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Section A. Details of COVAM 

COVID-19 progression in an individual 

 Individuals in COVAM belong to one of eight possible COVID-19-related states at each 

simulated day (Figure 1 in the main text): Susceptible (S), Exposed-incubation (E), Infected with 

mild to moderate symptoms that is detected (IM+), Infected with mild to moderate symptoms 

that is undetected (IM-), Infected with severe symptoms (IS), Infected with symptoms requiring 

critical care (IC), Recovered (R), and Dead (D).  We adopt our states using the clinical states as 

described by the CDC and also introduced by the SEIR model of Hill (3,13).  A susceptible 

patient can be infected with COVID-19 only after exposure to SARS-CoV-2 from a contagious 

patient.  If an individual is exposed to COVID-19, then s/he will move to the Exposed-incubation 

(E) state, and stay there during the incubation period of SARS-CoV-2. The individual may 

transmit the virus during the last several days of the incubation period, as evidenced by the 

literature (8-11). After the incubation period is over, the individual becomes symptomatic with 

mild to moderate symptoms. There is a possibility (also representing the limited availability of 

COVID-19 testing) that the symptoms will be very mild such that the individual will not be 

tested, and the case will thus not be confirmed by health authorities. This case is represented by 

the Infected with mild to moderate symptoms that is undetected (IM-) state. If the mild 

symptoms lead to testing that confirms the case, the patient moves to the Infected with mild 

symptoms that is detected (IM+) state. Following the CDC’s guidance and definition, patients in 

both IM+ and IM- experience mild symptoms. IM+ may also include mild pneumonia. In most 

cases, individuals in the IM+ and IM- states do not need to be hospitalized.  

Patients in the IM+ and IM- states remain in these states the same amount of time and 

then they either move to the Recovered (R) state or Infected with severe symptoms (IS) state. 

Following CDC’s guidance, the IS state represents “dyspnea, hypoxia, or >50% lung 

involvement on imaging” (13). We assume that patients in the IS state require hospitalization.  

Patients in the IS state either recover and move to the Recovered (R) state or develop symptoms 

that require critical care, therefore moving to the Infected with symptoms requiring critical care 

(IC) state. Following CDC’s guidance, we assume patients in this state experience respiratory 

failure, shock, or multiorgan system dysfunction, therefore they need to be treated in an intensive 

care unit (ICU) (13). Some portion of these patients require mechanical ventilation. Patients in 

the IC state either recover and move to the Recovered (R) state or die and transition to the Dead 

(D) state.  

The primary mode of transmission for COVID-19 is human-to-human interaction, 

therefore we allow COVID-19 to be transmitted from individuals in the E, IM+, IM-, IS, IC 

states to individuals in the S state.  

Details of Parameter Estimation 

We made the following assumptions to represent the probability of transmitting SARS-CoV-2 to 

susceptible patients by different patient classes. 

- If the patient is a contagious exposed patient, then the probability of transmitting 

SARS-CoV-2 to a susceptible patient is the same as that for when the patient is 

experiencing mild to moderate symptoms.   

- If the patient is experiencing severe symptoms, then the probability of transmitting 

SARS-CoV-2 to a susceptible patient is a fraction of that for when the patient is 

experiencing mild to moderate symptoms. This is because we assume that patients 

with severe symptoms require hospitalization and will stay in the hospital throughout 

this episode of the illness. We assumed that the probability of transmitting SARS-

CoV-2 to a health care worker is 0. Due to heightened awareness of COVID-19 in the 

hospitals, heightened infection control protocols, and PPE availability, patient to 
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health care worker transmission possibility is very low. Furthermore, there is little 

impact of this parameter on the overall epidemic, therefore we made this simplifying 

assumption. 

- If the patient is experiencing critical symptoms, we assumed that the probability of 

transmitting SARS-CoV-2 to a health care worker is 0. These patients are assumed to 

be receiving care in the ICU setting. As above, due to heightened awareness of 

COVID-19, heightened infection control protocols, and PPE availability in the 

hospitals, patient to health care worker transmission possibility is very low. 

Furthermore, there is little impact of this parameter on the overall epidemic, therefore 

we made this simplifying assumption.  

With these assumptions, the key input for transmissibility is the probability of 

transmitting SARS-CoV-2 from a patient experiencing mild to moderate symptoms to a 

susceptible individual when the patient is tested and confirmed positive with COVID-19. For this 

purpose, we followed a multi-step approach to adjust this parameter. We first started our 

parameter adjustment using the baseline estimate of R0 for COVID-19 as 2.6, which uses data 

from early days of the epidemic in China (27). We then used our model’s base input parameter 

values to find the probability of transmitting SARS-CoV-2 from a patient experiencing mild to 

moderate symptoms to a susceptible individual such that the theoretical R0 value is 2.6. The 

parameters were as follows: there are 10 close contacts per person per day, duration for mild to 

moderate symptoms is 6 days, and the transmission rate for patients experiencing severe or 

critical symptoms is 0. We found that when the probability of transmitting SARS-CoV-2 from a 

patient experiencing mild to moderate symptoms to a susceptible individual is equal to 0.0418, 

the theoretical R0 value would be equal to 2.6 with these parameter settings.  

Note that for this calculation, we did not account for the probability of transmitting 

disease from asymptomatic patients or from patients who experience mild to moderate symptoms 

and are not tested positive for COVID-19. This is because most models reporting R0 values for 

COVID-19 did not account for these transitions in their model development.   

We set the values for the probability of transmitting disease from both 1) asymptomatic 

patients and 2) patients who experience mild to moderate symptoms and are not tested positive 

for COVID-19 to be equal to 0.0418; with this probability our model’s theoretical R0 value 

increased to 3.34 (without any interventions). This R0 is still within the range of reported R0 

values, that vary between 1.5 and 6.5 (26,27).  In particular, a recent study based on the COVID-

19 epidemic in Italy reported an R0 value of 3.47 (when a SIR model is used) for the early days 

of the epidemic (28).  Similarly, a recent study estimated the median R0 value for the Wuhan 

region as 5.7 (52).   Therefore, we concluded that our transmission parameters are within the 

acceptable range. The base-case parameters used for the Milwaukee metro area and NYC 

correspond to theoretical R0 values of 3.34 and 6.68, respectively.  

Adherence to Social Distancing 

An important input to COVAM is adherence to social distancing measures. As noted in the text, 

adherence to social distancing parameters represents several behaviors that reduce the 

transmissibility of SARS-CoV-2, including less frequent traveling, keeping at least 6-feet of 

distancing during person-to-person interactions, frequent hand washing, and wearing masks. 

COVAM does not have the ability to differentiate physical distancing, handwashing, and mask 

wearing behaviors from traveling frequency.  

Our primary source for the social distancing parameter included in COVAM is distance 

traveled and maintenance of at least 6-foot distance during person-to-person interactions. There 

are three main data sources for this parameter:  

- Google’s COVID-19 Community Mobility Reports (33) 

- Unacast’s Social Distancing Scoreboard (31) 
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- University of Wisconsin-Madison’s Geospatial Data Science Lab (32) 

All three sources utilize cell phone data to estimate how the mobility of a community 

changed for each state and county in the US over time, however, they differ in the measurement 

of the mobility. For example, the Google Mobility Report provides the percentage change in the 

number of visits to different types of destinations including retail & recreation, grocery stores, 

parks, transit stations, and workplaces (33). In NYC, the data from the Google Mobility Report 

website (https://www.google.com/covid19/mobility/) show a significant increase in adherence to 

social distancing measures over time, especially in late March and April. Unacast, on the other 

hand, reports three metrics to measure the efficacy of social distancing measures: change in 

average mobility (based on distance traveled), change in non-essential visits, and difference in 

encounter density (31).   

Since all of these sources report different metrics and values for adherence to social 

distancing, we estimated the input values (as reported in Table 1 in the main text) using 

calibration. Our calibration procedure evaluated the adherence inputs that are higher than 

reported mobility values by these three different sources. As explained above, this is because 

none of the data sources on mobility directly reported behaviors such as wearing masks and 

frequent hand washing. Instead, they only report data related to the reduction in the frequency of 

daily contacts. Our adherence parameter is thus a proxy for individuals’ behaviors that reduce the 

transmission of SARS-CoV-2. Our calibration procedure selected the adherence to social 

distancing values that allowed COVAM to match observed number of cases over time. Although 

COVAM has the ability to adjust this parameter on a daily basis, we changed the value of this 

parameter infrequently to prevent overfitting as explained below.  

