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Background Lung neuroendocrine neoplasms (NENSs) are rare solid cancers, with
most genomic studies including a limited number of samples. Recently, generating the
first multi-omic dataset for atypical pulmonary carcinoids and the first methylation
dataset for large-cell neuroendocrine carcinomas (LCNEC) led us to the discovery of
clinically relevant molecular groups as well as a new entity of pulmonary carcinoids
(supra-carcinoids). Results In order to promote the integration of lung NENs
molecular data, we provide here detailed information on data generation and quality
control for whole genome/exome sequencing, RNA sequencing, and EPIC 850k
methylation arrays for a total of 84 lung NENs patients. We integrate the transcriptomic
data with other previously published data and generate the first comprehensive
molecular map of lung NENs using the Uniform Manifold Approximation and Projection
(UMAP) dimension reduction technique. We show that this map captures the main
biological findings of previous studies and can be used as reference to integrate
datasets for which RNA sequencing is available. The generated map can be
interactively explored and interrogated on the UCSC TumorMap portal
(https://tumormap.ucsc.edu/?p=RCG_lungNENomics/LNEN ). The data, source code,
and compute environments used to generate and evaluate the map as well as the raw
data are available respectively in a Nextjournal interactive notebook (
https://nextjournal.com/rarecancersgenomics/a-molecular-map-of-lung-
neuroendocrine-neoplasms/ ), and at the EMBL-EBI European Genome-phenome
Archive and Gene Expression Omnibus data repositories. Conclusions We provide
data and all resources needed to integrate it with future lung NENs transcriptomic
studies, allowing to draw meaningful conclusions that will eventually lead to a better
understanding of this rare understudied disease.
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Background Lung neuroendocrine neoplasms (NENSs) are rare solid cancers, with most genomic studies including a limited
number of samples. Recently, generating the first multi-omic dataset for atypical pulmonary carcinoids and the first
methylation dataset for large-cell neuroendocrine carcinomas (LCNEC) led us to the discovery of clinically relevant
molecular groups as well as a new entity of pulmonary carcinoids (supra-carcinoids). Results In order to promote the
integration of lung NENs molecular data, we provide here detailed information on data generation and quality control for
whole genome/exome sequencing, RNA sequencing, and EPIC 850k methylation arrays for a total of 84 lung NENs patients.
We integrate the transcriptomic data with other previously published data and generate the first comprehensive molecular
map of lung NENs using the Uniform Manifold Approximation and Projection (UMAP) dimension reduction technique. We
show that this map captures the main biological findings of previous studies and can be used as reference to integrate
datasets for which RNA sequencing is available. The generated map can be interactively explored and interrogated on the
UCSC TumorMap portal (https://tumormap.ucsc.edu/?p=RCG_lungNENomics/LNEN). The data, source code, and compute
environments used to generate and evaluate the map as well as the raw data are available respectively in a Nextjournal
interactive notebook
(https://nextjournal.com/rarecancersgenomics/a-molecular-map-of-lung-neuroendocrine-neoplasms/), and at the
EMBL-EBI European Genome-phenome Archive and Gene Expression Omnibus data repositories. Conclusions We provide
data and all resources needed to integrate it with future lung NENs transcriptomic studies, allowing to draw meaningful
conclusions that will eventually lead to a better understanding of this rare understudied disease.
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gressive lung neuroendocrine carcinomas (NECs)-i.e., small-

cell lung cancer (SCLC) and large-cell neuroendocrine carci-
Lung neuroendocrine neoplasms (lung NENs or LNENs) are noma (LCNEC)-as well as well-differentiated and less aggres-
rare understudied diseases with limited therapeutic opportu- sive lung neuroendocrine tumors (NETs)-i.e., typical and atyp-
nities. Lung NENSs include poorly differentiated and highly ag-
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ical carcinoids (WHO classification 2015 [1]). Over the past
years several genomic studies have investigated the molecular
characteristics of these diseases in order to provide some evi-
dence for a more personalized clinical management (2, 3, 4, 5,
6, 7, 8]. Although lung NECs and NETSs are broadly considered
as different diseases, several recent studies have suggested that
they may share some molecular characteristics [9, 10, 7, 11, 12].
However, due to the rarity of these diseases, the sample sizes
of these studies individually are limited, and the integration of
independent datasets is not an easy task.

Providing a way to interactively visualize and analyze these
pan-LNEN data would be of great interest for the scientific
community, not only to further explore the proposed molec-
ular link between lung NECs and NETSs, but also to integrate
data from studies including fewer samples to reach the statis-
tical power needed to draw meaningful conclusions.

