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Supplementary Methods 

Human iPSC culture and neuronal differentiation 
CRISPRi-i3Neuron iPSCs were generated from a control iPSC line (WTC11) that harbors 

a dox-inducible mouse NGN2 transgene at the AAVS1 locus (i3N) (1), and that stably expresses 
dCas9-BFP-KRAB via TALEN-mediated integration of CAG-dCas9-BFP-KRAB into the 
CLYBL safe harbor locus (2). Human iPSCs were maintained as previously described (1, 3). In 
brief, iPSCs were cultured in Essential 8 Medium (Thermo Fisher Scientific) in cell culture 
dishes pre-coated with Phenol-free Matrigel Basement Membrane Metrix (Corning) diluted 1 in 
100 in Knock-out DMEM (Thermo Fisher Scientific). For passaging, media was aspirated, cells 
were washed in Dulcecco’s phosphate buffered saline (DPBS, Thermo Fisher Scientific), 
incubated in StemPro Accutase (Thermo Fisher Scientific) and diluted in DPBS. The cell 
suspension was centrifuged at 200 x g for 5 minutes and resuspended in Essential 8 Medium 
supplemented with 10 nM Thiazovivin (Millipore). For differentiation into iPSC-derived 
neurons, cells were pelleted and then resuspended in N2 Pre-Differentiation Medium [Knock-out 
DMEM/F12 (Thermo Fisher Scientific) supplemented with 1X MEM Non-Essential Amino 
Acids (Thermo Fisher Scientific), 1X N2 Supplement (Thermo Fisher Scientific), 10 nM 
Thiazovivin and 2 µg/mL doxycycline hydrochloride (Sigma-Aldrich)] and plated at the desired 
number on Matrigel-coated plates for 72 hours. Pre-differentiated cells were passaged as 
described above and the pelleted cells were resuspended in Neuronal Medium [half DMEM/F12 
(Thermo Fisher Scientific), half Neurobasal A (Thermo Fisher Scientific) supplemented with 1X 
MEM Non-Essential Amino Acids. 0.5X GlutaMAX supplement (Thermo Fisher Scientific), 
0.5X N2 Supplement, 0.5X B27 Supplement (Thermo Fisher Scientific), 10 ng/mL NT-3 (Pepro-
Tech), 10 ng/mL BDNF (Pepro-Tech), 1 µg/mL Mouse Laminin (Invitrogen]) and plated on cell 
culture dished pre-coated with poly-L-ornathine (Sigma-Aldrich). Media was replaced with half 
volume changes biweekly and cells were harvested seven days post-differentiation.      
 
Lentiviral transduction and sgRNA cloning  

A single guide RNA (sgRNA) to downregulate the expression of TDP-43 and a sgRNA 
control were selected from Horlbeck et al. (4), (5’-GGGAAGTCAGCCGTGAGACC-3’ for 
TARDBP and 5’-GGACTAAGCGCAAGCACCTA-3’ as control) and cloned into the SLQ1371-
BFP-EF1A-puro lentiviral vector using the BstXI and BlpI restriction sites. HEK293T cells were 
used for packaging virus. Cells were seeded on tissue culture dishes coated with poly-D-lysine 
(Sigma-Aldrich) in Opti-MEM reduced serum media (Thermo Fisher Scientific) supplemented 
with 10% (v/v) FBS. The following day, the cells were transfected with individual sgRNA 
plasmids and the packaging vectors (psPAX2, pMD2.G and pAdVantage) in Opti-MEM using 
Lipofectamine 2000 (Invitrogen) as per the manufacturer’s instructions. The next day, the media 
was replaced and two days later the media was filtered through a 0.45 µm syringe. Viral 
supernatant was used to transduce CRISPRi-i3N iPSCs expressing dCas9-BFP-KRAB with 
individual sgRNAs. The following day the media was changed with Essential 8 Medium and two 
days after that, the transduced cells were selected with Essential 8 Medium supplemented with 1 
µg/mL puromycin (Sigma-Aldrich). 