Age-specific daily contacts and adherence to social distancing 

We incorporated the effect of age on the number of daily contacts and adherence to social 

distancing measures into COVAM since both of these inputs depend on age group (23,24,35-37).  

For this purpose, we calculated the relative rates of the age-specific parameters and applied these 

relative rates to the overall parameter estimates on the number of daily contacts and adherence to 

social distancing. We followed this approach since it allowed for presenting regional data in a 

more compact way. For example, instead of reporting age-specific numbers of contacts and age-

specific adherence to social distancing, this approach allowed us to report a single value for the 

daily number of contacts (e.g. 10 and 20 per day in Dane County and NYC, respectively, in the 

absence of social distancing) and a single value for the adherence to social distancing at different 

dates for a region (e.g., 70% adherence level reduces the number of contacts to 3 and 6 per day in 

Dane County and NYC, respectively). This approach hence helped us to more easily 

communicate the model inputs. This also simplified the calibration process as otherwise we 

would have to separately adjust adherence to social distancing measures for every age group at 

various time points.  

In order to estimate the age-specific daily number of contacts, we used the study by Del Valle et 

al. (2007) (23) that reports US-based age group-specific close contacts that allow transmission of 

infectious diseases. Although similar data are reported by other studies, such as the one used by 

the POLYMOD (35), such studies were focused on European countries and therefore may not be 

applicable to the US setting. For example, the daily number of contacts reported in the study by 

Mossong et al. (2008) (35) varied between 7.95 to 19.77 contacts per day for different countries, 

indicating differential number of daily contacts by country. Using the study by Del Valle et al. 

(23), we estimated the following relative rates for the daily number of contacts for each age 

group (as reported in the Appendix Table in the main text) using the 20-44 age group as the 

reference: 85% for ages 0–19; 100% for ages 20-44; 94% for ages 45–54; 74% for ages 55–64; 

46% for ages 65–74; 34% for ages 75–84; and 34% for ages over 85. This implies that, for 

instance, the number of 

https://www.google.com/covid19/mobility/
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daily contacts for an individual in the 75-84 age group is 66% less than that for an individual in 

the 20-44 age group (100%-34%=66%) in the absence of social distancing measures. Using these 

estimates and the age demographics, one can find the number of daily contacts for a region. For 

example, for NYC where the average number of daily contacts is 20 per person, we estimated 

that the number of daily contacts per person for individuals is 20.3 for ages 0-19, 23.8 for ages 

20-44, 22.4 for ages 45-54, 17.6 for ages 55-64, 11.0 for ages 65-74; 8.1 for ages 75-84; and 8.1 

for ages over 85.  

We compared the relative rate estimates to those reported by Mossong et al. (2008)(35) using the 

20-44 age group as the reference: 110% for ages 0–19; 100% for ages 20-44; 94% for ages 45–

54; 78% for ages 55–64; 58% for ages 65–74; 50% for ages 75–84; and 50% for ages  over 85.  

Our estimates are somewhat comparable to these estimates that use data from European 

countries.  

For the second input on age-specific adherence to social distancing, we followed a similar 

approach. Namely, we used a CDC study that reported the results of a panel survey measuring 

public attitudes, behaviors, and beliefs related to COVID-19, stay-at-home orders, and 

nonessential business closures in the US. This survey included questions regarding nonadherence 

to social distancing as measured by keeping a 6-feet distance from others, wearing masks, and 

avoiding groups of 10 or more persons. Using the data reported from this study, we estimated the 

following relative rates for nonadherence to social distancing for each age group (as reported in 

the Appendix Table in the main text) using the 20-44 age group as the reference: 100% for ages 

0–19; 100% for ages 20-44; 100% for ages 45–54; 86% for ages 55–64; 61% for ages 65–74; 

61% for ages 75–84; and 61% for ages  over 85.  There were no data on the adherence rates of 

the 0-19 age group. As such, we assumed that their adherence rate is the same as the 20-44 age 

group because children are more likely to follow the same adherence practices as their parents, 

who are more likely to be within the 20-44 and 45-54 age groups. This implies that, for instance, 

the nonadherence to social distancing of an individual in the 75-84 age group is 39% less than 

that for an individual in the 20-44 age group (100%-61%=39%), thus, the 75-84 age group is 

more compliant with the social distancing compared to the younger age group.  

Using these estimates, daily number of contacts, and the age demographics, one can find the 

number of daily contacts for a region under any overall adherence scenario. For example, for 

NYC where the average number of daily contacts is 20 per person, if the overall adherence to 

social distancing is 90% (and thus the nonadherence rate is 10%), we estimated that the number 

of daily contacts per person for individuals with this overall adherence is 2.54 contacts for ages 

0-19; 3.17 contacts for ages 20-44, 0.99 contacts for ages 45-54; 0.63 contacts for ages 55-64; 

0.20 contacts for ages 65-74; 0.08 contacts for ages 75-84; and 0.03 contacts for ages over 85. 

These number of daily contacts correspond to 20*10%= 2 contacts per person in a day for the 

overall NYC population. Note that the number of daily contacts with social distancing measures 

is significantly higher in younger age groups compared to older age groups due to two reasons: 

1) younger individuals have more frequent interactions in the absence of social distancing

measures and 2) adherence to social distancing is significantly lower in younger age groups 

compared to older age groups. 

Baseline probability of testing 

In order to estimate the baseline testing rate (75%) for the base case, we used two studies based 

on data from Italy and China as described below. Note that the baseline test rate in the model 

represents the proportion of the individuals who experience moderate symptoms severe enough 

to be allowed testing in the early days of pandemic when testing was severely limited.  Note also 
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that, while we used these two studies, our primary method to validate this parameter estimate 

was calibration as described below. We also conducted an extensive sensitivity analysis as 

reported in section D.1 where we replaced the baseline parameter estimate of 75% with 50% and 

25% and tested the robustness of our findings to this parameter.  

The first study, conducted by researchers from the University of Padua and the Red Cross, tested 

all 3000 residents of Vò, a town near Venice, Italy (29). The study found that 60% of the 

residents who tested positive did not experience any symptoms prior to the date of testing. We 

assumed that some of these cases did not show symptoms due to how recently they were exposed 

to SARS-CoV-2, whereas the remaining cases experienced mild symptoms that were not severe 

enough to require testing. Assuming our model’s input parameters (mean incubation period 

being 5 days and duration for mild to moderate symptoms being 6 days, baseline R0 value 

estimated for the early days of pandemic in other countries, and individuals testing positive only 

in the last two days of the incubation period due to sufficient viral loads to result in a positive 

test result) we estimated that only 68% of the patients with mild to moderate symptoms would 

experience symptoms severe enough to seek testing and subsequently test positive. This was our 

first data point. We repeated the analysis by assuming that the patients could test positive in the 

last three days of the incubation period; therefore, more of the asymptomatic individuals could 

still be in the exposed-incubation stage and we estimated the test rate to be at 75%. We observed 

that depending on the assumption of when the individuals would test positive during the 

incubation period, the baseline testing rate could have been even higher. The second study from 

China reported the clinical characteristics of 24 asymptomatic infections who were screened 

among close contacts of known infections (30). This study was very useful since it tracked 

individuals from their initial exposure date until they completely recovered and recorded the 

symptoms throughout this observation period. This study reported that 3 out of 5 patients who 

experienced symptoms did not experience any severe symptoms (no cough, fatigue, etc.) during 

the period where they would experience mild to moderate symptoms. These 3 patients 

experienced only fever without chills where body temperatures fluctuated from 36.5°C to 

38.0°C. These data implied that only 60% of the patients with mild to moderate symptoms would 

experience symptoms severe enough to be allowed testing and test positive in the early days of 

pandemic. Using these three data points, we set this parameter equal to 75%, which led to 

reasonable estimates for our calibration process.   

Calibration and Validation 

Several model input parameters involve a high level of uncertainty, including disease 

transmission rates, probability of testing for COVID-19, and adherence to social distancing 

measures. We estimated them using calibration. Adherence to social distancing measures 

changes on a daily basis for each region, therefore it is adjusted at regular time points as shown 

in Table 1 in the main text. Our modeling approach is very flexible, thus it is possible to match 

the observed number of cases almost perfectly by simply adjusting adherence to social distancing 

on a daily basis or changing the probability of testing for each day. However, we preferred to not 

perfectly match the observed data to prevent overfitting. For example, the model’s predicted 

number of cases in the early days of the pandemic in Dane County is slightly higher than the 

observed number of cases, which is most likely due to the very limited testing in the early days. 

Considering a smaller probability of testing in the early days of the pandemic would allow the 

model to perfectly match the observed data. 