Recently [7], we performed the first integrative and compar-
ative genomic analysis of lung NEN samples from all histo-
logical types, based on newly sequenced data: whole-exome
data (WES, 16 samples), whole-genome data (WGS, 3 sam-
ples), RNA-Seq data (20 samples), and EPIC 850K methylation
data (76 samples), as well as publicly available data. These
data correspond to the most extensive multi-omic dataset of
lung NENs, including the first methylation data for LCNEC
and the first molecular characterization of the rarest lung NEN
subtype (atypical carcinoids) [7]. This dataset, which pro-
vides the missing pieces for a complete molecular character-
ization of lung NENs, have been deposited at the EMBL-EBI
European Genome-phenome Archive (EGA accession number
EGAS00001003699). In order to facilitate the reuse of the data
generated in the previous manuscript [7], we provide here a
complementary data descriptor by outlining the preprocess-
ing and the quality control (QC) steps performed on each omic
dataset available on EGA.

Also, other studies have generated sequencing data and per-
formed a molecular characterization of lung NEN samples: pul-
monary carcinoids (mostly typical carinoids) have been charac-
terized by Fernandez-Cuesta et al. and Laddha et al. [4, 8], LC-
NEC by George et al. [6] and SCLC by George et al. [5] and Peifer
et al. [2]. We therefore generate the first pan-LNEN molec-
ular tumor map by integrating the transcriptomic data from
Alcala et al. [7] and the other published lung NEN transcrip-
tomic data [2, 4, 5, 6, 8]. This map provides an interactive way
to explore the molecular data and allows statistical interroga-
tion, based on the UCSC TumorMap portal [13]. The integrated
transcriptomic dataset resulting from these studies is available
on GitHub [14].

Figure 1 provides a schematic view of the preprocessing steps
and the associated quality controls performed for each omic
dataset generated by Alcala and colleagues [7]. An overview of
the available omics and clinical data for each sample is provided
in Supplementary Table 1.

WES and WGS were performed respectively on 16 and 3 fresh
frozen atypical carcinoids in the Cologne Centre for Genomics
and the Centre National de Recherche en Génomique Humaine
(CNRGH). For WES, the SeqCap EZ v2 Library capture kit from
NimbleGen (44Mb) and the Illumina HiSeq 2000 machine (I1-

lumina Inc., CA, USA) were used for the sequencing. For WGS,
the Illumina TruSeq DNA PCR-Free Library Preparation Kit was
used for library preparation and the HiSegX5 platform from I1-
lumina for the sequencing as describred in [7]. The sequencing
reads from the 16 atypical carcinoids whole-exomes and the 3
carcinoids whole-genomes were processed using the in-house
Nextflow [15] workflow available at IARCbioinfo/alignment-nf
[16] GitHub repository, revision number 9092214665. The
pipeline consists in three steps: mapping reads to the refer-
ence genome (GRCh37), marking duplicates and sorting reads
using bwa v0.7.12-r1044 (RRID:SCR__010910) [17], samblaster
v0.1.22 (RRID:SCR_000468) [18], and sambamba vo0.5.9 [19]
respectively. For WES samples, local realignment using ABRA
v0.97b (RRID:SCR_003277) [20] was then run.

The quality controls of the WES and WGS data were per-
formed using FastQC vo0.11.8 (RRID:SCR_014583) [21] and
QualiMap v2.2.1 (RRID:SCR__001209) [22] using the in-house
Nextflow [15] workflows available at IARCbioinfo/fastqc-
nf [23] and IARCbioinfo/qualimap-nf [24] repositories re-
spectively, and the results aggregated using MultiQC v1.7
(RRID:SCR__014982) [25] (Figure 1, left panel).

Figure 2A-B, show the per base sequence quality scores (left
panels) and the per sequence mean quality scores (right pan-
els). Regarding the per base sequence quality scores, the major-
ity of the base calls were of very good quality (>28, green area,
Figure 2A left panel) and of reasonable quality (>20, orange
area, Figure 2B left panel) for WES and WGS data respectively.
The most frequently observed sequence mean quality score was
around 30 for both techniques, which is equivalent to an error
probability of 0.1%. Table 1 provides the general statistics as-
sociated to the WES and WGS quality controls. The observed
median coverage for each sample was above the expected cov-
erage (30X for the WGS samples and 120X for the WES samples).
Concerning the alignment quality, all WES samples had more
than 99% of the reads aligned and all WGS samples had more
than 98% of the reads aligned.

