Supporting Information for

Acylphloroglucinols with acetylcholinesterase inhibitory effects from the fruits of *Eucalyptus robusta*

Hui Liu^{a,b,1}, Xiao-Zhi He^{a,1}, Mi-Yan Feng^{a,1}, Yuan-Zeng^a, Tyler J. Rauwolf^c, Li-Dong Shao^d, Wei Ni^a, Hui Yan^a, John A. Porco, Jr.^c, Xiao-Jiang Hao^{a,b}, Xu-Jie Qin^{a,b,*}, Hai-Yang Liu^{a,b,*}

^a State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China

^b University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

^c Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University 590 Commonwealth Avenue, Boston, MA 02215, United States

^d Department of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China

^{*} Corresponding authors.

E-mail addresses: qinxujie@mail.kib.ac.cn (X.-J. Qin), haiyangliu@mail.kib.ac.cn (H.-Y. Liu).

¹ These authors contributed equally to this work.

TABLE OF CONTENTS

Content	Pages
Figure S1 Key ROESY correlations of 1–4	S1
Figure S2 Chiral analysis of 6, 8, and a mixture of 10 and 11	S 1
Figures S3–S8 NMR spectra of 1 in CDCl ₃	S2–S2
Figure S9 HRESIMS spectrum of 1	S2
Figures S10–S15 NMR spectra of 2 in CDCl ₃	S2–S9
Figure S16 HRESIMS spectrum of 2	S9
Figures S17–S22 NMR spectra of 3 in CDCl ₃	S10–S13
Figure S23 HRESIMS spectrum of 3	S13
Figures S24–S29 NMR spectra of 4 in CDCl ₃	S14–S17
Figure S30 HRESIMS spectrum of 4	S17
Figures S31–S36 NMR spectra of 5 in CDCl ₃	S18–S21
Figure S37 HRESIMS spectrum of 5	S21
Figures S38–S42 NMR spectra of 6 in methanol- d_4	S22–S24
Figure S43 HRESIMS spectrum of 6	S24
Figures S44–S48 NMR spectra of 7 in CDCl ₃	S25–S27
Figure S49 HRESIMS spectrum of 7	S27
Figures S50–S54 NMR spectra of 8 in acetone-d ₆	S28–S30
Figure S55 HRESIMS spectrum of 8	S30
Figures S56–S60 NMR spectra of 9 in CDCl ₃	S31–S33
Figure S61 HRESIMS spectrum of 9	S34
Figures S62–S66 NMR spectra of 10 and 11 in pyridine-d ₅	S34–S36
Figure S67 HRESIMS spectrum of 10 and 11	S 37
ECD computational data of 2–6 and 8	S38–S42

Figure S1 Key ROESY correlations of 1–4.

Figure S2 Chiral analysis of 6, 8, and a mixture of 10 and 11 by a CHIRALPAK IC column

Figure S3 ¹H NMR spectrum of 1 (500 MHz, CDCl₃)

Figure S4¹³C NMR spectrum of 1 (125 MHz, CDCl₃)

Figure S6 HMBC spectrum of 1

Figure S9 HRESIMS spectrum of 1

User Spectra

Figure S10 ¹H NMR spectrum of 2 (500 MHz, CDCl₃)

Figure S11¹³C NMR spectrum of 2 (125 MHz, CDCl₃)

Figure S12 HSQC spectrum of 2

Figure S15 ROESY spectrum of 2

Figure S16 HRESIMS spectrum of 2

User Spectra

Figure S18¹³C NMR spectrum of 3 (200 MHz, CDCl₃)

Figure S23 HRESIMS spectrum of 3

User Spectra

6.0

5.5

5.0 4.5 4.0

3.5 3.0 2.5 2.0 1.5

7.5 7.0 6.5

1.0

10.0

9.5 9.0

8.5 8.0

Figure S27 HMBC spectrum of 4

Figure S29 ROESY spectrum of 4

Figure S30 HRESIMS spectrum of 4

User Spectra

Figure S31 ¹H NMR spectrum of 5 (500 MHz, CDCl₃)

