SUPPORTING INFORMATION

Theoretical prediction and synthesis of a family of atomic laminate metal borides with in-plane chemical ordering

Martin Dahlqvist,* Quanzheng Tao, Jie Zhou, Justinas Palisaitis, Per O.Å. Persson, Johanna Rosen*

Thin Film Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden

* corresponding authors: martin.dahlqvist@liu.se, johanna.rosen@liu.se

Figure S1. Convergence of relative (a) energy and (b) lattice parameters *a* and *c* for $Mo_{4/3}Y_{2/3}AlB_2$ ($R\bar{3}m$) as compared to largest *k*-point grid (43x43x9) considered as function of *k*-point grid. Dashed vertical line indicate the *k*-point density used in this work. Convergence with respect to *k*-point density used in this work is reached as indicated by the yellow area marked in (a) for an energy interval of 0.1 meV/atom and in (b) for a lattice parameter interval of 0.001 Å.

М	$\Delta H_{cp}[Cmmm]$ (meV/atom)	$\frac{\Delta H_{\rm cp}[P\bar{6}m2]}{({\rm meV/atom})}$	Equilibrium simplex
Sc	42	88	ScB ₂ , ScAl
Y	59	131	YB ₂ , Y ₂ Al, YAl ₂
Ti	26	14	TiAl, TiB ₂
Zr	73	63	ZrB ₂ , Zr ₂ Al3, Zr4Al ₃
Hf	77	35	HfB ₂ , HfAl ₂ , Hf ₄ Al ₃
V	102	73	V_5B_6 , VAl_3
Nb	143	56	NbB, Nb ₃ B ₄ , NbAl ₃
Та	190	75	TaB, Ta ₃ B ₄ , TaAl ₃
Cr	-13	118	CrAlB, Cr ₄ AlB ₄
Mo	18	98	MoAlB, Mo ₄ AlB ₄
W	52	143	WAlB, WB
Mn	-67	82	MnB, MnB4, Mn4Al11
Fe	-78	4	FeAlB, FeB
Co	55	120	CoB, B, CoAl

Table S1. Calculated formation enthalpy ΔH_{cp} for M_2AlB_2 with *Cmmm* and $P\bar{6}m2$ symmetry (in meV/atom) along with identified equilibrium simplex. Experimentally known M_2AlB_2 phases are marked in bold.

Figure S2. Schematic comparison of the crystal structure of $M'_{4/3}M''_{2/3}$ AlB₂ assuming in-plane ordered $P\overline{6}2m/P\overline{6}2c/R\overline{3}m/C2$ symmetry, prior to (upper part) and after (lower part) relaxation. A B-*M*-Al-*M*-B section shown along (a) [100] and (b) [1\overline{1}0] zone axis. Top view of (c) *M*-layer, (d) Al-layer, and (e) boron layer along [001] zone axis.

Figure S3. Phonon dispersion and phonon DOS for $Mo_{4/3}Sc_{2/3}AlB_2$ with $P\overline{6}2m$ symmetry (space group 189).

Figure S4. Phonon dispersion and phonon DOS for $Mo_{4/3}Sc_{2/3}AlB_2$ with $P\overline{6}2c$ symmetry (space group 190).

Figure S5. Phonon dispersion and phonon DOS for $Mo_{4/3}Sc_{2/3}AlB_2$ with $R\overline{3}m$ symmetry (space group 166).

Figure S6. Phonon dispersion and phonon DOS for Mo_{4/3}Sc_{2/3}AlB₂ with C2 symmetry (space group 5).

Figure S7. Phonon dispersion and phonon DOS for $Mo_{4/3}Y_{2/3}AlB_2$ with $P\overline{6}2m$ symmetry (space group 189).

Figure S8. Phonon dispersion and phonon DOS for $Mo_{4/3}Y_{2/3}AlB_2$ with $P\overline{6}2c$ symmetry (space group 190).

Figure S9. Phonon dispersion and phonon DOS for $Mo_{4/3}Y_{2/3}AlB_2$ with $R\overline{3}m$ symmetry (space group 166).

Figure S20. Phonon dispersion and phonon DOS for $Mo_{4/3}Y_{2/3}AlB_2$ with C2 symmetry (space group 5).