RNA-Sequencing was performed on 20 fresh frozen atyp-
ical samples. The Illumina TruSeq RNA sample prepa-
ration Kit was used for library preparation and the Illu-
mina TruSeq PE Cluster Kit v3 and the Illumina TruSeq SBS
Kit v3-HS kits were used on an Illumina HiSeq 2000 se-
quencer. The data generated were processed in five steps
(Figure 1, middle panel): i) reads trimming using Trim Ga-
lore v0.6.5 (RRID:SCR__011847) [26], ii) reads mapping to the
reference genome (GRCh38, gencode version 33 from bun-
dle CTAT from 6th April 2020 [27]) using STAR v.2.7.3a
(RRID:SCR__015899) [28], iii) realignment of the reads using
ABRA2 v2.22 (RRID:SCR_003277) [29], iv) base quality score
recalibration using GATK4 v4.0.5.1 (RRID:SCR__001876) [30, 31]
and v) gene expression quantification using StringTie v2.1.1
(RRID:SCR__016323) [32]. FastQC v.0.11.9 (RRID:SCR_014583)
[21], RSeQC v3.0.1 (RRID:SCR_005275) [33] and HTSeq
v0.12.4 (RRID:SCR_005514) [34] were used to control the
raw reads quality and assignments, and the results aggre-
gated using MultiQC v1.7 (RRID:SCR__014982) [25]. These
steps were performed using our in-house Nextflow [15]
pipelines available at the following GitHub repositories:
IARCbioinfo/RNAseq-nf [35] release v2.3, IARCbioinfo/abra-nf
[36] release v3.0, IARCbioinfo/BQSR-nf [37] release vi.1 and
IARCbioinfo/RNAseq-transcript-nf [38] release v2.1.

Figure 2C shows that the base calls, before trimming, are
of good quality since all samples have a mean per base se-
quence quality score higher than 28 (left panel) and for all
samples the most frequently observed per sequence mean qual-
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Table 1. General statistics associated to the quality controls of the WES and WGS data

Sample Sequencing Median coverage Total nb reads (M) >30x (%) Aligned (%) GC (%) Median insert size Duplicates (%)
LNENo002 WES 148 113.3 95.5 99.7 53.7 194 13.9
LNEN003 WES 146 110.3 95.8 99.7 53.7 194 13.4
LNENo004 WES 150 115.3 95.4 99.8 54.3 193 13.1
LNENo005 WES 135 103.4 94.7 99.8 54 195 12.1
LNENo006 WES 126 93.6 94.6 99.8 53.5 197 12.5
LNENo007 WES 145 116.3 94.4 99.8 54.5 195 14.8
LNEN009 WES 123 98.4 92.9 99.7 54.1 195 12.4
LNENo10 WES 138 104.1 95 99.7 53.3 196 13.4
LNENoO11 WES 161 125.8 95.8 99.8 54.3 196 14.8
LNENo013 WES 131 99.2 94.3 99.8 53.5 193 13
LNENoO14 WES 132 102.6 94 99.8 54.1 195 13.3
LNENoO15 WES 148 11.3 95.7 99.6 54.1 197 10.1
LNENO016 WES 133 98 94.3 99.6 54.3 194 9
LNENo17 WES 158 116.4 95.9 99.6 54.1 192 8.9
LNENo020 WES 187 144.7 96.6 99.7 53.6 192 14.5
S00716_B WES 133 99.8 95.4 99.7 52.8 194 14.3
LNENO41 WGS 36 923.5 77.5 98.9 41 366 13.3
LNENo042 WGS 41 993.7 88.1 98.8 41.5 388 9.4
LNENO043 WGS 43 1033.1 89.7 99.3 41.6 392 8.8

ity is above 35, corresponding to an error probability of 0.03%,
(right panel). None of the samples presented more than 1% of
over-represented sequences, which assures a proper library di-
versity. RSeQC was used to control the alignment quality and
to assign mapped reads to different genomic features (coding
regions, introns, intergenic regions, TSS, TES). Figure 2D (left
panel) shows that every sample had more than 70% of reads
uniquely mapped and the reads distribution for each sample is
represented on Figure 2D (middle panel). All samples had more
than 75% reads mapped in coding regions (CDS-exons, 5’ and
3’ UTR exons). The reads counting was performed at the gene
level for 59,607 genes (genecode annotation, release 33) using
HTSeq [34]. Figure 2D (right panel) shows the reads assign-
ments, the percentage of assigned reads ranges from 71.3 to
87.3%. STAR, RSeQC and HTSeq metrics for each sample are
provided in Supplementary Tables 2-4. Note that three sam-
ples, LNEN008, LNEN014 and LNEN017, have a higher propor-
tion of reads classified as "Unmapped too short" and "Mapped
to multiple loci" (Figure 2D, left panel), reads mapped in in-
tronic regions (Figure 2D, middle panel) and a lower proportion
of reads assigned by HTSeq (Figure 2D, right panel) in compari-
son to the other samples. Unexpected results concerning those
samples should be thus considered with caution.

