) The relative levels of 23 leukocyte populations as measured by iSort in Toca 5 tumors grouped by 

molecular subtype (clustering).  
(B) The estimated absolute levels (% of all cells in tumor sample) of 23 leukocyte populations as 

measured by iSort in Toca 5 tumors grouped by molecular subtype (clustering). 
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eFigure 23. mRNA expression differences between IDH1 mutant tumors and IDH1 
wild-type tumors.  
For this analysis the tumor sample from each biopsy with the highest RNA quality (RIN + fraction of reads 
mapping to exons) was used. 
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eFigure 24. Comparison between treatment-arms of immune cell population levels 
in tumors at time of surgery as measured by iSort.  
(A) The relative percent total of each of 23 immune cell populations in AA tumors from patients on 

standard of care (grey) and Toca 511 and Toca FC (green) are shown as boxplots. 
(B) The relative percent total of each of 23 immune cell populations in IDH1 mutant tumors from 

patients on standard of care (grey) and Toca 511 and Toca FC (green) are shown as boxplots. 
(C) The relative percent total of each of 23 immune cell populations in second recurrence tumors 

from patients on standard of care (grey) and Toca 511 and Toca FC (green) are shown as 
boxplots. 
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eFigure 25. Stratification of patients based on tumor immune cell levels inferred 
by iSort. 
(A) Kaplan-Meier curves of patients stratified by “High” and “Low” immune signature score and by 

treatment arm. 
(B) Summary of the survival curves. 
(C) Summary of the predictive value of the immune signature stratification. 

  



   

© 2020 American Medical Association. All rights reserved. 

 
 

 
 
 
 
 
 
 

 
 
 

 
 
 
eFigure 26. Differences in immune cell composition between IDH1 mutant 
tumors and IDH1 wildtype tumors. 
The relative levels of 23 immune cells were determined by iSort analyses of tumor RNA sequencing 
data.  
(A) IDH1 mutant tumors (purple) have significantly lower levels of M0 macrophages than IDH1 wild-
type tumors (dark gray) (P < 1e-10, Mann-Whitney test). 
(B) IDH1 mutant tumors have significantly higher levels of CD4 memory-resting T-Cells than IDH1 
wild-type tumors (P < 1e-9). 
(C) IDH1 mutant tumors have significantly higher levels of resting NK cells than IDH1 wild-type 
tumors (P < 1e-4).  
(D) IDH1 mutant tumors have significantly higher levels of resting dendritic cells than IDH1 wild-type 
tumors (P < 1e-4). 
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eFigure 27. Differences in immune cell and neoantigen composition between AA 
tumors and GBM tumors.  
The relative levels of 23 immune cells were determined by iSort analyses of tumor RNA sequencing data.  
(A) AA tumors (violet) have significantly lower levels of M0 macrophages than GBM tumors (navy 

blue) (p < 1e-6, Mann-Whitney test). 
(B) AA tumors have significantly higher levels of naïve B cells than GBM tumors (p < 1e-4). 
(C) AA tumors have significantly higher levels of resting CD4 memory-resting T-cells than GBM 

tumors (p < 1e-4). 
(D) AA tumors have significantly lower levels of follicular help T-cells than GBM tumors (p < 1e-4). 
(E) AA tumors have significantly higher levels of monocytes than GBM tumors (p < 1e-3). 
(F) AA tumors have significantly higher levels of activated dendritic cells than GBM tumors (p = 

0.007). 
(G) AA tumors have significantly higher levels of resting NK-cells GBM tumors (p = 0.01). 
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eFigure 28. Differences in immune cell composition between first and second 
recurrence tumors.  
The relative levels of 23 immune cells were determined by iSort analyses of tumor RNA sequencing data.  
(A) Second recurrence tumors (darker blue) have significantly higher levels of activated dendritic 

cells than first recurrence tumors (lighter blue) (p = 0.001, Mann-Whitney test). 
(B) Second recurrence tumors have significantly higher levels of resting NK cells than first recurrence 

tumors (p = 0.003). 
(C) Second recurrence tumors have significantly higher levels of naive CD4 T-cells than first 

recurrence tumors (p = 0.003). 
(D) Second recurrence tumors have significantly higher levels of follicular memory-resting CD4 T-

cells than first recurrence tumors (p = 0.005). 
(E) Second recurrence tumors have significantly lower levels of regulatory T-cells than first 