M	<u>M''</u>	Equilibrium simplex	<u>M'</u>	<u>M''</u>	Equilibrium simplex	<u>M'</u>	<u>M''</u>	Equilibrium simplex
Sc	Y T	ScB_2 , YAI_2 , Y_2AI , Sc_2AI	V	Sc	VB, ScAl ₃ , ScB ₂	W	Sc	WB, ScAl ₃ , ScB ₂
Sc	T1 7	ScAl, T_1B_2 , ScB ₂	V	Y T	$YAI_2, YB_2, V_3B_4, V_5B6$	W	Y T	WB, YAl_2 , YB_4
Sc S-	Zr	ScAl, ZrB_2 , ScB ₂	V	11	VB, ΠAI_3 , ΠB_2	W	11	$11B_2, W_2B, WB, WAI_5$
Sc S-	HI	SCAI, HIB ₂ , SCB ₂ VD, S-D, S-A1, S-A1	V	Zr	VB, $ZrAl_3$, ZrB_2	W	Lr	ZrB_2, W_2B, WB, WAI_5
Sc Sc	V NIL	VB, ScB ₂ , ScAl, ScAl ₂ NLD S-D S-Al S-Al	V	HI ML	VB, HIAl ₃ , HIB ₂	W	HI	HIB_2, W_2B, WB, WAI_5
Sc	IND To	$\begin{array}{c} \text{NOD}, \text{ SCD}_2, \text{ SCAI}, \text{ SCAI}_2 \\ \text{TaD}, \text{ SaD}, \text{ SaA1}, \text{ SaA1} \\ \end{array}$	v	IND To	$10AI_3, V_5D_6, VD, 103D_4$ TaD TaA1 VD VD	w	V NIL	WD, WAI5, V_3D_4 , V_5D_6
Sc	Ta Cr	$ab, scb_2, scal, scal_2$	v	Ta Cr	$1aD, 1aAi3, V_3D4, V_5D_6$	W W	IND To	W D, WAID, NOAI3, NO_2D_3 WAID TOD WB
Sc	Mo	ScB_2 , $ScAl_2$, Cl_2D	v	Mo	$C_{12}AID_2, V_5D_6, VAI_3$ MoAIR VR V-R, MoAI	W	Ta Cr	WAID, IaD, WD WR WAIR Cralle
Sc	W	ScB_2 , $ScA1_2$, $WO3A1$, $WO3A1_8$	v	W	WB VB WAL V.B.	W	Mo	WB, WAID, CI2AID2 WB MoAIB WAIB
Sc	Mn	ScB_2 , W , $ScAl_3$ ScB_2 , $ScAl_2$, Mn_2B	v	Mn	$V_{\rm B}$, $V_{\rm B}$, $V_{\rm B}$, $V_{\rm B}$, $V_{\rm B}$	w	Mn	WB, WAIB, WAID
Sc	Fe	ScB_2 , $ScA1_2$, $VIII_2D$	v	Fe	V_3D_6 , V_3D_4 , V_3D_4 V_2B_2 , V_3B_4 , Fe_5A_{10} , $Fe_5A_{10}B_2$	w	Fe	WAIB WB Fe AlB
Sc	Co	ScB ₂ , CoAl ScAl	v	Co	V_2B_3 , V_3B_4 , $P_{C3}A_{18}$, $P_{C2}A_{18}$	w	Co	WB ₂ WB CoAl Co ₂ Als
Y	Sc	ScB_2 , YB_2 , Y_2A_1 , YA_2	Nb	Sc	NbB. ScAla ScBa	Mn	Sc	$MnA1$, ScB ₂ , Mn_2A1B_2
Ŷ	Ti	$TiB_2, YB_2, Y_2AI, YAI_2$	Nb	Ŷ	YA_{12} , NbB, Nb ₃ B ₄ , YB ₂ ,	Mn	Ŷ	MnB. YAl_2 , YB_4