Finally, in order to apply dimensionality reduction meth-
ods to the RNA-Seq data (see below), the DESeq2 package

WES/WGS data processing

3 Raw data: fastq files
Raw reads quality

Raw data: fastq fil
aw data: fastq files FastQC

Reads mapping
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multiQC

v1.26.0 (RRID:SCR_015687) [39] was used to transform the
read counts obtained using StringTie to variance stabilized read
counts (vst), enabling the comparison of samples with differ-
ent library sizes. To reduce sex influence on expression pro-
files, the genes located on sex chromosomes were not consid-
ered for subsequent analyses. Genes located on mitochondria
chromosomes were as well not considered.

The methylation analyses were performed based on the EPIC
850K methylation arrays and the Infinium EPIC DNA methy-
lation beadchip platform (Illumina) for 33 typical carcinoids,
23 atypical carcinoids, 20 LCNEC and 19 technical replicates in
total. These arrays interrogate more than 850,000 CpGs and
contain internal control probes that can be used to assess the
overall efficiency of the sample preparation steps. The raw in-
tensity data (IDAT files) were processed using the R package
minfi v.1.24.0 (RRID:SCR__012830) [40]. Figure 1 (right panel)
provides the packages, functions and publication used for the
data processing, quality control and filtering steps as imple-
mented in the IARCbioinfo/Methylation_ analysis_ scripts [41]
GitHub repository.

Figure 2E shows that no outliers were detected: i) the left
panel, representing the median log2 of the methylated and un-

Methylation data processing
Raw data: IDAT files

Control probes quality
Sample-i Sampl

P P
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Probes filtering Pidsley et al. [34]

Batch effects detection
PCA, Surrogate variables

analysis

Beta values distributions
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Beta values computation
minfi package
getBeta()

M values computation
minfi package
getM()

Figure 1. Bioinformatics workflows for data processing and associated quality controls. Bioinformatics tools used for the processing of the WES/WGS data,
RNA-Seq and methylation data are represented in the left, middle and right panels respectively. Green boxes correspond to quality controls (QC) steps.
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Figure 2. Quality controls performed on each omic dataset. A) Reads quality control using FastQC for WES data. B) Reads quality control using FastQC for WGS
data. C) Reads quality control using FastQC for RNA-Seq data. For A, B, and C, the left panels correspond to the sequence quality plots, the x-axis representing the
base position in the read and the y-axis the mean quality value; the right panels correspond to the per sequence quality scores plots, the x-axis representing the
mean quality score and the y-axis the number of reads. D) Quality control of the RNA-Seq data after trimming. Left panel: barplot representing the percentages
of reads uniquely mapped ("Uniquely mapped"), mapped to multiple loci ("Mapped to multiple loci" or "Mapped to too many loci" if the number of loci is higher
than 10), unmapped because the mapped reads’ proportion was too small ("Unmapped: too short"), unmapped because of too many mismatches ("Unmapped:
mismatches"), or unmapped for other reasons ("Unmapped: other"). Middle panel: cumulative barplot representing the percentages of reads mapped, using
RSeQC, at different locations in the genome (exons, introns, 5’ and 3’ UTR, intergenic regions, TSS, and TES). Right panel: cumulative barplot representing the
cumulative percentages associated to the different reads assignments using HTSeq ("Assigned": reads assigned to one gene, "Ambiguous": reads assigned to
multiple overlapping genes, "Aligned not unique": reads assigned to multiple non-overlapping genes, "No Feature": reads assigned to none of the features). E)
Left panel: samples’ quality based on log median intensities. The x-axis and y-axis correspond to the median of log2 methylated and unmethylated intensities,
respectively. Right panel: representation of the between-sample similarities based on the two first MDS dimensions. F) Histogram of the median detection p-value
for each sample. G) Distribution of the beta values for each sample before and after the filtering step (left and right panel respectively).

methylated intensities, indicates that all samples cluster to-
gether with a log median intensity above 11 for both channels,
which supports the absence of failed samples, ii) on the right
panel, the multidimensional scaling (MDS) plot shows that the
samples cluster together by histological groups. We used the
depectionP function (minfi package), which compares the DNA
signal to the background signal based on the negative control
probes to provide a detection p-value per probe, lower p-value
indicating reliable CpGs. Figure 2F represents the mean de-
tection p-values per sample and shows that all samples mean
detection p-values were lower than 0.01. To correct for the vari-
ability identified in the control probes, a normalization step
was applied to the raw intensities using the preprocessFunnorm
function from minfi.