 

Generation of TARDBP mutant and control human iPSC lines and motor neuron differentiation 
All iPSC lines were derived from skin biopsy fibroblasts, collected under local ethical 

approval from Oxford and Edinburgh Ethics Committees. iPSC lines were derived from skin 
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biopsy fibroblasts in the James Martin Stem Cell Facility, University of Oxford, and The 
University of Edinburgh, under standardized published protocols. Transduced fibroblasts were 
plated for generation of iPSC clones, and clones were picked, expanded and banked as described 
previously (5). Clones from University of Oxford (OXTDP-01 and OXTDP-03) were derived 
using Cytotune 2.0™ (polycistronic vector Klf4–Oct3/4–Sox2, cMyc and Klf4 separate viruses), 
according to the manufacturer's instructions (Life Technologies, Rockville, MD, 
http://www.lifetech.com). Clones from The University of Edinburgh were generated using 
standard episomal reprogramming method (6). All iPSC lines passed quality control for genome 
integrity and expression of pluripotency markers (7). Motor neuron differentiation was 
performed using a previously published protocol (7, 8) and cells were cultured for 30 days, 
followed by harvesting for analysis. RNA was extracted from control- and TDP-43-mutant-
iPSC-derived motor neurons using the miRNeasy kit (QIAGEN) following the manufacturer’s 
protocol. RNA quality was determined by RNA Integrity Number (RIN) using RNA ScreenTape 
and reagents (Agilent) on the 2200 Tapestation System (Agilent). RNA-seq was performed using 
polyA libraries and sequenced on the HiSeq4000 to provide 150 bp paired-end reads. 
 
Immunocytochemistry of iPSC-derived motor neurons 

iPSC-derived motor neurons were seeded on glass coverslips, collected at day 30 of 
differentiation and fixed in 4% paraformaldehyde-phosphate buffered saline (PBS) for 15 min. 
Cells were permeabilized and blocked (10% donkey serum, 0.2% Triton X-100, in PBS) for 1h at 
room temperature, followed by incubation with primary antibodies (diluted in 1% donkey serum, 
0.1% Triton X-100, in PBS) overnight at 4°C. The following primary antibodies were used: 
rabbit anti-TDP-43 (10782-2-AP, ProteinTech, 1:1000) and goat anti-Choline Acetyltransferase 
(ab144P, Millipore, 1:100). Alexa Fluor 488 donkey anti-rabbit and Alexa Fluor 647 donkey 
anti-goat (A32790 and A32849 respectively, ThermoFisher Scientific, 1:1000) diluted in 1% 
donkey serum and 0.1% Triton X-100 in PBS, were used to detect the corresponding antigen by 
incubating the cells for 1h at room temperature. Nuclei were stained with 4',6‐Diamidino‐2‐
Phenylindole (DAPI) in PBS for 5 min. Three PBS washes occurred between each incubation 
step. Finally, coverslips were mounted on microscope slides using fluorescence mounting 
medium (Dako) and fluorescent images were obtained using a confocal microscope Zeiss LSM 
710 with the 63X objective. 

To determine the cytoplasmic and nuclear TDP-43 content, 20-30 choline 
acetyltransferase (ChAT) positive cells for each clonal line and differentiation were analyzed 
using ImageJ software. Cytoplasm/nucleus (C/N) ratios were calculated using the mean intensity 
values for TDP-43 inside the ChAT-positive area (C) and in inside the DAPI-positive area (N). 
The average values of the C/N ratios per cell for each clonal line and differentiation were plotted. 

 