Ŷ	Zr	ZrB_2 , YB_2 , Y_2Al , YAl_2	Nb	Ti	NbB, TiB ₂ , NbAl ₃ , Nb ₂ Al	Mn	Ti	MnAl, TiB ₂ , Mn ₂ AlB ₂
Y	Hf	HfB ₂ , YB ₂ , Y ₂ Al, YAl ₂	Nb	Zr	NbB, ZrB ₂ , ZrAl ₂ , NbAl ₃	Mn	Zr	MnAl, ZrB_2 , Mn_2AlB_2
Y	V	YB ₂ , VB, YAl ₂ , Y ₂ Al	Nb	Hf	HfB ₂ , NbB, NbAl ₃ , Nb ₂ Al	Mn	Hf	MnAl, HfB ₂ , Mn ₂ AlB ₂
Y	Nb	YB ₂ , NbB, YAl ₂ , Y ₂ Al	Nb	V	VB, NbAl ₃ , Nb ₃ B ₄	Mn	V	$Mn_2AlB_2, V_5B_6, V_3B_4, Mn_4Al_{11}$
Y	Та	TaB, YB ₂ , YAl ₂ , Y ₂ Al	Nb	Та	TaB, NbAl ₃ , Nb ₃ B ₄	Mn	Nb	Mn ₂ AlB ₂ , NbB, NbAl ₃ , Nb ₃ B ₄
Y	Cr	YB ₂ , CrB, YAl ₂ , Y ₂ Al	Nb	Cr	CrB, Nb ₃ B ₄ , NbAl ₃	Mn	Та	Mn ₂ AlB ₂ , TaB, Ta ₃ B ₄ , Mn ₄ Al ₁₁
Y	Mo	MoB, YB ₂ , YAl ₂ , Y ₂ Al	Nb	Mo	Nb ₃ B ₄ , MoB, NbB, Mo ₃ Al ₈	Mn	Cr	Mn_2AlB_2, Cr_2AlB_2
Y	W	YB_2 , YAl_2 , W_2B	Nb	W	WB, Nb ₃ B ₄ , NbAl ₃	Mn	Mo	Mn ₂ AlB ₂ , MoAlB, MoB
Y	Mn	YB ₂ , YAl ₂ , Mn ₂ B	Nb	Mn	NbB, Mn ₂ AlB ₂ , NbAl ₃ , Nb ₃ B ₄	Mn	W	Mn ₂ AlB ₂ , WAlB, WB
Y	Fe	YB_2 , YAl_2 , Fe_2B	Nb	Fe	FeAl, Nb ₂ B ₃ , NbB ₂ , NbAl ₃	Mn	Fe	Mn_2AlB_2 , Fe_2AlB_2
Y	Co	YB ₂ , CoAl, Y ₂ Al, YAl ₂	Nb	Co	Nb ₂ B ₃ , CoAl, Co ₂ Al ₅	Mn	Co	CoAl, MnB, Mn ₂ AlB ₂ , MnB ₄
Ti	Sc	TiB ₂ , ScAl, TiAl	Та	Sc	TaB, ScB ₂ , ScAl ₃	Fe	Sc	FeAl, ScB_2 , Fe_2AlB_2
Ti	Y	YAl_2 , TiB_2 , Ti_3B4 , Y_2A1	Ta	Y	TaB, YAl_2 , YB_4	Fe	Y	Fe_2B , $FeAl$, YB_4 , YAl_2
Ti	Zr	TiB_2 , Ti_3B_4 , Zr_2Al_3	Та	Ti	$TaB, TiB_2, TiAl_3$	Fe	Ti	TiB_2 , Fe_2AlB_2 , Fe_3Al , Fe_5Al_8
Ti	Hf	T_1B_2 , T_1Al , Hf_4Al_3 , $HfAl_2$	Та	Zr	TaB, ZrB_2 , $ZrAl_3$	Fe	Zr	$FeAl, ZrB_2, Fe_2AlB_2$
11	V	T_1B_2 , VB, T_1AI , T_1AI_2	Ta	Ht	TaB, HtB_2 , $HtAI_3$	Fe	Ht	FeAl, HfB ₂ , Fe ₂ AlB ₂
11 T	Nb	I_1B_2 , I_1AI , Nb_2AI , $NbAI_3$	Ta	V	$IaB, IaAl_3, V_2B_3$	Fe	V	Fe_2AIB_2 , V_2B_3 , V_3B_4 , Fe_5AI_8