COVAM Mechanics 

COVAM was coded in C++ for faster computational times and flexibility. Each replication of the 

simulation can last from a few seconds to an hour on a standalone desktop PC depending on the 
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population size and number of infections.  Although COVAM currently represents simple 

behaviors for the agents, it can easily be used to represent more complex behaviors. For example, 

the model is able to define the adherence levels of the individuals to the outcomes associated 

with COVID-19, i.e. when there are many cases and/or deaths in a week, individuals could 

become significantly more compliant with the social distancing measures. 

Comparison of COVAM to other models 

Given the lack of data on SARS-CoV-2, health systems and public health officials rely on 

mathematical models for policy decisions such as school closures and the extent and timing of 

social distancing measures. Most commonly used models compartmentalize the transmission and 

natural history of SARS-CoV-2 infection. Examples include the susceptible–infective-recovered 

(SIR) model and the susceptible–exposed-infective-recovered (SEIR) model, which extends the 

SIR model by including a compartment representing the latent period. After the sudden rise in 

COVID-19 cases in the U.S., several models specific to COVID-19 were quickly developed and 

made available online (3-7).  Some of the models provide both U.S.-wide and state-specific 

prediction (5). However, given the vast within-state variability in transmission dynamics and 

adherence to social distancing, these models are severely limited in their applicability to local 

settings (6). Some limitations include the assumption of a closed population, the inability to 

accurately represent dynamic social distancing measures with different adherence levels, and the 

inability to account for the effect of limited testing capacity on the number of confirmed cases.  

The major strength of our work is a simple and flexible model that incorporates similarities to 

existing compartmental models, and also allows additional granularity when simulating critical 

features. COVAM is thus capable of addressing complex policy questions.  For example, 

COVAM can be used to evaluate the impact of increasing testing capacity on COVID-19. In 

addition, as COVAM explicitly tracks individuals, it can be used to determine the optimal timing 

for implementing contact tracing for containing COVID-19.  As COVID-19 has spread 

throughout the world, estimates of disease transmissibility in terms of basic reproduction number 

(R0) in subpopulations have varied widely (26,27). Another strength of our ABM approach is 

that there is no static R0 input.  Instead, COVAM directly models daily interactions and chances 

of viral transmission at each interaction, allowing these parameters to be varied independently at 

any point in time, and stratified by age group or other demographic characteristics. This allows 

for evaluating the impact of specific policy decisions on the epidemic. 

 

In summary, we chose agent-based modeling to study COVID-19 transmission because:  

- It more realistically represents the dynamics of COVID-19 transmission more 

realistically. 

- It provides a more flexible tool to represent various factors, such as varying levels of 

adherence to social distancing over time, varying number of imported cases, time-

dependent testing rate, etc. 

- It allows inclusion of heterogeneous populations. For example, individuals in 

different age groups have different numbers of daily contacts and varying levels of 

adherence to social distancing, however, conventional models do not typically 

represent such heterogeneity in the modeled population. 

A major limitation of agent-based modeling is its higher computational needs compared to more 

commonly used compartmental models. Compartmental models do not represent probabilistic 

events and therefore require little computation time whereas, due to modeling probabilistic 

events, our agent-based model needs to be replicated at least 100 times to obtain the final, stable 

estimates. Depending on the region, this requires from a minute to an hour of run time. 



9 

 

In addition to our model and the models described above, several other models also reported the 

impact of mandating and easing social distancing measures on the burden of COVID-19. Most of 

these studies appear in non-peer reviewed literature. All of these studies agree with our study’s 

finding that social distancing measures drastically reduced the number of COVID-19 cases. 

These studies used different methods (e.g., econometric/statistical models (53-56), 

compartmental models (43,57-60), time-series analysis (61,62), agent-based modeling (63,64), 

different metrics to measure the burden of COVID-19 (e.g., number of cases (43,54-60,63,64), 

doubling rate (62), daily case growth rate (53,61,63), mortality (43,55,58,63),  and 

hospitalization (43)), different methods to represent social distancing measures (e.g., most 

studies used a binary variable to represent whether they are implemented or not without 

considering varying levels of adherence over time (53-55,61-64)) and different areas of focus 

(overall US (55,58,61,62),  non-US settings (56,57,59,63,64),  selected regions (43,54,58,60)). 

As a result, although all of the studies agree that social distancing measures lead to a substantial 

reduction in COVID-19 burden, their estimates on the magnitude of this impact vary.  

Urgency in the response to the COVID-19 pandemic and the publicly availability of near real-

time surveillance data have changed publication norms. Modeling is being carried out by 

numerous types of organizations and scientists with diverse expertise. Manuscripts of wide-

ranging quality and application appear in both the peer reviewed and non-peer reviewed 

literature. After a careful review of many papers that we found in the literature, we identified two 

compartmental models that appeared in non-peer reviewed literature and compared our findings 

to the findings of these studies. We also identified two relevant studies that used agent-based 

simulation modeling (63,64). One study used a compartmental and an agent-based simulation 

model to evaluate the benefit of mask use on COVID-19 (63).  This study strongly recommended 

mask use requirements to stop the spread of COVID-19. They found a substantial reduction in 

the burden of COVID-19 when at least 80% of a population is wearing masks. They further 

found that early adoption of universal mask use has a major impact on COVID-19 burden. This 

study focused on multiple countries and used macro-level data to inform their models. Our new 

sensitivity analysis that disaggregates social distancing into physical distancing and mask use as 

presented in section D.6 agrees with the study’s main conclusion that early adoption of mask use 

indeed reduces virus spread substantially in NYC. We believe our estimates differ from this 

study because our model considers other factors affecting COVID-19 cases that were not 

included in that study such as 1) increasing testing capacity over time, 2) imported cases into the 

region, and 3) accurate representation of adherence to social distancing measures that change 

over time. Furthermore, our study focuses on small regions whereas the cited study focuses on 

whole country. The use of such models at a national level assumes that people living in one 

region of the country interact among each other at the same rate as they interact with people from 

other regions in the country. The other agent-based modeling study was published in peer-

reviewed literature; however, it does not consider any particular region. This model simply 

presents a theoretical framework to evaluate the impact of various social distancing measures, 

therefore direct comparison with our work is not possible (64).   
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Section B. Model Validation Results 
In this section, we present the results of the model validation for the base inputs. Model structure 

except age-specific daily number of contacts and age-specific adherence to social distancing was 

fixed before May 15, 2020. All model inputs specific to the three regions were fixed as of July 

31, 2020 and the model’s predictions were compared to the observed number of cases over time 

after this date. The following figures present the results of this validation experiment. All results 

in this section are using the average values of 100 replications. Because our computational 

experiments use simulated data, standard errors could be minimized by simply increasing the 

number of replications. We used 100 replications to obtain stable estimates around mean 

parameter value and small standard errors. In this set of validation experiments, COVAM’s 

predictions were most accurate for NYC, followed by Milwaukee and then Dane County. This is 

primarily due to a larger number of cases in NYC. Because the number of cases is relatively low 

in Dane County, it is likely that small events lead to major changes in the number of cases. 

 Data on actual number of confirmed cases come from Wisconsin Department of Health 

Services and NYC Department of Health (21,65).  
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Supplement Figure 1. Model validation results for the base case. In each of the following 

figures, red dots represent the actual observed cumulative number of confirmed cases, the black 

solid line represents the model’s predictions, error bars around the black solid line represent 95% 

confidence intervals for the model’s predictions based on 100 replications, the green dotted line 

represents the date after which model structure (except age-based daily contacts and adherence to 

social distancing) was fixed, and the blue dashed line represents the date after which no model 

input parameter was modified.  
 