After between-array normalization, different sets of probes
that could generate artefacts were removed successively from
the methylation dataset: i) 19634 probes on the sex chromo-
somes, in order to identify differences related to tumors but
unrelated to sex chromosomes, ii) 41818 cross-reactive probes
which are probes co-hybridizing with multiple CpGs on the
genome and not only to the one it has been designed for [42],
iii) 10588 probes associated with common SNPs (present in db-
SNP build 137), iv) 24363 probes with multi-modal beta-value
distribution, and v) 9697 probes having a detection p-value
higher than 0.01 in at least one sample. Supplementary Table
5 lists the sets of filtered probes. To assess the experimental
quality of the assay, the distributions of the beta values were
analyzed. As described previously, probes with multi-modal
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Figure 3. Two dimensional projection of lung NENs transcriptome data using UMAP. The representation was obtained from the TumorMap portal, using the
hexagonal grid view, each hexagonal point representing a lung NEN sample. Point colors correspond to the molecular clusters defined in the previous manuscripts.

distributions were removed at the filtering step and overall dis-
tributions of beta values for each sample before and after fil-
tering were plotted (Figure 2G). As expected, after filtering all
samples showed a bimodal profile, indicative of the good qual-
ity of the experiment. No experimental batch effects were iden-
tified after functional normalization (see Supplementary Fig.
33 from [7]). Based on all the quality controls performed, none
of the samples analyzed were identified as outlier. However,
one sample available on EGA (201414140007__R06C01), was re-
moved from the analyses because it came from a metastatic
tumor rather than the primary tumor. Samples metadata are
provided in Supplementary Table 6.

Here we have generated a pan-LNEN molecular map with the
whole-transcriptomic (RNA-Seq) data available from individ-
ual studies of each lung NEN tumor type [2, 4, 5, 6, 7, 8]. This
dataset includes the RNA-Seq data for a total of 51 SCLC, 69 LC-
NEC, 118 carcinoids including 40 atypical and 75 typical carci-
noids. The different data underwent the same processing steps
described above since the generation of the molecular map re-
quires a homogenized dataset.

UMAP method

The pan-LNEN map was obtained using the Uniform Man-
ifold Approximation and Projection (UMAP) method [43] on
the genes with the most variable expression (genes explaining
50% of the total variance). UMAP is a dimensionality reduc-
tion method based on manifold learning techniques, which are
adapted to non-linear data in contrast with the commonly used
PCA method. Firstly, it builds a topological representation of
the high-dimensional data, and secondly it finds the best low-
dimensional representation of this topological structure [43].
UMAP representations were generated using the umap function
from the R package umap (v. 0.2.5.0) [44]. All the parameters
were set to their default values except the n_ neighbors param-
eter. This parameter defines the number of neighbors consid-
ered to learn the structure of the topological space. Varying
this parameter from small to large values enables the user to
find a trade-off between local and global preservation of the

space, respectively. In order to preserve the global structure of
the data (see "quality control of the UMAP projection" section
below), we built the pan-LNEN map setting the n_ neighbors
parameter to 238, which corresponds to the total number of
samples.

Biological interpretation of the pan-LNEN TumorMap

Figure 3 shows the pan-LNEN map available on TumorMap
[45] (see "Re-use potential" section below), with colors repre-
senting the main molecular subtypes. To evaluate the accuracy
of the generated pan-LNEN map we firstly verified whether it
was consistent with the main biological findings from the orig-
inal studies, in particular whether it represented the molecular
subtypes of lung NENs previously identified, and their relation-
ship with histological types. We specifically tested whether
groups of samples previously described as having discordant
molecular and histopathological features were identified in our
map. To do so, given a focal molecular subtype and two ref-
erence histopathological types, we assessed whether samples
from the focal molecular subtype were closer to one of the two
references using a one-sided Wilcoxon test between the eu-
clidean distances of samples to the centroid of each reference
type.

First, the SCLC/LCNEC-like samples [6], which are histolog-
ical SCLCs presenting the molecular profile of LCNEC, tend to
cluster with the LCNECs rather than with the SCLCs (Wilcoxon
p-value = 6.2 x 10~4). Similarly, the LCNEC/SCLC-like samples
[6], which are histological LCNECs having the molecular pro-
file of SCLC, tend to cluster with the SCLCs rather than with
the LCNECs (Wilcoxon p-value = 3.3 x 1073). In 2018, George et
al. showed also that LCNEC samples can be subdivided into
the type-I and type-II molecular groups [6]. We observed
that the type-I and type-II LCNECs were closer to each other
than to the SCLC/SCLC-like (Wilcoxon p-value = 9.9 x 10~14)
and that SCLC/LCNEC-like samples were closer to type-II than
type-I LCNECs [6] (Wilcoxon p-value = 3.9 x 1073). Like the
LCNECs, pulmonary carcinoids have been subdivided in molec-
ular groups. Alcala et al. [7] identified three clinically rele-
vant molecular clusters, using a multi-omics factor analysis
(MOFA): Carcinoid A1, Carcinoid A2, and Carcinoid B [7]. In the
pan-LNEN map generated using UMAP, those three clusters
are clearly visible (Figure 3) and respectively correspond to the
three clusters identified in [8] named LC1, LC3 and LC2. Also,
in the study from Alcala and colleagues [7], two carcinoids that
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Figure 4. Quality controls performed on the UMAP projection. A) Comparison of the samples’ neighborhood preservation for UMAP, PCA-2D, and PCA-5D
dimensionality reductions. @,'{ values are represented as a function of the number k of nearest neighbors considered, for different dimensionality reduction
methods: PCA-2D in purple, PCA-5D in blue, UMAP with n__neighbors = 238 (UMAP-nn-238) in yellow and UMAP with the default value n__neighbors = 15 (UMAP-
nn-15) in green. Error bars correspond to the means more or less the standard deviations computed across 1000 replicate simulations. B) Concordance between
gene expressions’ spatial auto-correlations in the original space, UMAP-nn-238, and PCA-5D dimensionality reductions. For each space, the genes were ranked
based on the spatial auto-correlations of their expression (mean MI values). The concordance is measured as the proportion of overlap between the top N genes
in the different spaces (colored lines). The yellow line corresponds to the proportion of overlap expected under the null hypothesis (based on the expected mean
of the hypergeometric law). The Euler diagram represents the overlaps between the top 1000 features (N = 1000, dashed line) resulting from the three spaces.