11 T:	Ta Cr	$11B_2$, $1aB$, $11AI$, $11AI_2$ T:D. T:A1 Cr A1		Nb Cr	$1aB$, NbAl ₃ , Nb ₂ B ₃ , $1a_3B_4$ TaD, Cr, AlD, TaD, TaAl	ге Ба	ND To	FeAI, NbB ₂ , Fe ₂ AIB ₂ E ₂ AID T ₂ D T ₂ D E ₂ A1
11 Т;	Cr Mo	$TID_2, TIAI_2, CT_2AI$ $TID_2, TIAI_2, M_2, A1$	Та	Cr Mo	TaD, $C_{12}AID_{2}$, $Ia_{3}D_{4}$, $IaAI_{3}$	ге Бо	Ta Cr	Fe_2AID_2 , Ia_3D_4 , IaD_2 , Fe_5AI_8 Fe_2AID_2 , Cr_2AID_2
Ti	W	TiB, W TiAl, MO_3AI , MO_3AI_8	Ta Ta	W	TaB, WOAIB, Ta3D4, WO3AI8 TaB, WAIB, WAI, TaB,	Fe	Mo	Fe AlB, MoAlB MoB
Ti	Mn	TiB_2 , w, $TiAi_3$ TiB_2 , $MnA1$, $TiA1_2$, $TiMn_2$	Ta	Mn	TaB, $WAID$, $WAIS$, $Ta3D_4$ TaB, TaB_4 , Mn_2A1B_2 , Mn_4A1a_3	Fe	W	$F_{e_2}AIB_2$, WAIB, WB
Ti	Fe	TiB_2 , $TiFe_2A1$, $TiA1_2$, $Firstin_2$	Та	Fe	Ta_2B_4 TaB_2 Fe_2Al_6 Fe_2AlB_2	Fe	Mn	Fe_2AIB_2 , Mn_2AIB_2
Ti	Co	TiB ₂ , CoAl, TiAl ₂ , TiCo ₂ Al	Та	Co	$CoAl_{1}$ TaB ₂ , TaB ₄ , Co ₂ Al ₅	Fe	Co	Fe ₂ AlB ₂ , CoAl, CoB, B
Zr	Sc	ZrB_2 , ScAl, Zr_4Al_3 , Zr_2Al_3	Cr	Sc	$CrB. ScAl_3. ScB_2$	Co	Sc	$CoAl, ScB_2, CoB, ScB_2$
Zr	Y	ZrB_2 , YAl_2 , Y_2Al , Zr_4Al_3	Cr	Y	CrB, YAl_2, YB_4	Co	Y	$CoAl, YB_2, CoB, YB_4$
Zr	Ti	TiB_2 , ZrB_2 , Zr_4Al_3 , Zr_2Al_3	Cr	Ti	TiB ₂ , Cr ₂ AlB ₂ , Cr ₂ Al, TiAl ₃	Co	Ti	CoAl, TiB ₂ , CoB, B
Zr	Hf	HfB ₂ , ZrB ₂ , Zr ₄ Al ₃ , Zr ₂ Al ₃	Cr	Zr	$CrB, ZrAl_3, ZrB_2$	Co	Zr	CoAl, ZrB ₂ , CoB, B
Zr	V	ZrB_2 , VB, Zr_2Al_3	Cr	Hf	HfB ₂ , Cr ₂ AlB ₂ , Cr ₂ Al, HfAl ₃	Co	Hf	CoAl, HfB ₂ , CoB, B
Zr	Nb	ZrB_2 , NbB, Zr_2Al_3	Cr	V	Cr_2AlB_2 , VAl_3 , V_5B_6	Co	V	CoAl, VB ₂ , VCoB ₃ , B
Zr	Та	ZrB_2 , TaB, Zr_2Al_3	Cr	Nb	Cr ₂ AlB ₂ , CrB, Nb ₃ B ₄ , NbAl ₃	Co	Nb	CoAl, NbB ₂ , CoB, B
Zr	Cr	ZrB_2 , $ZrAl_2$, Cr_2B	Cr	Та	Cr_2AlB_2 , TaB, Ta ₃ B ₄ , TaAl ₃	Co	Та	CoAl, TaB ₂ , CoB, B