(a) Dane County  

 
 

(b) Milwaukee  
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(c) NYC 
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Section C. Additional Computational Experiments 

Supplement Figure 2. Impact of adherence to social distancing on the total number of confirmed 

cases on different dates in (a) Dane County (b) Milwaukee (c) NYC 
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Supplement Table 1. Impact of adherence to social distancing on the total number of confirmed 

cases on different days 

Scenario- 

Adherence Level 
March 31 April 30 May 31 June 30 July 31 August 31 

Dane County     

Actual adherence 272 472 740 1,941 4,239 6,566 

Schools Open – 0% 9,596 435,880 435,909 435,909 435,909 435,909 

Schools Closed-0% 1,140 257,628 437,479 437,555 437,557 437,558 

Schools Closed-25% 552 50,025 414,926 430,334 430,394 430,398 

Schools Closed-50% 242 3,797 47,332 227,744 327,340 336,508 

Schools Closed-75% 99 257 431 599 776 951 

Schools Closed- 90% 59 99 141 183 226 269 

Milwaukee 

Actual adherence 847 3726 8,093 14,231 23,803 49,967 

Schools Open – 0% 29,210 1,268,390 1,268,420 1,268,420 1,268,420 1,268,420 

Schools Closed-0% 2,472 646,416 1,278,370 1,278,710 1,278,710 1,278,720 

Schools Closed-25% 1,194 113,499 1,197,800 1,260,420 1,260,660 1,260,670 

Schools Closed-50% 531 8,958 115,271 615,432 946,786 980,048 

Schools Closed-75% 232 728 1,260 1,765 2,289 2,816 

Schools Closed- 90% 148 295 422 547 676 806 

NYC 

Actual adherence 40,383 170,889 203,261 212,380 224,194 238,645 

Schools Open – 0% 4,084,430 6,706,920 6,706,920 6,706,920 6,706,920 6,706,920 

Schools Closed-0% 487,501 6,705,340 6,705,360 6,705,370 6,705,370 6,705,370 

Schools Closed-25% 186,582 6,761,620 6,766,700 6,766,710 6,766,710 6,766,720 

Schools Closed-50% 56,433 5,778,280 6,722,520 6,722,780 6,722,830 6,722,870 

Schools Closed-75% 12,688 194,870 1,895,270 4,631,640 5,162,900 5,198,430 

Schools Closed- 90% 4,671 8,800 11,818 14,554 17,350 20,103 
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Supplement Table 2. Comparison of total number of confirmed cases over time when 

implementing social distancing on different dates  

Social 

distancing 

start date 

May 15 May 31 June 15 June 30 July 15 July 31 
August 

15 

August 

31 

Dane County 

1 week earlier 

(March 5) 
295 523 998 1,969 3,295 4,716 6,055 7,477 

Actual 

(March 12) 
551 740 1,136 1,941 3,054 4,239 5,362 6,566 

1-week delay 

(March 19) 
1,810 2,022 2,450 3,320 4,515 5,785 6,974 8,242 

2-week delay 

(March 26) 
6,957 7,442 8,231 9,741 11,731 13,739 15,517 17,298 

3-week delay 

(April 2) 
26,214 27,711 29,116 31,494 34,284 36,767 38,705 40,415 

4-week delay 

(April 9) 
86,708 90,543 92,032 93,548 94,829 95,651 96,126 96,450 

Milwaukee 

1 week earlier 

(March 5) 
2,559 4,167 5,776 7,456 9,594 12,983 17,591 24,622 

Actual 

(March 12) 
5,323 8,093 11,151 14,231 18,011 23,803 31,505 42,821 

1-week delay 

(March 19) 
16,295 22,826 31,636 39,998 49,606 63,326 80,016 102,490 

2-week delay 

(March 26) 
53,860 72,147 95,771 117,670 139,094 164,829 190,756 218,909 

3-week delay 

(April 2) 
164,525 212,057 247,516 279,651 302,410 322,208 336,794 348,693 

4-week delay 

(April 9) 
409,876 481,926 506,386 519,652 525,732 528,916 530,405 531,218 

NYC 

1 week earlier 

(March 5) 
38,788 41,366 43,214 45,858 49,469 54,323 59,872 66,791 

Actual 

(March 12) 
193,291 203,261 207,741 212,380 217,698 224,194 230,941 238,645 

1-week delay 

(March 19) 
1,364,430 1,407,600 1,418,280 1,424,660 1,429,260 1,432,960 1,435,660 1,438,140 

2-week delay 

(March 26) 
4,189,700 4,198,130 4,198,740 4,199,060 4,199,340 4,199,630 4,199,900 4,200,180 

3-week delay 

(April 2) 
6,202,430 6,202,470 6,202,510 6,202,540 6,202,580 6,202,620 6,202,660 6,202,700 

4-week delay 

(April 9) 
6,680,630 6,680,630 6,680,640 6,680,640 6,680,640 6,680,640 6,680,640 6,680,650 

Section D. Sensitivity Analyses 
We conducted an extensive sensitivity analysis on several parameters using NYC data. In this 

section, we describe these experiments. 
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Section D.1 Sensitivity analysis on the probability of testing 

 

The probability of testing in the model changes over time due to increasing testing capacity in 

the US. Testing was severely limited especially in the early days of epidemic in the U.S.; 

therefore, it is likely that our initial calibration may not have estimated the input parameters 

correctly. For example, recent data from NYC suggest that one of every five residents tested 

positive for COVID-19 antibodies (66). To address the impact of uncertainty in this parameter, 

we did an extensive sensitivity analysis on the test rate and present the results of this analysis 

here.  

 

In this sensitivity analysis, we changed the probability of testing from a baseline estimate of 75% 

to 25% and 50% and adjusted the parameter on adherence to social distancing measures via 

calibration as described in the text. Namely, we compared the model predictions to the observed 

number of cases in NYC by changing only adherence to social distancing measures and number 

of imported cases from 160 per day to 144 per day between March 4 and March 22.  Our 

calibration resulted in the following estimates for the adherence to social distancing for each 

probability of testing value: 

 

 When the probability of testing is equal to 50%, adherence level is equal to 0% between 

March 4 and March 11; adherence level increases linearly from 0% to 78% between 

March 12 and March 25; adherence level is at 85% between March 26 and April 17; 

adherence level is at 90% between April 18 and June 7; and adherence level is at 85% 

after June 8, when social distancing measures are eased.  

 When the probability of testing is equal to 25%, adherence level is equal to 0% between 

March 4 and March 11; adherence level increases linearly from 0% to 75% between 

March 12 and March 27; adherence level is equal to 90% between March 28 and May 23; 

and adherence level is at 85% after May 24 as well as after June 8, when social distancing 

measures are eased.  

 

Below, we first present the results of the validation, which show that COVAM was able to 

replicate the observed cumulative number of COVID-19 cases using the new set of social 

distancing adherence parameters and number of imported cases for different values for 

probability of testing. We then present the results of our experiments. 
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Supplement Figure 3. Comparison of model predictions to actual NYC data when the 

probability of testing is equal to 50% 
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Supplement Figure 4. Comparison of total number of confirmed cases over time when 

implementing social distancing measures on different dates in NYC when the probability of 

testing is equal to 0.50 

Supplement Table 3. Comparison of total number of confirmed cases over time when 

implementing social distancing measures on different dates in NYC when the probability of 

testing is equal to 0.50  
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1 week earlier 

(March 5) 
29,402 31,407 32,855 34,941 37,727 41,514 45,825 51,161 

Actual 

(March 12) 
196,542 206,297 210,502 214,697 219,311 224,600 229,800 235,585 

1-week delay 

(March 19) 
1,308,430 1,337,830 1,344,120 1,347,380 1,349,530 1,351,240 1,352,530 1,353,740 

2-week delay 

(March 26) 
3,621,970 3,623,530 3,623,690 3,623,830 3,623,970 3,624,110 3,624,260 3,624,400 

3-week delay 

(April 2) 
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4-week delay 

(April 9) 
5,008,000 5,008,000 5,008,000 5,008,000 5,008,000 5,008,000 5,008,000 5,008,010 
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Supplement Table 4. Comparison of total number of confirmed cases over time for different 

adherence levels in NYC when the probability of testing is equal to 0.50 

Scenario- 

Adherence Level 
March 31 April 30 May 31 June 30 July 31 August 31 

Actual adherence 49,956 174,217 206,297 214,697 224,600 235,585 

Schools Open – 0% 1,060,800 5,0152,90 5,015,290 5,015,290 5,015,290 5,015,290 

Schools Closed-0% 330,771 5,016,150 5,016,180 5,016,190 5,016,190 5,016,190 

Schools Closed-25% 127,358 5,080,150 5,086,990 5,086,990 5,087,000 5,087,000 

Schools Closed-50% 38,993 4,251,540 5,099,030 5,099,280 5,099,320 5,099,350 

Schools Closed-75% 9,003 142,135 1,437,530 3,587,880 4,020,520 4,050,680 

Schools Closed- 90% 3,397 6,550 8,909 11,045 13,223 15,355 
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Supplement Table 5. Comparison of total number of confirmed cases over time when easing 

social distancing on different dates in NYC when the probability of testing is equal to 0.50 