Immunoblotting of iPSC-derived motor neurons 

iPSC-derived motor neurons were harvested at day 30 of differentiation and lysed in 
RIPA buffer (ThermoFisher Scientific) supplemented with cOmpleteTM protease inhibitor 
cocktail (Sigma), homogenized with a pellet pestle and incubated on ice for 30 min. After 
centrifugation at 10,000 x g for 15 min the supernatant was collected and total protein 
concentration was determined using the PierceTM bicinchoninic acid assay (Sigma). A total of 
10 µg of protein per sample were loaded and resolved on pre-cast NuPAGETM Bis-Tris 4-12% 
gradient gels (ThermoFisher Scientific) at 120V for 2.5 hours in MOPS running buffer 
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(Invitrogen). Samples were then transferred to nitrocellulose membranes at 20-25 V for 7 min 
using an iBlot 2 Dry blotting system (ThermoFisher Scientific). Blots were blocked for 1h at 
room temperature in Tris-buffered saline (TBS) supplemented with 0.1% Tween 20 and 5% 
skimmed milk. Incubation with primary antibodies (0.1% Tween 20, 1% milk, in TBS) were 
performed at 4°C overnight. The primary antibodies used were rabbit anti-TDP-43 (10782-2-AP, 
ProteinTech, 1:1000) and mouse anti-β actin (A5441, Sigma, 1:5,000). Horseradish peroxidase-
conjugated anti-rabbit IgG or anti-mouse IgG (NA934 and NA931 respectively, Sigma) were 
used as secondary antibodies, and the signal was visualized in GE Healthcare Amersham 
Hyperfilm ECL using the ECL Plus detection system (both ThermoFisher Scientific). Three PBS 
washes occurred between each incubation step. The integrated optical density of each band was 
measured in ImageJ and expression was normalized to β-actin levels in the same blot for 
comparative expression assessment. 
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Supplementary Figure 1. TARDBP and STMN2 RNA are reduced in iPSC-derived motor neuron 
data from Klim et al. in response to TDP-43 downregulation. Publicly available RNA-seq data from 
iPSC-derived motor neurons from Klim et al. was used to calculate RNA abundance as reads per kilobase 
per million (RPKM) and shown as a percent of controls. (A) TARDBP RNA is significantly reduced in 
the TDP-43 knockdown (TDP-43 KD) condition. (B) STMN2 RNA levels were also significantly reduced 
in the TDP-43 KD condition, and as shown previously by Klim et al. Statistical differences were assessed 
by unpaired Student t tests: ****P<0.001. N=6 TDP-43 KD, N=11 Controls. Note truncated STMN2 was 
upregulated in response to TDP-43 knockdown (see Figure 1E, dataset labeled “b”) 
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Supplementary Figure 2. TARDBP and STMN2 RNA are not reduced in iPSC-derived motor 
neurons data with pathogenic TARDBP mutations. TARDBP (A) and STMN2 (B) RNA levels in iPSC-
derived motor neurons from patients with TARDBP mutations (TDP-43 mut.) or healthy controls 
(Controls) from a group in Edinburgh (dataset labeled “c” here and in Figure 1E), calculated as RPKM 
and shown as a percentage of control. Data show that mutations in TDP-43 alone do not lead to changes 
in either TARDBP or STMN2 RNA levels. Statistical differences were assessed by unpaired Student t 
tests. n.s.: not significant differences. N=7 TDP-43 KD, N=4 Controls. 
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Supplementary Figure 3. TDP-43 levels and cellular location is not altered in iPSC-derived motor 
neurons with pathogenic TARDBP mutations. iPSC-derived motor neurons from patients with 
TARDBP mutations controls from a group in Oxford (dataset labeled “d” in Figure 1E) show no TDP-43 
mislocalization, aggregation or change in TDP-43 protein levels. (A) TDP43-M337V and TDP43-I383T 
iPSC-derived motor neurons show similar nuclear-cytoplasmic distribution of TDP-43 (green) at day 30 
of differentiation (DAPI in blue, Choline acetyltransferase (ChAT) in white). Scale bar indicates 10 µm. 
(B) Mean intensity of TDP-43 staining in the cytoplasm (stained with anti-ChAT) and inside the nucleus 
(DAPI) was analysed using ImageJ software to calculate the cytoplasm/nucleus (C/N) ratio for control (C 
– 1 and C – 2) and mutant (01-01, 01-02, 03-03, 03-04, 03-06) clones. N=3 independent differentiations 
(except in C - 1 where one of the differentiations failed) with SEM were plotted in the graph and no 
significant differences were observed. (C) The total quantity of soluble TDP-43 protein is not 
significantly different between the controls (C – 1 and C – 2) and the lines carrying TDP-43 mutations 
(01-01, 01-02, 03-03, 03-04, 03-06) at day 30 of differentiation. Unedited full gels are included as a 
Supplementary File. Relative TDP-43 expression values (standardized by β-actin levels) of 2 
independent differentiations (except in C - 1 where one of the differentiations failed) were plotted in the 
graph. Statistical differences were assessed by one-way ANOVA. n.s.: not significant differences. 
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Supplementary Figure 4. The expression of full-length STMN2 is influenced by technical factors. 
(A) Normalized transcripts per million of the full-length STMN2 isoform in ALS-TDP (burgundy) versus 
control samples (grey) in the six tissues with the largest number of samples, and split by sequencing 
platform. (B) RNA integrity number (RIN), a measure of RNA quality, in ALS-TDP (burgundy) and 
control (grey) samples from all six tissues with the largest number of samples. (A-B) Data presented as 
box and whisker plots. These represent the median bounded by the first and third quartiles, with whiskers 
extending to 1.5 times the inter-quartile range. P values were calculated from Wilcoxon non-parametric 
test. (C) Correlations between RIN and full-length STMN2 expression between tissue and sequencing 
platform in ALS-TDP. P values shown were calculated from Spearman correlations. 
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Supplementary Figure 5. Detection of the truncated STMN2 isoform across the NYGC ALS Consortium dataset. Samples grouped by 
disease with or without TDP-43 pathology. Top left panel presents the entire dataset. Each group and tissue combination is presented as a 
proportion of that group where the truncated STMN2 isoform could be detected. Bar graphs representing the proportion of individuals (%) with at 
least two reads spanning exon 1-exon 2a junction. The number of individuals with samples in indicated tissues/diseases is indicated on the right of 
the graph, after the vertical dotted line. 
 