Zr	Mo	ZrB_2 , $ZrAl_2$, Mo_3Al , Mo_3Al_8	Cr	Mo	MoAlB, CrB, Cr_2AlB_2	Co	Cr	CoAl, CrB ₂ , CoB, CrB ₄
Zr	W	ZrB_2 , W, $ZrAl_3$	Cr	W	Cr_2AlB_2 , WB, WAlB	Co	Mo	CoAl, MoB ₂ , CoB, B
Zr	Mn	ZrB ₂ , ZrAl ₂ , Mn ₇ Al ₃ , MnAl	Cr	Mn	Cr_2AIB_2 , Mn_2AIB_2	Co	W	$CoAl, CoB, WB_4$
Zr	Fe	ZrB_2 , $ZrAl_2$, Fe_3Al , $FeAl$	Cr	Fe	Cr_2AIB_2 , Fe_2AIB_2	Co	Mn	CoAl, CoB, MnB, MnB_4
Zr	Co	ZrB_2 , CoAl, Zr_4Al_3 , Zr_2Al_3	Cr M-	Co	CrB_2 , CrB , $CoAl$, Co_2Al_5	Co	Fe	$CoAl, CoB, B, Fe_2AlB_2$
HI	SC V	HIB_2 , SCAI, SCAI ₂ , HI_4AI_3	Mo	SC	MOB, SCB ₂ , MO ₃ AI ₈ , MO ₃ AI M-D VAL VD			
HI	т т:	$HIB_2, YAI_2, Y_2AI, HI_4AI_3$	Mo	т Т:	MOB, IAI_2 , IB_4 MoD TED Mo Al Mo Al			
ПI Uf	11 7r	$\begin{array}{c} \mathbf{HD}_2, \ \mathbf{HD}_2, \ \mathbf{H}_4\mathbf{A}_13, \ \mathbf{HA}_{12} \\ \mathbf{HfD} \mathbf{7r} \mathbf{A}_1 \mathbf{7r} \mathbf{A}_1 \mathbf{Hf} \mathbf{A}_1 \end{array}$	Mo	11 7r	$\mathbf{T}_{\mathbf{r}}$ $\mathbf{D}_{\mathbf{r}}$ $\mathbf{M}_{\mathbf{r}}$ $\mathbf{M}_{\mathbf{r}}$ $\mathbf{M}_{\mathbf{r}}$ $\mathbf{M}_{\mathbf{r}}$ $\mathbf{M}_{\mathbf{r}}$ $\mathbf{M}_{\mathbf{r}}$ $\mathbf{M}_{\mathbf{r}}$			
тн Цf	V	$\frac{1110}{2}, \frac{12}{12}$	Mo	ы Цf	HfB, MoB MorAl, MorAl			
Hf	Nh	VB , $IIIB_2$, $IIIAI_2$, III_4AI_3 HfB, HfA1, Nb, A1	Mo	V	MoAlB VB MoB			
Hf	Ta	TaB. HfB_2 , $HfAl_2$, Hf_4Al_2	Mo	Nh	MoB. MoAlB Nb ₂ B ₄ Mo ₂ A ₁			
Hf	Cr	HfB_2 , $HfAl_2$, Cr_2Al	Mo	Та	MoAlB, TaB, Mo ₄ AlB ₄			
Hf	Mo	HfB_2 , $HfAl_2$, Mo_3Al_2 , Mo_3Al_8	Mo	Cr	MoAlB, CrB, MoB			
Hf	W	HfB ₂ , W, HfAl ₃	Mo	W	MoAlB, WB, MoB			
Hf	Mn	HfB ₂ , HfAl ₂ , Mn ₇ Al ₃ , MnAl	Mo	Mn	MoAlB, MoB, Mn ₂ AlB ₂			
Hf	Fe	HfB ₂ , FeAl, Hf ₄ Al ₃ , HfAl ₂	Mo	Fe	MoAlB, MoB, Fe ₂ AlB ₂			
Hf	Co	HfB2, CoAl, Hf4Al3, HfAl2	Mo	Co	CoAl, MoB ₂ , MoB, MoAlB			