Total 

number of 

infections 

by 

Easing social distancing 

measures on June 1 

Easing social distancing 

measures on June 8 

DAE 

5% 

DAE 

10% 

DAE 

15% 

DAE 

5% 

DAE 

10% 

DAE 

15% 

June 30 222,424 232,984 252,690 219,486 223,383 229,223 

July 31 235,081 311,539 652,169 229,363 267,872 411,401 

August 31 248,413 551,064 2,450,460 240,325 414,008 1,635,540 

Total 

number of 

infections 

by 

Easing social distancing 

measures on June 15 

Easing social distancing 

measures on July 1 

DAE 

5% 

DAE 

10% 

DAE 

15% 

DAE 

5% 

DAE 

10% 

DAE 

15% 

June 30 217,973 219,153 220,665 217,033 217,033 217,033 

July 31 225,725 245,085 304,153 221,480 225,259 232,271 

August 31 235,007 335437 1,012,510 228,240 258,073 396,056 

DAE: Drop in adherence rates after easing social distancing measures. A value of 5%, 10%, and 15% DAE implies 

that adherence to social distancing measures after the date of easing is at 85%, 80%, and 75%, in NYC, respectively 
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Supplement Figure 5. Comparison of model predictions to actual NYC data when the 

probability of testing is equal to 25% 
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Supplement Figure 6. Comparison of total number of confirmed cases over time when 

implementing social distancing measures on different dates in NYC when the probability of 

testing is equal to 0.25 
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Supplement Table 6. Comparison of total number of confirmed cases over time when 

implementing social distancing measures on different dates in NYC when the probability of 

testing is equal to 0.25 

Social 

distancing 

implementation 

date 

May 15 May 31 June 15 June 30 July 15 July 31 August 15 August 31 

1 week earlier 

(March 5) 
25,564 27,736 30,274 33,349 36,981 41,386 46,003 51,367 

Actual 

(March 12) 
188,674 197,610 204,398 210,841 216,945 223,109 228,543 234,099 

1-week delay 

(March 19) 
1,150,090 1,164,780 1,168,090 1,169,710 1,170,670 1,171,380 1,171,910 1,172,460 

2-week delay 

(March 26) 
2,710,560 2,710,860 2,710,920 2,710,980 2,711,040 2,711,100 2,711,160 2,711,220 

3-week delay 

(April 2) 
3,274,910 3,274,920 3,274,920 3,274,930 3,274,930 3,274,940 3,274,940 3,274,950 

4-week delay 

(April 9) 
3,323,040 3,323,040 3,323,040 3,323,040 3,323,040 3,323,040 3,323,040 3,323,040 
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Supplement Table 7. Comparison of total number of confirmed cases over time for different 

adherence levels in NYC when the probability of testing is equal to 0.25 

Scenario-Adherence 

Level 
March 31 April 30 May 31 June 30 July 31 August 31 

Actual adherence 40,872 169,125 197,610 210,841 223,109 234,099 

Schools Open – 0%  551,075 3,324,120 3,324,120 3,324,120 3,324,120 3,324,120 

Schools Closed-0% 174,089 3,326,660 3,326,710 3,326,710 3,326,710 3,326,710 

Schools Closed-25% 68,277 3,398,400 3,406,980 3,406,980 3,406,980 3,406,990 

Schools Closed-50% 21,594 2,726,560 3,416,190 3,476,430 3,476,460 3,476,480 

Schools Closed-75% 5,295 89,483 980,278 2,545,710 2,879,680 2,902,520 

Schools Closed- 90% 2,122 4,301 5,996 7,529 9,100 10,640 
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Supplement Table 8. Comparison of total number of confirmed cases over time when easing 

social distancing on different dates in NYC when the probability of testing is equal to 0.25 

Total 

number of 

infections 

by 

Easing social distancing 

measures on June 1 

Easing social distancing 

measures on June 8 

DAE 

5% 

DAE 

10% 

DAE 

15% 

DAE 

5% 

DAE 

10% 

DAE 

15% 

June 30 222,323 243,087 278,843 216,667 225,349 237,738 

July 31 298,915 613,445 1,485,940 275101 457953 963,254 

August 31 499,580 1,906,200 3,198,330 435,196 1,556,920 3,035,810 

Total 

number of 

infections 

by 

Easing social distancing 

measures on June 15 

Easing social distancing 

measures on July 1 

DAE 

5% 

DAE 

10% 

DAE 

15% 

DAE 

5% 

DAE 

10% 

DAE 

15% 

June 30 213,187 216,137 219,672 210,841 210,841 210,841 

July 31 257,669 358,469 612,119 234,156 254,808 291,107 

August 31 383,645 1,204,260 2,725,280 304,737 606,768 1469,260 

DAE: Drop in adherence rates after easing social distancing measures. A value of 5%, 10%, and 15% DAE implies 

that adherence to social distancing measures after the date of easing is at 80%, 75%, and 70%, in NYC, respectively 
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Section D.2 Sensitivity analysis on transmission rates 

We conducted a sensitivity analysis on transmission rates similar to the one described in 

section D.1. We halved the probability of transmission from a patient with mild to moderate 

symptoms (replaced the baseline estimate of 0.0418 with 0.0209) and recalibrated several model 

parameters including probability of testing, number of daily contacts, number of initial 

infections, and adherence to social distancing measures.  Our calibration resulted in the 

following values for these input parameters:  

- Baseline probability of testing: 50%  

- Number of initial infections: 1600 compared to the baseline estimate of 16, reflecting 

the theory that the pandemic in NYC started much earlier than previously thought45  

- Adherence level is equal to 0% between March 4 and March 11; adherence level 

increases linearly from 0% to 80% between March 12 and March 20; adherence level 

is equal to 80% between March 21 and April 19; adherence level is equal to 85% 

between April 20 and June 7; and adherence level is equal to 80% after June 8.  

 

Below, we first present the results of the validation, which show that COVAM was able to 

replicate the observed cumulative number of COVID-19 cases using the new set of input 

parameters for this sensitivity analysis. We then present the results of our experiments. 

 

Supplement Figure 7. Comparison of model predictions to actual NYC data when the 

transmission rate is halved 
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Supplement Figure 8. Comparison of total number of confirmed cases over time when 

implementing social distancing measures on different dates in NYC when the transmission rate is 

halved 

Supplement Table 9. Comparison of total number of confirmed cases over time when 

implementing social distancing measures on different dates in NYC when transmission rate is 

halved 
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1-week earlier Actual 1-week delay

2-week delay 3-week delay 4-week delay

Social distancing 

implementation 

date 

May 15 May 31 June 15 June 30 July 15 July 31 August 15 August 31 

1 week earlier 

(March 5) 
38,325 41,977 44,480 47,543 51,367 56,290 61,583 67,933 

Actual 

(March 12) 
181,025 195,472 202,860 209,811 216,934 224,751 232,116 240,156 

1-week delay 

(March 19) 
894,104 939,577 954,498 963,544 969,817 974,594 977,918 980,747 

2-week delay 

(March 26) 
2,567,690 2,582,990 2,584,810 2,585,430 2,585,830 2,586,210 2,586,530 2,586,890 

3-week delay 

(April 2) 
4,291,690 4,291,850 4,291,910 4,291,970 4,292,030 4,292,090 4,292,150 4,292,210 

4-week delay 

(April 9) 
4,919,870 4,919,880 4,919,890 4,919,890 4,919,900 4,919,910 4,919,920 4,919,920 
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Supplement Table 10. Comparison of total number of confirmed cases over time for different 

adherence levels in NYC when the transmission rate is halved 

Scenario- 

Adherence Level 
March 31 April 30 May 31 June 30 July 31 August 31 

Actual adherence 56,818 155,404 195,472 209,811 224,751 240,156 

Schools Open – 0% 1,489,190 5,011,150 5,011,150 5,011,150 5,011,150 5,011,150 

Schools Closed-0% 466,910 4,999,920 5,000,730 5,000,740 5,000,740 5,000,750 

Schools Closed-25% 173,850 4,980,230 5,038,420 5,038,440 5,038,460 5,038,480 

Schools Closed-50% 50,715 2,623,060 4,814,370 4,829,180 4,829,330 4,829,430 

Schools Closed-75% 11,372 57,302 207,886 555,608 1,151,040 1,734,160 

Schools Closed- 90% 4,628 6,587 8,019 9,392 10,799 12,205 
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Supplement Table 11. Comparison of total number of confirmed cases over time when easing 

social distancing on different dates in NYC when the transmission rate is halved 

Total 

number of 

infections 

by 

Easing social distancing 

measures on June 1 

Easing social distancing 

measures on June 8 

DAE 

5% 

DAE 

10% 

DAE 

15% 

DAE 

5% 

DAE 

10% 

DAE 

15% 

June 30 213,485 225,386 244,575 209,811 214,581 221,243 

July 31 232,148 303,496 528,795 224,751 264,370 373,445 

August 31 250,615 478,986 1,573,070 240,156 383,042 1,070,930 

Total 

number of 

infections 

by 

Easing social distancing 

measures on June 15 

Easing social distancing 

measures on July 1 

DAE 

5% 

DAE 

10% 

DAE 

15% 

DAE 

5% 

DAE 

10% 

DAE 

15% 

June 30 207,751 209,367 211,226 206,409 206,409 206,409 

July 31 219,740 241,314 292,068 213,660 218,298 225,920 

August 31 232,735 321,499 716,895 222,785 252,174 347,669 

DAE: Drop in adherence rates after easing social distancing measures. A value of 5%, 10%, and 15% DAE implies 

that adherence to social distancing measures after the date of easing is at 80%, 75%, and 70%, in NYC, respectively 
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Section D.3. Sensitivity analysis on the number of imported cases 