clustered with the carcinoids B (S00118 and S00089) were bor-
derline and located between cluster A1 and B. Similarly, a LC-
NEC sample and a SCLC sample clustered with the carcinoids
A1 [7]. These observations are also visible on the TumorMap
representation. Finally, in the same study, a novel entity of
carcinoids, named the supra-carcinoids was unveiled. These
samples were characterized by a morphology similar to that
of pulmonary carcinoids but the molecular features of LCNEC
samples. In the pan-LNEN TumorMap, the supra-carcinoids
also clustered with the LCNEC samples and were molecularly
closer to LCNECs than to SCLCs (Wilcoxon p-value = 5 x 1072).
We also note that one sample from Laddha et al. [8] LC2 cluster
(SRR7646258) clusters with LCNEC.

In any dimensional reduction technique, there is a trade-off
between preserving the global structure of the data and the
fine scale details, and UMAP has been designed to reach a better
balance compared to previous methods.

Based on the previously published analyses of lung NEN
data [2, 4, 5, 6, 7, 8], we expect the global structure of the
data to be composed of six molecular groups (SCLCs, type I
and type II LCNECs, Carcinoid A1, A2 and B). For this rea-
son, an ideal projection able to capture this large scale vari-
ation should contain five dimensions. To assess the quality
of the 2-dimensional representation generated by UMAP, we
propose a comparative analysis between UMAP and the tradi-
tional principal component analysis (PCA) based on the five
first principal components of PCA (PCA-5D) as implemented
in the dudi.pca function from the ade4 R package (v1.7-15) [46].
Because UMAP is aiming at preserving the global structure in
only two dimensions, we also compared it to the traditional
PCA based only on the two first principal components (PCA-
2D). We evaluated the performance of the methods based on
the preservation of: (i) the samples’ neighborhood and (ii) the
spatial auto-correlations.

Preservation of the samples’ neighborhood

We used the sequence difference view (SD) metric (eq. 3 from
[47]) to evaluate the preservation of the samples’ neighbor-
hood. This dissimilarity metric compares, for a given sam-
ple, its neighborhood in the low-dimensional space with that
in the original space, taking into account that preserving the
rank of a close neighbor is more important than for a dis-
tant neighbor (see [47] for details). SD values are positive
(SD € [0;+00)), with small values indicating a good preserva-
tion of the samples neighborhood. We denote by SD,, the value
of SD averaged across samples for a fixed number of neighbors
k; SDy gives a sense of the overall preservation of the neigh-
borhood at different scales: local for low k values and global
for large k values. We calculated SD; for PCA-5D, PCA-2D,
UMAP with n__neighbors = 238 and UMAP with the default value
n_neighbors = 15. Because we are interested in the relative val-
ues of SD;, for the different dimensionality reduction methods,
and because we use PCA as a reference, for each dimensionality
reduction method X we scaled the values of SD; using that of
PCA-5D and PCA-2D:

_ SD, 5 - SD, _
sD, x=— kX k,PCA-5D 1)

SDy pca-2p ~ SDk,pca-5p

By definition, Ei(ypcA_5D = 0 and @;c,PCA—ZD = 1. Thus val-
ues of @L’X close to 0 indicate that X preserves k neighbor-
hoods as well as PCA-5D, whereas values close to 1 indicate
that X preserves k neighborhoods worse than PCA-5D but as
well as PCA-2D, and values greater than 1 indicate that X pre-
serves k neighborhoods worse than PCA-2D and PCA-5D. Note
that @L,x can be negative if X preserves k neighborhoods bet-
ter than @k,PCA—sD' For the UMAP projection, we iterated the

computation of @; 1000 times, because the algorithm uses a
stochastic optimization step to define the projection.