Table S2. Identified equilibrium simplex for M':M'':Al:B of a 4:2:3:6 composition.

Figure S11. Δ H or Δ G, from Fig. 3b, as function of (a) size and (b) electronegativity difference between M'' and M'. Symbols represent crystal structure and chemical order of lowest energy for a given combination of M' and M''; *Cmmm* with disorder (open squares), $P\bar{6}m2$ with disorder (open hexagon), and in-plane ordered *i*-MAB phases with $P\bar{6}2m$ (filled hexagon), $P\bar{6}2c$ (filled left triangle), $R\bar{3}m$ (filled up triangle) and C2 (filled down triangle) symmetries. Experimentally reported phases are marked in both panels.

Figure S12. Simulated selective area electron diffraction patterns along [001], [100], and [$1\overline{1}0$] zone axes for different *i*-MAB polymorphs with (a) $P\overline{6}2m$, (b) $P\overline{6}2c$, (c) $R\overline{3}m$ and (d) C2 symmetries.

Formula (unit cell)	Mo ₁₂ Y ₆ Al ₉ B ₁₈
Space group	$R\bar{3}m$ (#166)
a = b(Å)	5.44577(9)
<i>c</i> (Å)	22.69048(38)
$\alpha = \beta$ (°)	90
γ (°)	120
Mo	6c (0.00000, 0.00000, 0.56468(15))
Mo	6c (0.00000, 0.00000, 0.77062(14))
Y	6c (0.00000, 0.00000, -0.07931(17))
Al	9e (0.50000, 0.00000, 0.00000)
В	18g (0.32863(59), 0.00000, 0.00000)

Table S3. Rietveld refinement of Mo_{4/3}Y_{2/3}AlB₂ assuming a hexagonal $R\overline{3}m$ (#166) symmetry. From the Rietveld refinement of the XRD pattern shown in Fig. 4a, the mass fractions of the *i*-MAB phase Mo_{4/3}Y_{2/3}AlB₂, MoB and Y₂O₃ were: 80, 15 and 5 wt%, respectively. The total χ^2 value was 3.23.

Table S4. Calculated crystallographic data for $Mo_{4/3}Y_{2/3}AlB_2$ using the GGA-PBE exchangecorrelation functional with Wyckoff positions given for each unique crystallographic site.

Space group	Lattice parameter (Å)	Atomic position
P62m (189)	a = 5.434	Mo 4h (0.33333, 0.66667, 0.69125)
	c = 7.644	Y 2e (0.00000, 0.00000, 0.23686)
		Al 3f (0.49975, 0.00000, 0.00000)
		B 3g (0.66787, 0.00000, 0.50000)
		B 3g (0.36788, 0.00000, 0.50000)
P62c (190)	<i>a</i> = 5.464	Mo 4f (0.33333, 0.66667, 0.40766)
	c = 15.183	Mo 4e (0.00000, 0.00000, 0.09514)
		Y 4f (0.33333, 0.666667, 0.63022)
		Al 6h (0.66728, 0.83376, 0.25000)
		B 6g (0.66585, 0.00000, 0.00000)
		B 6g (0.33415, 0.00000, 0.00000)
R3m (166)	<i>a</i> = 5.465	Mo 6c (0.00000, 0.00000, 0.56355)
	c = 22.755	Mo 6c (0.00000, 0.00000, 0.77221)
		Y 6c (0.00000, 0.00000, -0.07973)
		Al 9e (0.50000, 0.00000, 0.00000)
		B 18g (0.33377, 0.00000, 0.50000)
<i>C</i> 2 (5)	<i>a</i> = 9.473	Mo 4c (0.27262, 0.33333, 0.81672)
	b = 5.467	Mo 4c (-0.06298, 0.33333, 0.80968)
	c = 8.214	Y 4c (0.57996, 0.33335, 0.73957)
	$\beta = 112.564$	Al 2b (0.00000, 0.33346, 0.50000)
		Al 4c (0.75006, 0.08325, 0.50001)
		B 2a (0.00000, -0.00076, 0.00000)
		B 4c (0.66712, 0.00025, 0.00000)
		B 2a (0.00000, 0.66742, 0.00000)
		B 4c (0.16713, 0.16643, 0.00001)

Figure S13. Atomic ratios from four individual powder particles along with average values from EDX for (a) $Mo_{4/3}Y_{2/3}AlB_2$ and (b) $Mo_{4/3}Sc_{2/3}AlB_2$.

Figure S14. Measured XRD of the Mo_{4/3}Y_{2/3}AlB₂ sample along with simulated diffractograms for four *i*-MAB and one disordered Mo_{4/3}Y_{2/3}AlB₂. In addition, simulated diffractograms for Mo₂AlB₂ and Y₂AlB₂ with $P\overline{6}m2$ symmetry is shown.