The imported cases in COVAM are included to explain two situations: 1) In the early days of the 

pandemic, these represent the cases that provided the seed of the epidemic in a region; 2) These 

also represent the interactions between individuals who do and do not live in the modeled region 

but have close contacts due to commuting and/or traveling. A molecular epidemiology study 

conducted by Mount Sinai Hospital’s Icahn School of Medicine found that SARS-CoV-2 was 

likely circulating as early as February in the NYC area whereas our simulation starts on March 4 

(67). Therefore, using imported cases helps our model to introduce initial seeds for the 

pandemic.  Note that our base case assumption of 160 imported cases per day is assumed to last 

only between March 4 and March 22. After March 22, due to strong travel restrictions, we 

reduced this number to 32 per day throughout the simulation. This is because NYC as well as 

other simulated regions are not closed populations – there was not a strict quarantine enforced in 

any of the regions and thus there continued to be interactions with neighboring regions where 

COVID-19 activity was very high. For example, in the model representing the Milwaukee metro 

area, the model does not explicitly represent the Chicago area where there is high level of 

COVID-19 activity. We use imported cases to account for the interactions between people living 

in the Chicago area and those living in the Milwaukee metro area.  

While we provide the details on how this parameter is estimated, our primary method to validate 

this input was calibration. We started estimating the value of this input using Dane County data. 

We found that when there are 3 imported cases per day in Dane County starting on March 4, 

2020, there would be a total of 57 imported cases among a total of 225 reported confirmed cases 

as of March 27, 2020. This implies that 25% of the confirmed cases are imported cases. Even if 

NYC has the same level of travel in and out of the city, given NYC’s large population 

(approximately 16 times the population of Dane County), we would have to assume that the 

number of imported cases in NYC would be 16*3=48 per day. We compared the airline traffic 

data of passengers traveling into NYC (JFK, LaGuardia, and Newark airports, 69 million 

passengers annually) and into Dane County (Dane County Regional Airport, 2.3 million 

passengers annually) to find that NYC airline travel is 30 times higher than Dane County. 

Considering the different population sizes, this implies approximately twice as much outside 

travel into the NYC area as compared to Dane County. This implied that the number of imported 

cases in the early days of the pandemic when there were no travel restrictions should be at least 

90 per day for NYC. We then considered a higher number of imported cases due to several close 

communities in and around the NYC area, such as New Jersey, where the prevalence of SARS-

CoV-2 was very high. We considered that commuting via public transportation was higher in 

NYC (39% for NYC, versus 4.6% for Dane County and 3% for the Milwaukee area according to 

US Census data) (68). These data implied that we would have to assume a high number of 

imported cases. Our calibrations found that an estimate of 160 imported cases per day provided a 

very good input to explain the huge spike in NYC in the early days of the pandemic.   

Alternatively, we could have used a larger number of initial infections and smaller number of 

imported cases. In fact, the sensitivity analysis in this section assumed a higher initial number of 

infections and lower number of imported cases in order to test the effect on our main findings.  

More specifically, we followed the same approach as in section D.1 and found the following 

parameter sets for our sensitivity analysis on the number of imported cases:  

 Number of initial exposures is equal to 320 (compared to base case estimate of 16) 
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 Number of imported cases between March 4 and March 22 is equal to 48 per day 

(compared to base case estimate of 160) 

 Number of imported cases after March 22 is equal to 16 per day (compared to base case 

estimate of 32) 

 

We set all other input parameters to their values in the base case. Below, we first present the 

results of the validation, which show that COVAM was able to replicate the observed cumulative 

number of COVID-19 cases using the new set of input parameters for this sensitivity analysis. 

We then present the results of our experiments. Our findings on the impact of timing and 

adherence to social distancing did not change.  

Supplement Figure 9. Comparison of model predictions to actual NYC data when the number of 

imported cases is reduced 
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Supplement Figure 10. Comparison of total number of confirmed cases over time when 

implementing social distancing measures on different dates in NYC when number of imported 

cases is reduced 

Supplement Table 12. Comparison of total number of confirmed cases over time when 

implementing social distancing measures on different dates in NYC when the number of imported 

cases is reduced 
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1-week earlier Actual 1-week delay

2-week delay 3-week delay 4-week delay

Social distancing 

implementation 

date 

May 15 May 31 June 15 June 30 July 15 July 31 August 15 August 31 

1 week earlier 

(March 5) 
28,208 29,849 31,035 33,638 39,306 51,865 75,760 126,298 

Actual 

(March 12) 
196,852 206,301 210,608 218,130 232,568 261,694 312,472 410,464 

1-week delay 

(March 19) 
1,424,920 1,467,240 1,478,000 1,488,430 1,500,770 1,515,990 1,532,400 1,552,460 

2-week delay 

(March 26) 
4,258,220 4,265,500 4,265,960 4,266,170 4,266,350 4,266,540 4,266,710 4,266,880 

3-week delay 

(April 2) 
6,233,250 6,233,280 6,233,300 6,233,320 6,233,330 6,233,350 6,233,370 6,233,390 

4-week delay 

(April 9) 
6,681,950 6,681,950 6,681,950 6,681,950 6,681,950 6,681,950 6,681,950 6,681,960 
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Supplement Table 13. Comparison of total number of confirmed cases over time for different 

adherence levels in NYC when the number of imported cases is reduced 

Scenario- 

Adherence Level 
March 31 April 30 May 31 June 30 July 31 August 31 

Actual adherence 42,055 174,664 206,301 218,130 261,694 410,464 

Schools Open – 0% 1,851,940 6,706,510 6,706,510 6,706,510 6,706,510 6,706,510 

Schools Closed-0% 518,168 6,704,630 6,704,640 6,704,640 6,704,640 6,704,650 

Schools Closed-25% 176,770 6,766,680 6,772,300 6,772,300 6,772,310 6,772,310 

Schools Closed-50% 45,222 5,518,530 6,734,090 6,734,420 6,734,440 6,734,460 

Schools Closed-75% 7,914 117,081 1,295,620 4,260,850 5,145,360 5,210,190 

Schools Closed- 90% 2,461 4,389 5,913 7,292 8,666 10,039 
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Supplement Table 14. Comparison of total number of confirmed cases over time when easing 

social distancing on different dates in NYC when the number of imported cases is reduced 

Total 

number of 

infections 

by 

Easing social distancing 

measures on June 1 

Easing social distancing 

measures on June 8 

DAE 

5% 

DAE 

10% 

DAE 

15% 

DAE 

5% 

DAE 

10% 

DAE 

15% 

June 30 228,232 248,854 285,292 218,130 215,340 233,006 

July 31 308,828 678,902 1,913,480 261,694 296,052 884,223 

August 31 568,627 2,913,060 5,715,510 410,464 1,033,500 4,971,500 

Total 

number of 

infections 

by 

Easing social distancing 

measures on June 15 

Easing social distancing 

measures on July 1 

DAE 

5% 

DAE 

10% 

DAE 

15% 

DAE 

5% 

DAE 

10% 

DAE 

15% 

June 30 213,828 215,340 217,150 211,730 211,730 211,730 

July 31 238,132 296,052 455,813 218,562 224,761 235,809 

August 31 324,445 1,033,500 3,547,800 246,422 367,676 843,280 

DAE: Drop in adherence rates after easing social distancing measures. A value of 5%, 10%, and 15% DAE implies 

that adherence to social distancing measures after the date of easing is at 80%, 75%, and 70%, in NYC, respectively 



36 

 

Section D.4 Sensitivity analysis when hospital transmission is allowed 

In our base case, we assumed no SARS-CoV-2 transmission within the hospital setting. Case 

reports indicate that SARS-CoV-2 transmission to healthcare workers is occurring, especially in 

settings where contact occurs without appropriate PPE (69). A review of the recent literature, 

however, indicates that with appropriate PPE (as is now generally the case in US healthcare 

settings) transmission by this route is likely not occurring at rates which would substantially 

affect our model’s findings for the general population (70-72). To ensure that this is the case, we 

conducted a sensitivity analysis in which hospital transmission was allowed. For this purpose, we 

set the probability of transmission from hospitalized patients to healthcare workers to 20% of the 

transmission from non-hospitalized patients and report the results of this experiment. We 

assumed this probability of transmission as reported by previous studies on seasonal influenza 

(22). We then recalibrated the model parameters and found the following values: 

 Number of imported cases between March 4 and March 22 is equal to 136 per day 

(compared to base case estimate of 160) 

 Number of imported cases after March 22 through the end of simulation is equal to 16 per 

day (compared to base case estimate of 32) 

 Adherence to social distancing after June 8 is 86% (compared to base case estimate to 

85%). 