Figure S32 ¹³C NMR spectrum of 5 (125 MHz, CDCl₃)

Figure S34 HMBC spectrum of 5

Figure S35 ¹H–¹H COSY spectrum of 5

Figure S37 HRESIMS spectrum of 5

User Spectra

Figure S40 HSQC spectrum of 6 0 -20 e_n 0 ø -30 0 40 0 c 50 -60 -70 80 -90 100 -110 -120 0 0 -130 140 -150 -160 -170 -180 --190 10.0 9.5 9.0 8.0 7.5 7.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 8.5 6.5 6.0

Figure S41 HMBC spectrum of 6

User Spectra

Figure S47 HMBC spectrum of 7

Figure S49 HRESIMS spectrum of 7

User Spectra

Frag	gment 13	or Vo 35	ltage		Collision E	nergy Ion	ization ESI	Mode						
×10 ⁴	+ESI \$	Scan ((0.19-	0.21 min, 2	Scans) Fra	ag=135.0V CEU-33.c	ł							
8						261.0	0735							
7-						([C12 H14	O5J+Na)+						
6-														
5														
4 -														
3-														
2-														
1-														
0-														
	26	50.2	2	60.4	260.6	260.8 261	261	.2	261.4	261.6	261.8	262		
						Counts vs. Mass-	-to-onai	ge (m/z)						
Peak Lis	st	-	Abu		Formula		ITon		-					
111/2 250 0650	5	2	2620	1 57	Forniua		101		-					
250.0050	-	2 1	2020	0.22	C12 U14	25	(14.1		-					
201.073) -	1	7311	9.33	C12 H14	5	(* +	va)+	-					
2/5.0896	<u>,</u>	1	3493	2.13			_		-					
369.1196	<u>,</u>	2	3001	4.34			_		-					
377.1088	3	2	/523	6.64			_		_					
377.610	5	2	3095	0.31			_		_					
453.1687	7		2895	4.49			_		_					
459.1694	4	2	3361	0.19										
Element		Min		Max	1									
C			3	60										
÷ Н			0	120										
0			0	30										
Formula	a Calc	ulato	or Re	sults	1									
Formula	3		Calc	ulatedMa	ass	CalculatedMz		Mz		Diff. (mDa)		Diff. (ppm)		DBE
C12 H14	05				238.0841	26:	1.0733	26	1.0735		-0.20		-0.77	6.0000

Figure S52 HSQC spectrum of 8

Figure S54 ¹H–¹H COSY spectrum of 8

Figure S55 HRESIMS spectrum of 8

User Spectra

Fra	gmente	or Vo	ltage		Collision E	nergy	Ionization	Mode						
	13	85			0		ESI							
x10 ⁴	+ESI S	can (C	0.13-0.	.15 min, 2 S	cans) Frag=	135.0V CEU-9.d	Subtract							
35						503.264 ([C28 H38 O8	.5 8]+H)+							
3-														
25														
2.0														
15														
1.5							504.26 ([C28 H38)	570 08]+H)+						
0.5								505.2	2724					
0.0								([C28 H38	08]+ł	H)+				
0.	499	.5 5	00 50	0.5 501	501.5 502	502.5 503 503	3.5 504 5	04.5 505	505.5	506 506.5	507 50	7.5 508		
Peak Lis	st					Counts vs. Ivi	ass-10-Chai	ge (11/2)						
m/z		Z	Abu	nd	Formula		Ion							
279.1594	1	1	8301	38										
291.623	1	2	4067	'.44										
293.1746	5	1	8516	5.72										
437.1949	Э	1	2613	3.73										
453.167	5	1	3175	5.68										
503.2645	5	1	3465	52.38	C28 H38 (D8	(M+	H)+						
504.267		1	9774	.65	C28 H38 (D8	(M+	H)+						
525.246	5	1	8340).53										
526.2508	3	1	2471	41										
1027.50	58	1	4077	7.35										
Formula	a Calc	ulato	or Ele	ement Lir	nits									
Elemen	t	Min		Мах										
С			3	120										
Н			0	240	1									
0			0	30										
Formula	a Calc	ulato	or Re	sults		Coloriate III	_			D:44 /		Diff (and a)		
Formula	3		Calc	uiatedMa		CalculatedMz	500.0000		26.45	DITT. (mDa	a) 0.00	וטוד. (ppm)		40.0000
C28 H38	08				502.2567		503.2639	503.	2645		-0.60		-1.19	10.0000