Figure S15. Experimental characterization of synthesized Mo_{4/3}Sc_{2/3}AlB₂ *i*-MAB phase. (a-c) In-plane chemical ordering of the *i*-MAB phase is evident from STEM images along the [001], [100] and [1 $\overline{1}$ 0] zone axis, respectively. Schematics to the left of each image represent the corresponding atomic arrangements considering the hexagonal $R\overline{3}m$ (#166) structure. (d) Rietveld refinement of XRD of sample assuming space group $R\overline{3}m$ (#166).

Formula (unit cell)	$Mo_{12}Sc_6Al_9B_{18}$
Space group	$R\bar{3}m$ (#166)
a = b(Å)	5.36261(8)
_ <i>c</i> (Å)	22.44267(42)
$\alpha = \beta$ (°)	90
γ (°)	120
Mo	6c (0.00000, 0.00000, 0.66543(15))
Mo	6c (0.00000, 0.00000, 0.76785(15))
Y	6c (0.00000, 0.00000, -0.08884(34))
Al	9e (0.50000, 0.00000, 0.00000)
В	18g (0.37120(400), 0.00000, 0.00000)

Table S5. Rietveld refinement of Mo_{4/3}Sc_{2/3}AlB₂ assuming a hexagonal $R\overline{3}m$ (#166) symmetry. From the Rietveld refinement of the XRD pattern shown in Fig. 5a, the mass fractions of the *i*-MAB phase Mo_{4/3}Sc_{2/3}AlB₂, MoB and Mo₃Al₈ were: 62, 20 and 18 wt%, respectively. The total χ^2 value was 3.76.

Table S6. Calculated crystallographic data for Mo_{4/3}Sc_{2/3}AlB₂ using the GGA-PBE exchangecorrelation functional with Wyckoff positions given for each unique crystallographic site.

Space group	Lattice parameter (Å)	Atomic position
<i>P</i> 62 <i>m</i> (189)	<i>a</i> = 5.35158	Mo 4h (0.33333, 0.66667, 0.69540)
	c = 7.51226	Sc 2e (0.00000, 0.00000, 0.24794)
		Al 3f (0.49978, 0.00000, 0.00000)
		B 3g (0.67029, 0.00000, 0.50000)
		B 3g (0.32972, 0.00000, 0.50000)
P62c (190)	a = 5.37974	Mo 4f (0.33333, 0.66667, 0.40521)
	c = 14.92960	Mo 4e (0.00000, 0.00000, 0.09690)
		Sc 4f (0.33333, 0.666667, 0.62474)
		Al 6h (0.66692, 0.83284, 0.25000)
		B 6g (0.66487, 0.00000, 0.00000)
		B 6g (0.33513, 0.00000, 0.00000)
R3m (166)	a = 5.38270	Mo 6c (0.00000, 0.00000, 0.56457)
	c = 22.38392	Mo 6c (0.00000, 0.00000, 0.77050)
		Sc 6c (0.00000, 0.00000, -0.08331)
		Al 9e (0.50000, 0.00000, 0.00000)
		B 18g (0.33514, 0.00000, 0.50000)
C2 (5)	a = 9.32832	Mo 4c (0.27090, 0.33334, 0.81182)
	<i>b</i> = 5.38336	Mo 4c (-0.06397, 0.33334, 0.80649)
	c = 8.08154	Sc 4c 0.58345, 0.33336, 0.75038)
	$\beta = 112.58693$	Al 2b (0.00000, 0.33549, 0.50000)
		Al 4c (0.75111, 0.08219, 0.50000)
		B 2a (0.00000, -0.00175, 0.00000)
		B 4c (0.66763, 0.00073, 0.00003)
		B 2a (0.00000, 0.66847, 0.00000)
		B 4c (0.16765, 0.16593, 0.00003)

Figure S16. Measured XRD of the $Mo_{4/3}Sc_{2/3}AlB_2$ sample along with simulated diffractograms for four *i*-MAB and one disordered $Mo_{4/3}Sc_{2/3}AlB_2$. In addition, simulated diffractograms for Mo_2AlB_2 and Sc_2AlB_2 with $P\bar{6}m2$ symmetry is shown.

Figure S17. Schematic illustration and comparison of *i*-MAB and *i*-MAX phases locally along (a) [100] and (b) $[1\overline{1}0]$ zone axes and for (c) *M*-layer, (d) Al- and *A*-layer, and (e) B and *X*-layer along [001] zone axes.