recurrence tumors (p = 0.007). 
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eFigure 29. Differences in peripheral immune cell composition between IDH1 
widltype and IDH1 mutant patients. 
The relative levels of peripheral immune cells were determined by FLOW analyses from patients’ 
peripheral blood mononuclear cells.  
(A) T cell population 
(B) Naïve T cell population 
(C) CD8 T cell population 
(D) Effector CD8 T cell population 
(E) Naïve CD8 T cell population 
(F) CD56dim NK cell population 
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eFigure 30. Differences in peripheral immune cell composition between AA and 
GBM patients. 
The relative levels of peripheral immune cells were determined by FLOW analyses from patients’ 
peripheral blood mononuclear cells.  
(A) Overall PBMC population 
(B) T cell population 
(C) Naïve T cell population 
(D) CD8 T cell population 
(E) Naïve CD8 T cell population 
(F) Non-classical monocyte population 
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eFigure 31. Differences in peripheral immune cell composition between patients 
at first and second recurrence.  
The relative levels of peripheral immune cells were determined by FLOW analyses from patients’ 
peripheral blood mononuclear cells.   
(A) Overall PBMC population 
(B) T cell population 
(C) Effector memory T cell population 
(D) Naïve T cell population 
(E) Effector T cell population 
(F) CD8 T cell population 
(G) Effector CD8 T cell population 
(H) Naïve CD8 T cell population 
(I) Monocyte population 
(J) Classical monocyte population 
(K) Myeloid derived suppressor cell population 
(L) M0 Myeloid derived suppressor cell population 
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eFigure 32. Baseline peripheral immune balance between the control arm and the 
Toca 511/FC arm  
The relative levels of peripheral immune cells were determined by FLOW analyses from patients’ 
peripheral blood mononuclear cells.   
(A) Ki67+ PBMC population 
(B) T cell population 
(C) ICOS+ T cell population 
(D) Ki67+ T cell population 
(E) Effector T cell population 
(F) CD4 T cell population 
(G) ICOS+ CD4 T cell population 
(H) Ki67+ CD4 T cell population 
(I) CD8 T cell population 
(J) Effector memory CD8 T cell population 
(K) Effector CD8 T cell population 
(L) Naïve CD8 T cell population 
(M) CD56dim NK cell population 
(N) Monocyte population 
(O) Classical monocyte population 
(P) Dendritic cell population 
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eTable 1. Baseline demographics and neuro-oncology history for Phase 2 and 
Phase 3 patients.  

 Phase 2 (N=187) Phase 3 (N=216) 

 Toca 511 
and Toca 
FC (N=93) 

Standard of 
Care (N=94) 

Total 
(N=187) 

Toca 511 
and Toca 

FC (N=108) 

Standard of 
Care 

(N=108) 

Total 
(N=216) 

Age (Years) 
Median 

55.0 56.0 56.0 58.5 56.0 58.0 

<65 73(78.5%) 75 (79.8%) 148 (79.1%) 82 (75.9%) 89 (82.4%) 171 (79.2%) 

≥65 20 (21.5%) 19 (20.2%) 39 (20.9%) 26 (24.1%) 19 (17.6%) 45 (20.8%) 

Sex 

Male 61 (65.5%) 57 (60.6%) 118 (63.1%) 64 (59.3%) 70 (64.8%) 134 (62.0%) 

Female 32 (34.4%) 37 (39.4%) 69 (36.9%) 44 (40.7%) 38 (35.2%) 82 (38.0%) 

Race 

White 80 (86.0%) 83 (88.3%) 163 (87.2%) 94 (87.0%) 90 (83.3%) 184 (85.2%) 

KPS Category 

70-80 28 (30.1%) 30 (31.9%) 58 (31.0%) 36 (33.3%) 36 (33.3%) 72 (33.3%) 

90-100 65 (69.9%) 64 (68.1%) 129 (69.0%) 72 (66.7%) 72 (66.7%) 144 (66.7%) 

Tumor Histology at Study Entry from Investigator 

Glioblastoma 72 (77.4%) 78 (83.0%) 150 (80,2%) 86 (79.6%) 98 (90.7%) 184 (85.2%) 

Anaplastic 
Astrocytoma 

17 (18.3%) 14 (14.9%) 31 (16.6%) 21 (19.4%) 10 (9.3%) 31 (14.4%) 

IDH1 Mutation Status 

Present 
(Mutant) 

15 (16.1%) 17 (18.1%) 32 (17.1%) 12 (11.1%) 14 (13.0%) 26 (12.0%) 

Absent 
(Wildtype) 

78 (83.9%) 77 (81.9%) 155 (82.9%) 96 (88.9%) 94 (87.0%) 190 (88.0%) 
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 Phase 2 (N=187) Phase 3 (N=216) 

 Toca 511 
and Toca 
FC (N=93) 

Standard of 
Care (N=94) 

Total 
(N=187) 

Toca 511 
and Toca 

FC (N=108) 

Standard of 
Care 

(N=108) 

Total 
(N=216) 

Number of Recurrence 

One 78 (83.9%) 78 (83%) 156 (83.4%) 95 (88.0%) 92 (85.2%) 187 (86.6%) 

Two 15 (16.1%) 16 (17.0%) 31 (16.6%) 13 (12.0%) 16 (14.8%) 29 (13.4%) 
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eTable 2. Toca FC and SOC cycle numbers and schedule for patients.  
 

 Toca 511 and 
Toca FC Arm 

Standard of Care Arm 

Number of 
cycles 
treatment 

Toca FC Metronomic 
TMZ 

TMZ Lomustine Bevacizumab 

n 197 18 31 66 26 

Mean (SD) 3.4 (3.36) 4.7 (3.80) 4.4 (3.64) 2.3 (1.68) 6.2 (5.49) 

Median 2 3 3 2 4 

Min, Max 1, 21 1, 11 1, 15 1, 7 1, 24 

Drug dosing 
schedule 

Every 6 weeks Every day Every 4 weeks  Every 6 weeks Every 2 weeks 

Cycle length 6 weeks 4 weeks 4 weeks  6 weeks 4 weeks 
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eTable 3. Secondary endpoints for Toca 5 randomized clinical trial.   