 

Below, we first present the results of the validation, which show that COVAM was able to 

replicate the observed cumulative number of COVID-19 cases using the new set of input 

parameters for this sensitivity analysis. We then present the results of our experiments, which 

show that our main findings/conclusions did not change with this sensitivity analysis.  
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Supplement Figure 11. Comparison of model predictions to actual NYC data when hospital 

transmission is added to the model 
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Supplement Figure 12. Comparison of total number of confirmed cases over time when 

implementing social distancing measures on different dates in NYC when hospital transmission 

is added to the model 
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Supplement Table 15. Comparison of total number of confirmed cases over time when 

implementing social distancing measures on different dates in NYC when the hospital 

transmission is added to the model 

Social distancing 

implementation 

date 

May 15 May 31 June 15 June 30 July 15 July 31 August 15 August 31 

1 week earlier 

(March 5) 
36,757 39,264 40,966 44,469 51,601 66,406 92,769 145,452 

Actual 

(March 12) 
191,100 204,120 210,625 221,351 240,736 277,957 338,964 449,803 

1-week delay 

(March 19) 
1,363,180 1,424,980 1,444,210 1,463,820 1,485,880 1,512,290 1,539,740 1,571,770 

2-week delay 

(March 26) 
4,214,100 4,230,450 4,231,860 4,232,320 4,232,560 4,232,760 4,232,930 4,233,120 

3-week delay 

(April 2) 
6,191,920 6,192,060 6,192,080 6,192,100 6,192,120 6,192,140 6,192,160 6,192,180 

4-week delay 

(April 9) 
6,682,130 6,682,130 6,682,130 6,682,130 6,682,130 6,682,130 6,682,140 6,682,140 
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Supplement Table 16. Comparison of total number of confirmed cases over time for different 

adherence levels in NYC when hospital transmission is added to the model 

Scenario- 

Adherence Level 
March 31 April 30 May 31 June 30 July 31 August 31 

Actual adherence 36,796 165,187 204,120 221,351 277,957 449,803 

Schools Open – 0% 1,451,640 6,709,630 6,706,930 6,706,930 6,706,930 6,706,930 

Schools Closed-0% 446,173 6,708,660 6,708,940 6,708,940 6,708,940 6,708,940 

Schools Closed-25% 170,585 6,775,480 6,784,040 6,784,040 6,784,040 6,784,040 

Schools Closed-50% 51,479 5,746,720 6,769,030 6,769,750 6,769,770 6,769,780 

Schools Closed-75% 11,525 188,410 1,997,850 4,896,620 5,413,570 5,446,820 

Schools Closed- 90% 4,204 7,637 9,643 11,240 12,764 14,313 
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Supplement Table 17. Comparison of total number of confirmed cases over time when easing 

social distancing on different dates in NYC when hospital transmission is added to the model 

Total 

number of 

infections 

by 

Easing social distancing 

measures on June 1 

Easing social distancing 

measures on June 8 

DAE 

5% 

DAE 

10% 

DAE 

15% 

DAE 

5% 

DAE 

10% 

DAE 

15% 

June 30 234,451 263,549 315,665 221,351 230,376 243,784 

July 31 334,697 797,599 2,269,250 277,957 476,639 1,013,870 

August 31 620,823 3,115,000 5,795,300 449,803 2,047,850 5,198,880 

Total 

number of 

infections 

by 

Easing social distancing 

measures on June 15 

Easing social distancing 

measures on July 1 

DAE 

5% 

DAE 

10% 

DAE 

15% 

DAE 

5% 

DAE 

10% 

DAE 

15% 

June 30 215,526 217,837 220,660 212,491 212,491 212,491 

July 31 247,867 328,778 551,919 221,728 230,613 247,092 

August 31 350,594 1,213,200 3,949,710 254,445 408,786 1,023,310 

DAE: Drop in adherence rates after easing social distancing measures. A value of 5%, 10%, and 15% DAE implies 

that adherence to social distancing measures after the date of easing is at 81%, 76%, and 71%, in NYC, respectively 
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Section D.5 Sensitivity analysis when number of daily contacts is affected by knowledge 

about infection status 

 

We conducted a structural sensitivity analysis on the assumption that individuals with known and 

unknown COVID-19 status have the same number of daily contacts. We did not consider a 

different number of daily close contacts between individuals with and without known infections 

in the base case due to several reasons. First, there was a major delay in reporting and confirming 

the results of the testing, especially in the earlier days of the pandemic. Therefore, individuals 

who tested positive often received these results several days after they were tested. There is a 

possibility that individuals did not modify their behaviors during this wait period. For example, a 

recent study conducted a large, 50-state survey and reported that the median waiting time for 

nasal swab results nationally was 3 days and mean waiting time was 4.1 days (73). A report by 

the Department of Health and Human Services found that while 45% of the tests were completed 

in 3 days in early July, 56% of the tests were completed within 3 days by the end of July (74). 

Second, the contagious period appears to be highest in the early days of the illness. Therefore, 

there would be a need to change the transmission potential of the individuals by day of 

transmission; currently there are not sufficient data for this (25). Finally, there are no reliable 

data on the impact of testing on contact rates (versus self-isolation for symptoms alone). Thus, 

we did not consider this scenario in the base case to simplify the analysis. 

 

In this sensitivity analysis, we now differentiate the number of contacts for individuals with 

known and unknown infections. We conducted this experiment to confirm that our assumption 

that there is no difference in contact patterns between known and unknown infection status did 

not introduce a bias to our findings. For this purpose, we made the following assumptions 

compared to the base case: 

- Individuals who are tested positive know about their COVID-19 status 3 days after 

experiencing mild to moderate symptoms. This assumption is made to account for 

delay in getting the test results.  

- Individuals with known infections reduce their daily number of contacts by 50% after 

they learn about their infection status. We were not able to find any data on the rate of 

reduction in the number of contacts after individuals learn about their COVID-19 

status. As such, we made this assumption to account for the cases where some 

individuals do not change their behavior after a known infection. While some 

individuals will reduce their non-household interactions, they will still keep their 

household contacts.  

 

In our calibration, we did not change any input parameters except the adherence to the social 

distancing measures. Our calibration resulted in the following values for adherence to social 

distancing: it is equal to 0% between March 4 and March 11; increases linearly from 0% to 72% 

between March 12 and March 21; is equal to 74% between March 22 and April 8; is equal to 

85% between April 8 and June 7; and is equal to 82% after June 8. 