As expected, increasing the n_neighbors UMAP parameter
from 15 to 238 leads to a better preservation of the global struc-



ture, clearly visible for k > 30 (Figure 4A; mean @;{80 equals to
2.855 and 1.029 respectively), while only marginally reducing
the preservation of the local structure for k < 30 (mean @;«30
equals to -0.076 and 0.124 respectively), which is approxi-
mately the size of the smallest cluster. Globally, the SDj, values
over all k levels are lower for a n__neighbors value of 238 than 15
(paired t-test p-value = 6.09 x 10~8). With n_neighbors = 238,
the UMAP projection provides a clear improvement over PCA-
2D for k around 135 (mean SDy, < 1), offering a good trade-off
for visualisation in only two dimensions while being able to
maintain the global structure of the data, in particular the six
molecular groups previously identified. This observation high-
lights the importance of varying the n__neighbors parameter ac-
cording to the purpose of the projection. Some analyses would
require to maintain the local structure of the samples neigh-
borhood while others the global structure.

Preservation of spatial auto-correlations

Under the hypothesis that close points on projections share a
similar molecular profile, spatial auto-correlations were mea-
sured according to the Moran Index (MI) metric [48]. MI val-
ues range from -1 to 1, the extreme values indicating nega-
tive (nearby locations have dissimilar gene expression) or pos-
itive (nearby locations have similar gene expression) spatial
auto-correlation, respectively. The spatial auto-correlation of
the expression of each gene helps to identify the genes con-
tributing to the structure of the molecular map (MI~ 1), and
conversely, the genes that are randomly distributed spatially
(MI~ 0). The computation of MI requires a weight matrix that
determines the spatial scale at which auto-correlation is as-
sessed; we gave a weight of 1 to the k nearest neighbors based
on Euclidean distance, and 0 otherwise, so that we can con-
trol the scale at which MI is computed with parameter k. The
mean MI across k values was computed for all gene expression
features for: (i) the original space, (ii) the PCA-5D projection,
and (iii) the UMAP projection (with n__neighbors = 238). We
used the implementation of MI from the Moran.I function of R
package ape (v. 5.3) [49].

To evaluate the preservation of the spatial auto-
correlations, we ranked the top N genes based on the
mean MI values for these three cases and calculated the
overlap between the lists (Figure 4B). We found that the
PCA-5D is only slightly more conservative of the spatial
auto-correlations found in the original space than UMAP
(unilateral paired t-test p.value = 2.2 x 10716). For example,
for N = 1000 (see Euler diagram inserted in Figure 4B), 88.8%
of the genes with the highest MI overlap between the PCA-5D,
UMAP and the original space.

Newton and colleagues have recently developed a portal called
TumorMap [13, 50], an online tool dedicated to omics data vi-
sualization. This new type of integrated genomics portal uses
the Google Maps technology designed to facilitate visualization,
exploration, and basic statistical interrogation of high dimen-
sional and complex datasets. The pan-LNEN molecular map
that we generated in this work (Figure 3) has been shared on
the TumorMap platform. Along with the molecular map, the
main clinical, histopathological and molecular features high-
lighted in the previous studies were uploaded as attributes.
The interface enables users to explore and navigate through
the map: zooming in and out, coloring and filtering samples
based on attributes. The users can also create their own at-
tributes based on pre-existing ones by using operators such

as union or intersection. In addition, multiple statistical tests
are pre-implemented and available, for example: comparison
of attributes without considering the samples positions on the
map, comparison of attributes considering samples positions
on the map, and ordering attributes based on their potential
to differentiate two groups of samples. The interactive nature
of the map and the fact that its manipulation does not require
computational expertise, could enable the generation of new
hypotheses and expand the reuse potential of the dataset.

In the first part of the paper, we described the pre-processing
and quality control steps applied on the recently published
lung NEN multi-omics dataset [7] in order to facilitate its
reuse. To generate the pan-LNEN molecular map, the same
pre-processing steps were followed to homogenize indepen-
dently published transcriptomic data [2, 4, 5, 6, 7, 8]. For
that purpose, reproducible pipelines, developed in house, were
used and are available for reuse to the scientific community on
GitHub [51] (see the "availability of source code" section). In
addition, the code used to generate the molecular map and to
evaluate the quality of the dimensionality reduction is provided
as a notebook published on Nextjournal [52]. Along with the
code, the notebook provides the data and the dependencies re-
quired to run the analyses performed in this paper. Interested
researchers can thus make a copy of this publicly available note-
book (called "Remix") to reproduce our results but also inter-
actively modify the code and explore the influence of different
parameters.