 

 Toca 511 and 
Toca FC (N=201) 

Standard of Care 
(N=202) 

HR (95% CI) P-value 

Durable response 
rate (%) 

5 (2.5%) 9 (4.5%) NA 0.4156 

Durable clinical 
benefit rate (%) 

5 (2.5%) 9 (4.5%) NA 0.4156 

Duration of 
durable response 
(months) 

11.17  6.93 0.59 (0.14, 2.56) 0.5161 

OS-12 (%) 45.6 51.4 NA 0.2848 
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eTable 4. Baseline patient characteristics for patients in second recurrence. 
 

 Toca 511 and Toca FC 
(N=28) 

Standard of Care 
(N=32) 

Total                     
(N=60) 

KPS Category 

70-80 8 (28.6%) 8 (25.0%) 16 (26.7%) 

90-100 20 (71.4%) 24 (75.0%) 44 (73.3%) 

IDH1 Mutation Status 

Present (Mutant) 8 (28.6%) 10 (31.3%) 18 (30.0%) 

Absent (Wildtype) 20 (71.4%) 22 (68.8%) 42 (70.0%) 

1p/19q Co-Deletion Status 

Present (Co-Deletion) 0 (0%) 0 (0%) 0 (0%) 

Absent (No Co-
Deletion) 

28 (100%) 32 (100%) 60 (100%) 

Tumor Histology at Study Entry 

Anaplastic Astrocytoma 7 (11.7%) 6 (10.0%) 13 (21.7%) 

Glioblastoma 21 (35.0%) 26 (43.3%) 47 (78.3%) 

Total 28 (46.7%) 32 (53.3%) 60 (100%) 
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eTable 5. Toca 511 viral RNA and DNA signal by cycle.  
 

 Viral RNA Signal 

(RT-PCR) 

Viral DNA Signal 

(qPCR) 

Post-Surgery 134/189 (70.9%) 1/184 (0.5%) 

Cycle 1 Day 1 18/184 (9.8%) 8/178 (4.5%) 

Cycle 2 Day 1 1/146 (0.7%) 1/139 (0.7%) 

Cycle 4 Day 1 0/24 (0%) 0/19 (0%) 

Cycle 8 Day 1 0/11 (0%) 0/10 (0%) 

Cycle 12 Day 1 0/2 (0%) 0/2 (0%) 

Cycle 16 Day 1 0/24 (0%) 0/4 (0%) 

End of Treatment1 1/108 (0.9%) 3/103 (2.9%) 

1End of treatment samples were either from Cycle 1 Day 1 or Cycle 2 Day 1 time points. 
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eTable 6. Proposed etiology for SBS Mutational signatures, from COSMIC. 

Signature Proposed etiology 

SBS 01 

An endogenous mutational process initiated by spontaneous or enzymatic deamination of 
5-methylcytosine to thymine which generates G:T mismatches in double stranded DNA. 
Failure to detect and remove these mismatches prior to DNA replication results in fixation 
of the T substitution for C. 

SBS 03 

Defective homologous recombination-based DNA damage repair which manifests 
predominantly as small indels and genome rearrangements due to abnormal double strand 
break repair but also in the form of this base substitution signature. 

SBS 05 
Unknown. SBS5 mutational burden is increased in bladder cancer samples with ERCC2 
mutations and in many cancer types due to tobacco smoking. 

SBS 07b 

SBS7a/SBS7b/SBS7c/SBS7d are found in cancers of the skin from sun exposed areas and 
are likely to be due to exposure to ultraviolet light. SBS7b may possibly be the 
consequence of just one of the two major known UV photoproducts, cyclobutane pyrimidine 
dimers or 6-4 photoproducts. However, there is no evidence for this hypothesis and it is 
unclear which of these photoproducts may be responsible for SBS7b. 

SBS 07d 

SBS7a/SBS7b/SBS7c/SBS7d are found in cancers of the skin from sun exposed areas and 
are likely to be due to exposure to ultraviolet light. SBS7d is possibly the consequence of 
translesion DNA synthesis by error-prone polymerases with greater propensity to insert G, 
rather than A, opposite UV light induced thymidine and cytidine photodimers. 

SBS 08 Unknown. 
SBS 10b Polymerase epsilon exonuclease domain mutations. 

SBS 11 

SBS11 exhibits a mutational pattern resembling that of alkylating agents. Patient histories 
indicate an association between previous treatment with the alkylating agent temozolomide 
and SBS11 mutations. 

SBS 12 Unknown. 

SBS 13 

SBS13 is closely associated with SBS2. SBS13 is also associated with DBS11, which is 
characterised predominantly by CC>TT doublet base substitutions as well as other CC>NN 
doublet base substitutions. 

SBS 14 Concurrent polymerase epsilon mutation and defective DNA mismatch repair. 
SBS 15 Defective DNA mismatch repair. 
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