Figure S57 ¹³C NMR spectrum of 9 (150 MHz, CDCl₃)

6.0 S32 5.0

5.5

4.5

4.0

3.5

3.0

2.5

2.0

1.5

6.5

7.5

8.0

7.0

10.0

9.5

9.0

8.5

-150 . -160

-170 --180 --190

1.0

Figure S61 HRESIMS spectrum of 9

Figure S65 HMBC spectrum of the mixture 10 and 11

Figure S66 ¹H–¹H COSY spectrum of the mixture 10 and 11

Figure S67 HRESIMS spectrum of the mixture 10 and 11

User Spectra

Frag	gmente 13	or Vo 35	ltage		Collision E	nergy	Ionization ESI	Mode									
x10 ⁵	+ESI S	Scan	(0.13 r	nin) Frag=	135.0V CEU	J-17.d Subtract											
1.0						52 (IC28 L	25.2467	\ +									
1.2-						([0281		,,									
1-																	
0.8-																	
0.6-																	
0.4-																	
0.2-																	
0							_ I	1									
	5	524.4	4	524.6	524.8	525 52 Counts vs. M	5.2 52 ass-to-Char	25.4 ae (m/z)	525.6	53	25.8	526		526.2			
Peak Lie	st							3- (····-)									
m/z		z	Abur	nd	Formula		Ion		٦								
279.1591		1	2218	4.19													
293.1745	;	1	2273	1.09													
503.2642	2	1	4625	8.4													
525.2467	,	1	1176	72.32	C28 H38 C	08	(M+	Na)+									
526.2497	,	1	3367	5.64	C28 H38 C	08	(M+	Na)+									
541.2205	5	1	5450	2.98													
542.2235	5	1	1540	9.3													
1027.503	37	1	2311	7.11													
Formula	Calc	ulato	or Ele	ment Lin	nits												
Element	t	Min		Мах													
С			3	60													
Н			0	120													
0			0	30													
Formula	a Calc	ulato	or Res	sults	·												
Formula			Calc	ulatedMa	ISS	CalculatedMa	Z	Mz		Diff.	(mDa)		Diff.	(ppm)		DBE	
C28 H38	08				502.2567		525.2459	525	5.2467			-0.80			-1.52		10.0000

ECD computational data of 2-6 and 9

Computational data of (1R,4R,6R,9'R)-2

Conf	ormer 4	Conformer	5	Conformer 6				
No.	Distribution (%)	Relative Energy (kcal/mol)	No.	Distribution (%)	Relative Energy (kcal/mol)			
Conformer 1	34.1493	0.0000	Conformer 4	12.2541	0.6072			
Conformer 2	20.3125	0.3125	Conformer 5	7.2280	0.9200			
Conformer 3	17.4926	0.3964	Conformer 6	6.2769	1.0036			

Computational data of (1*S*,6*R*,9'*R*)-4

Computational data of (1S,6S)-5

Computational data of (9'R)-6

No.	Distribution (%)	Relative Energy (kcal/mol)	No.	Distribution (%)	Relative Energy (kcal/mol)
Conformer 1	12.8695	0.0000	Conformer 6	5.1513	0.5425
Conformer 2	10.5966	0.1151	Conformer 7	4.7548	0.5899
Conformer 3	6.2867	0.4245	Conformer 8	3.0025	0.8623
Conformer 4	6.1767	0.4349	Conformer 9	2.8001	0.9037
Conformer 5	5.2207	0.5346	Conformer 10	2.6472	0.9369