10 
 

 
 
Supplementary Figure 6. Truncated STMN2 expression across tissues and disease subtypes. Only samples with at least two reads and the six 
tissues with the most truncated STMN2 RNA expression are shown. (A) Raw read counts for the truncated STMN2 splice junction. X-axis is in 
log10 for illustrative purposes. (B) Normalized read counts per million for the truncated STMN2 splice junction. Data is presented as box and 
whisker plots. These represent the median bounded by the first and third quartiles, with whiskers extending to 1.5 times the inter-quartile range. 
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Supplementary Figure 7. Truncated STMN2 detection rates for each major disease category across tissues. (A) In patients with concurrent 
ALS and FTD (ALS/FLTD) truncated STMN2 RNA was detected in both cortical regions as well as in spinal cord, whereas (B) ALS patients with 
suspected Alzheimer’s disease (ALS/AD) truncated STMN2 RNA was most abundant in spinal cord but absent from the frontal cortex and 
relatively reduced levels were detected in motor cortical regions. Bar graphs representing the proportion of individuals (%) with at least two reads 
spanning exon 1-exon 2a junction. N refers to the number of individuals with samples in indicated tissues/diseases. 
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Supplementary Figure 8. Detection of truncated STMN2 RNA is not influenced by technical factors. 
All samples presented are from the six tissues with the largest number of detectable truncated STMN2 
samples in ALS-TDP cases. (A) The distribution of RIN values between samples with detectable 
truncated STMN2 (+) does not differ from samples without (-). (B, C) Detection rates are not influenced 
by RNA sequencing platform (B), nor dependent on total RNA-seq library size (log10 scale) (C). (D) 
Full-length STMN2 expression levels differ in samples with and without detectable truncated STMN2 
RNA preliminarily in the lumbar spinal cord. Data in A, C, and D is presented as box and whisker 
plots. These present the median bounded by the first and third quartiles, with whiskers extending to 1.5 
times the inter-quartile range. P values in A, C and D derive from a Wilcoxon non-parametric test. P 
values in B derive from a chi-squared test. 
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Supplementary Figure 9. Truncated STMN2 is elevated in FTLD-TDP frontal cortex compared to 
controls, as measured by qRT-PCR. RNA was extracted from the frontal cortex of FTLD-TDP cases 
(N=93) and cognitive normal controls (N=26) to evaluate levels of truncated STMN2 RNA by qRT-PCR. 
A total of 500 ng was used for qRT-PCR following same methods as described for the iPSC-derived 
neurons. Data is presented as mean ± SEM, and an unpaired Student t test was used to establish 
significant differences, ****P<0.0001.  
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Supplementary Table 1. Human iPSC lines used for TARDBP mutant and control motor neuron 
differentiations from Edinburgh and Oxford datasets. 