The homogenized read counts of the pan-LNEN data are avail-
able on GitHub [14]. Along with the available code, these data
could be used to integrate new samples for which RNA-Seq data
are available. The raw read counts of the new samples should
firstly be generated following the same processing steps de-
scribed in the section "Data quality controls" (Figure 1, middle
panel) and integrated to the pan-LNEN read counts. We also
provide in the Nextjournal notebook, the Nextflow command
lines allowing to obtain the read counts. The variance stabi-
lized transformation (DESeq2 [39]) should then be applied on
the combined data set and UMAP should finally be rerun to
project all samples together in a two dimensional space. All
together, we provide the resources to integrate additional sam-
ples into our molecular map, starting from raw sequencing
read counts.

Genomic projects focused on rare cancers encounter the limita-
tion of availability of good quality biological material suitable
for such studies. This translates in small series of samples
usually underpowered to draw meaningful conclusions. Thus,
tools facilitating the integration of independent datasets into
larger sample series will lead to more informative studies. Re-
cently, the first multi-omic dataset for the understudied atyp-
ical pulmonary carcinoids and the first methylation dataset for
LCNECs was published [7]. Here we provide a parallel descrip-
tion of the pre-processing of these molecular data and provide
evidence of the good quality of the different 'omics data gen-
erated. This data collection associated with previous datasets
[2, 4, 5, 6, 8] completes the lung NENs molecular landscape
and provides thus a valuable resource to improve the molec-
ular characterization of lung NEN tumors. Notably, we show



here the perfect concordance of the three molecular clusters of
pulmonary carcinoids independently identified in [7] and [8],
validating the discoveries made by these two studies and prov-
ing the usefulness of this integrative approach.

However, even when primary genomic data is available, bar-
riers to accessing the data still exist, often limiting its reuse
by the community [53]. In particular, downloading and re-
reprocessing large raw sequencing data requires dedicated in-
frastructure and bioinformatics skills. Indeed, in order to
minimize batch effects when integrating data from different
studies, one need to process it exactly in the same way (with
the same software and the same versions, the same reference
genome, the same annotation databases etc.). As more and
more data are generated, the previously mentioned reprocess-
ing will become untenable and replicating these efforts for each
new study in each research group represents a waste of re-
sources. Standardization of laboratory and computational pro-
tocols might become a reality when large national medical ge-
nomics initiatives will be fully operational [54]. In the mean-
time there is a need for better data sharing strategies than the
traditional “supplementary spreadsheet / raw data” combina-
tion that can accelerate the translational impact of molecular
findings.

One step in this direction is the generation of so called "tu-
mor maps", which provide an interactive way to explore the
molecular data and allow easy statistical interrogation, includ-
ing generating new hypotheses, but also projecting data from
future studies including fewer samples [13]. This integration
method has some limitations though. A fixed reference map
could be of interest for easier biological interpretations, but
the overall sample size of the datasets used to build the pan-
LNEN map remains relatively small. Thus, the map does prob-
ably not capture the complete molecular diversity of the lung
NENS, and integrating new samples will influence the map and
potentially change the clusters obtained after dimensionality
reduction. Also, if the harmonization of the new dataset to in-
tegrate is not enough to correct for strong batch effects, the
interpretation of the projections would be erroneous. Another
approach would be to project the new samples into a fixed refer-
ence map. However, the stochastic nature of UMAP embedding
and its sensibility to parameter tuning can lead to unstable pro-
jection results, thus this task is for now not straightforward
and requires further development [55]. In the meantime, fa-
voring the integration of datasets will, over the years, yield to
the constitution of molecular maps that will probably be more
and more accurate and more adapted to the projection of new
samples.

Here we provide a molecular map based on homogenized tran-
scriptomic data available for the four types of lung NENs from
six different studies. We show that this map represents well
both the local and global structure of the data, and captures
the main biological features previously reported. We provide
a full spectrum of data and tools to maximize its re-use po-
tential for a wide range of users: raw sequencing reads, gene
expression matrix, bioinformatics pipelines, interactive com-
putational notebooks and an interactive TumorMap. In partic-
ular, we indicate how one can update the molecular map by
integrating new samples starting from raw sequencing reads.
Considering the small sample sizes of molecular studies on rare
lung NENs, promoting data integration will empower more re-
liable statistical testing, and this map will therefore serve as a
reference in future studies.

R codes used for this article are available in the GigaDB
data repository [56]. The data used in this manuscript
are available on the European Genome-phenome Archive
(EGA) which is hosted at the EBI and the CRG, under
the accession numbers EGAS00001003699, EGAS00001000650,
EGAS00001000925, EGAS00001000708, as well as on Gene ex-
pression Omnibus (GEO) under GEO SuperSeries GSE118131.
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