Study Patient group Genotype Sex Age Clone number Differentiation number 

Oxford 

Control Control 

Female 60 1 
1 
2 

Female 67 1 
1 
2 

Edinburgh 
Male 64 1* 

1 
2 

Female 56 1 
1 
2 

Oxford 

ALS 

TARDBP 
I383T 

Male 60 
1 

1 
2 

2 
1 
2 

TARDBP 
M337V 

Male 57 

1 
1 
2 

2 
1 
2 

3 
1 
2 

Edinburgh 

TARDBP 
M337V 

Male 59 1 
1 
2 

TARDBP 
G288S 

Male 64 
1* 

1 
2 
3 

2 
1 
2 

*Isogenic lines 
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Supplementary Table 2. Comparisons of truncated STMN2 RNA in frontal cortex between FTLD-TDP cases and control cases. 

   
Unadjusted analysis 

Adjusting for age at death, sex, 
and RIN  

Group N 

Median (minimum, 
maximum) levels of 
truncated STMN2 

RNA  

Regression coefficient 
(95% CI) 

P-value 
Regression coefficient 

(95% CI) 
P-value 

AUC (95% CI) 
vs. controls 

Controls 33 368 (26, 1336) 0.00 (reference) NA 0.00 (reference) NA NA 
All FTLD-TDP 238 560 (8, 5210) 0.86 (0.41, 1.32) <0.001 0.60 (0.15, 1.06) 0.009 0.67 (0.57, 0.78) 

FTLD-TDP type A 117 595 (8, 3495) 0.95 (0.43, 1.47) <0.001 0.69 (0.17, 1.21) 0.010 0.70 (0.59, 0.80) 
FTLD-TDP type B 66 494 (62, 5210) 0.76 (0.23, 1.29) 0.006 0.41 (-0.20, 1.01) 0.19 0.65 (0.53, 0.77) 
FTLD-TDP type C 43 575 (106, 2071) 0.82 (0.26, 1.39) 0.005 0.46 (-0.12, 1.05) 0.12 0.67 (0.54, 0.80) 
FTLD-TDP type D 2 1035 (1008, 1062) 1.88 (-0.21, 3.97) 0.076 1.44 (-0.67, 3.56) 0.17 0.94 (0.86, 1.02) 

CI=confidence interval; AUC=area under the ROC curve. Regression coefficients, 95% CIs, and P-values result from linear regression models where 
the levels of truncated STMN2 RNA in the frontal cortex were considered on the base 2 logarithm scale. Regression coefficients are interpreted as the 
difference in mean levels of truncated STMN2 RNA in the frontal cortex (on the base 2 logarithm scale) between the given group of diseased patients 
and controls. P-values ≤ 0.010 are considered as statistically significant after applying a Bonferroni correction for multiple testing. NA: not applicable. 
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Supplementary Table 3. Comparisons of full-length STMN2 RNA in frontal cortex between FTLD-TDP cases and control cases. 
Unadjusted analysis Adjusting for age at death, sex, and RIN 

Group N 
Median (minimum, 
maximum) levels of 

STMN2 

Regression coefficient 
(95% CI) 

P-value 
Regression coefficient 

(95% CI) 
P-value 

AUC (95% CI) vs. 
controls or PSP cases 

Controls 33 17558 (2338, 61245) 0.00 (reference) NA 0.00 (reference) NA NA 
PSP 41 9258 (1866, 31170) -0.69 (-0.98, -0.40) <0.001 -0.81 (-1.13, -0.48) <0.001 0.83 (0.73, 0.93) 

  

Controls 33 17558 (2338, 61245) 0.00 (reference) NA 0.00 (reference) N/A NA 
FTLD-TDP 238 11832 (1418, 96495) -0.50 (-0.74, -0.25) <0.001 -0.60 (-0.84, -0.35) <0.001 0.74 (0.65, 0.84) 
  
PSP 41 9258 (1866, 31170) 0.00 (reference) NA 0.00 (reference) NA NA 
FTLD-TDP 238 11832 (1418, 96495) 0.19 (-0.03, 0.41) 0.085 0.15 (-0.06, 0.37) 0.15 0.60 (0.51, 0.68) 
CI=confidence interval; AUC=area under the ROC curve. Regression coefficients, 95% CIs, and P-values result from linear regression models where the levels 
of full-length STMN2 RNA in the frontal cortex were considered on the base 2 logarithm scale. Regression coefficients are interpreted as the difference in mean 
levels of full-length STMN2 RNA in the frontal cortex (on the base 2 logarithm scale) between the given group of diseased patients and the reference group 
(controls or PSP cases). P-values <0.0167 are considered as statistically significant after applying a Bonferroni correction for multiple testing. NA: not 
applicable. 
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Supplementary Table 4. Associations of interest of full-length STMN2 RNA in FTLD-TDP frontal cortex. 
 Unadjusted analysis Multivariable analysis  

Variable 
Regression coefficient 

(95% CI) 
P-value 

Regression coefficient 
(95% CI) 

P-
value 

Multivariable model adjustments 

pTDP-43 (doubling) 0.05 (-0.02, 0.12) 0.15 0.02 (-0.05, 0.10) 0.53 Age at death, sex, TDP-43 subtype 

TDP-43 subtype Overall test of difference: P=0.037 
Overall test of difference: 

P=0.012 
Age at death and sex 

FTLD-TDP type A 0.00 (reference) NA 0.00 (reference) NA 
FTLD-TDP type B -0.37 (-0.66, -0.09) 0.011 -0.46 (-0.76, -0.15) 0.004 
FTLD-TDP type C -0.22 (-0.54, 0.11) 0.19 -0.24 (-0.57, 0.08) 0.15 
FTLD-TDP type D -1.10 (-2.33, 0.12) 0.078 -1.23 (-2.47, 0.01) 0.052 

Age at onset (10 year increase) -0.02 (-0.17, 0.13) 0.78 -0.13 (-0.29, 0.02) 0.095 Sex and TDP-43 subtype 
Survival after onset (5 year 
increase) 

-0.01 (-0.15, 0.13) 0.88 -0.05 (-0.20, 0.10) 0.49 Age at onset, sex, and TDP-43 subtype 

Sex (male) -0.14 (-0.39, 0.11) 0.28 -0.18 (-0.44, 0.07) 0.15 Age at death and TDP-43 subtype 
CI=confidence interval. Regression coefficients, 95% CIs, and P-values result from linear regression models, where frontal cortex full-length STMN2 RNA 
was considered on the base 2 logarithm scale. Regression coefficients are interpreted as the change in mean frontal cortex full-length STMN2 RNA (on the 
base 2 logarithm scale) corresponding to presence of the given characteristic (categorical variables) or the increase given in parenthesis (continuous 
variables). P-values ≤ 0.010 are considered as statistically significant after applying a Bonferroni correction for multiple testing. NA: not applicable. 
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Supplementary Table 5. List of NanoString Plexset probes used to quantify STMN2 splicing in post-mortem brain. 
Identifier Accession Region Target sequence 

Truncated STMN2 - 10-109 
AGAAGACCTTCGAGAGAAAGGTAGAAAATAAGAATTTGGCTCTCTGTGTGAGCATGTGTGCGTG
TGTGCGAGAGAGAGAGACAGACAGCCTGC 

Full-length STMN2 NM_007029.2 106-205 
TCACTGATCTGCTCTTGCTTTTACCCGGAACCTCGCAACATCAACATCTATACTTACGATGATATG
GAAGTGAAGCAAATCAACAAACGTGCCTCTGGCC 

HPRT1 NM_000194.3 428-527 
CTATGACTGTAGATTTTATCAGACTGAAGAGCTATTGTAATGACCAGTCAACAGGGGACATAAA
AGTAATTGGTGGAGATGATCTCTCAACTTTAACTGG 
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Full unedited gels for Supplementary Figure 3C 

 

Full unedited gels for Supplementary Figure 3C. Unedited gels for TDP-43 and β-actin are included 
here for all the samples represented in the relative quantification graph in Supplementary Figure 3C. 
The portion of the gel images shown in Supplementary Figure 3C are denoted with the dashed squares.  
 