 

Compared to our base case assumptions, we found that differential contact patterns between 

individuals with and without known infection slightly reduced our calibrated adherence to social 

distancing input. We found that none of our model’s results changed with this assumption. 
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Supplement Figure 13. Comparison of model predictions to actual NYC data when number of 

contacts is reduced after known infection 
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Supplement Figure 14. Comparison of total number of confirmed cases over time when 

implementing social distancing measures on different dates in NYC when number of contacts is 

reduced after known infection 
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Supplement Table 18. Comparison of total number of confirmed cases over time when 

implementing social distancing measures on different dates in NYC when number of contacts is 

reduced after known infection 

Social distancing 

implementation 

date 

May 15 May 31 June 15 June 30 July 15 July 31 August 15 August 31 

1 week earlier 

(March 5) 
44,190 48,908 52,082 55,389 59,058 63,304 67,604 72,500 

Actual 

(March 12) 
189,943 202,895 208,836 213,452 217,573 221,678 225,219 228,799 

1-week delay 

(March 19) 
889,329 909,881 914,521 916,715 918,261 919,696 920,944 922,212 

2-week delay 

(March 26) 
3,043,150 3,050,140 3,050,820 3,051,250 3,051,680 3,052,140 3,052,550 3,053,010 

3-week delay 

(April 2) 
5,503,360 5,503,510 5,503,610 5,503,710 5,503,810 5,503,910 5,504,010 5,504,110 

4-week delay 

(April 9) 
6,552,510 6,552,530 6,552,540 6,552,560 6,552,570 6,552,600 6,552,610 6,552,630 
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Supplement Table 19. Comparison of total number of confirmed cases over time for different 

adherence levels in NYC when number of contacts is reduced after known infection 

Scenario- 

Adherence Level 
March 31 April 30 May 31 June 30 July 31 August 31 

Actual adherence 34,508 164,374 197,657 213,452 221,678 228,799 

Schools Open – 0% 412,935 6,690,830 6,690,830 6,690,830 6,690,840 6,690,840 

Schools Closed-0% 136,848 6,698,300 6,699,990 6,700,000 6,700,020 670,0030 

Schools Closed-25% 58,461 6,435,160 6,620,130 6,620,180 6,620,240 6,620,290 

Schools Closed-50% 21,306 1,816,810 5,916,950 5,970,280 5,970,730 5,970,990 

Schools Closed-75% 6,923 32,313 87,537 185,187 324,422 469,807 

Schools Closed- 90% 3,846 6,695 8,621 10,440 12,347 14,265 
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Supplement Table 20. Comparison of total number of confirmed cases over time when easing 

social distancing on different dates in NYC when number of contacts is reduced after known 

infection 

Total 

number of 

infections 

by 

Easing social distancing 

measures on June 15 

Easing social distancing 

measures on July 1 

DAE 

5% 

DAE 

10% 

DAE 

15% 

DAE 

5% 

DAE 

10% 

DAE 

15% 

June 30 160,011 133,104 130,584 162,029 132,413 129,455 

July 31 170,136 150,448 167,991 167,747 139,242 139,551 

August 31 188,122 211,348 426,067 180,106 168,020 230,276 

DAE: Drop in adherence rates after easing social distancing measures. A value of 5%, 10%, and 15% DAE implies 

that adherence to social distancing measures after the date of easing is at 77%, 72%, and 67%, in NYC, respectively 

Total 

number of 

infections 

by 

Easing social distancing 

measures on June 1 

Easing social distancing 

measures on June 8 

DAE 

5% 

DAE 

10% 

DAE 

15% 

DAE 

5% 

DAE 

10% 

DAE 

15% 

June 30 161,245 138,210 139,752 160,121 134,768 133,326 

July 31 177,802 178,216 259,336 172,996 161,032 200,687 

August 31 203,924 291,522 831,521 194,513 245,421 589,769 
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Section D.6 Sensitivity analysis when physical distancing and other risk reduction 

behaviors such as mask use are disaggregated 

 

We conducted a structural sensitivity analysis on the assumption that adherence to social 

distancing measures and other behaviors that reduce the risk of transmission such as wearing 

masks and frequent hand washing are bundled together. While we acknowledge that the two 

types of behaviors are distinct from each other, we made this assumption to simplify the 

presentation of the adherence data. Moreover, while there are almost daily data regarding 

reductions in individuals’ traveling behaviors, there are not any reliable temporal data on hand 

washing and facial mask use, which may change over time.  We believe that this was a 

reasonable assumption, as risk-averse individuals are likely to engage in risk reduction behaviors 

such as social distancing and using masks. However, we have now included a sensitivity analysis 

to estimate the effects when the model does not bundle the two behaviors. In this section, we 

present the details and the results of these experiments.   

 

We can disaggregate social distancing measures into the following two components: 1) physical 

distancing via less frequent traveling or keeping at least 6-feet distance during interactions and 2) 

other risk reduction behaviors including wearing face masks. First, we need to estimate the 

proportion of the population that is following physical distancing and the proportion of the 

population that is not following physical distancing but is wearing masks. Second, we need to 

estimate the effectiveness of keeping at least 6-feet distance during interactions as well as the 

effectiveness of wearing masks. A recent study reported the results of a comprehensive 

systematic review and meta-analysis to estimate the effectiveness of physical distancing and the 

use of face masks/eye protection for avoiding person-to-person virus transmission (75). The 

study found that face mask use reduces the risk of transmission by 85% (noting that the type of 

mask impacts the rate of reduction in transmission risk) whereas keeping a 1 meter distance 

during an interaction reduces the risk of transmission by 82%. We could use these data to 

implement the differential impact of physical distancing and wearing masks. However, while 

cellphone data provides some information about the proportion of the population that is traveling 

less, there is not reliable information on the proportion of the population that follows other risk 

reduction behaviors such as mask use and frequent hand washing. Several self-reported surveys 

estimated this input parameter, but given that these behaviors change over time, such data may 

not be sufficient to accurately inform the model.  

 

In our sensitivity analysis, we have now made the following changes to the model to 

disaggregate these two main behaviors. We redefined adherence to social distancing measures 

using two parameters: 1) adherence to physical distancing measures and 2) proportion of the 

population that is not following physical distancing measures but is following recommended risk 

reduction behaviors. We assumed that the risk of infection drops by 85% for the former group 

whereas it drops by 82% for the latter group while keeping the overall adherence level to be 

equal to the adherence input estimated for the base case.  

 

We then ran the following two scenarios:  

- Scenario 6.1: 25% of the reduction in the number of contacts due to social distancing 

measures is attributed to the adherence to the physical distancing whereas the rest is 

attributed to the wearing face masks  

- Scenario 6.2:  75% of the reduction in the number of contacts due to social distancing 

measures is attributed to the adherence to the physical distancing whereas the rest is 

attributed to the wearing face masks 
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For both scenarios, we kept all other input parameters the same and compared the model’s 

predictions. Supplement Figure 15 shows the results of this experiment, which imply that there is 

no difference between the two scenarios. Therefore, as long as the overall adherence level 

estimated by our base case remains the same, the results do not change even if these two types of 

behaviors are not bundled.  

 

To demonstrate the potential use of COVAM where these two distinct sets of behaviors are 

disaggregated, we conducted the following experiments: 

- Scenario 6.3: only 40% of the individuals adhere to the physical distancing measures 

from March 4 until the end of the simulation. Everyone is required to wear face 

masks, but adherence to face mask use is equal to 90% from March 4 until the end of 

the simulation. All other input parameter values are the same as in the base case.  

- Scenario 6.4: adherence to physical distancing is equal to 90% from March 4 until the 

end of the simulation, and adherence to mask use is 50% from March 4 until the end 

of the simulation. All other input parameter values are the same as in the base case.  

 

We present the results of this experiment, which show that implementing face mask use with 

high fidelity could have prevented many infections in the short time. Scenario 6.3 and Scenario 

6.4 have a comparable number of confirmed cases over time, implying that a high level of 

adherence to face mask use may help to limit the use of physical distancing measures, such as 

closing businesses, with the goal of controlling COVID-19 pandemic.  This experiment also 

demonstrates the differential impact of adherence to physical distancing and face mask use on 

the number of confirmed COVID-19 cases over time.     
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Supplement Figure 15. Comparison of model predictions to actual NYC data when adherence to 

physical distancing and other behaviors that reduce the risk of transmission are not bundled 

 

(a) Scenario 6.1  

 

  
(b) Scenario 6.2 

 

  

Supplement Figure 16. Model predictions when adherence to adherence to physical distancing 

and adherence to face mask use are observed at different levels 
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(a) Scenario 6.3-adherence to physical distancing measures is 40% and adherence to face 

mask use is 90% 

 
 

(b) Scenario 6.4-adherence to physical distancing measures is 90% and adherence to face 

mask use is 50% 

 

Section D.7 Sensitivity analysis when different numbers of superspreader individuals are 

modeled  

 

We conducted a structural sensitivity analysis to evaluate the potential role of “superspreaders,” 

individuals with a large number of daily contacts. Our base case did not specifically evaluate the 

potential role of superspreaders because we do not have any reliable data to estimate the 
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proportion of superspreaders in our specific regions. However, in this sensitivity analysis, we 

explicitly model superspreaders by creating an additional population that represents 

superspreaders while keeping the average number of daily contacts under various adherence rates 

the same.  Our base case model has different numbers of daily contacts for different age groups, 

therefore some (i.e. older) age groups have a small number of daily contacts whereas other (i.e. 

younger) age groups have a high number of daily contacts. We defined several categories of 

“superspreaders,” individuals who contact more than 10, 20, and 40 people in a given day. We 

use a triangular distribution to model two different scenarios: 1) A “high variance” scenario in 

which individuals are assigned a daily number of contacts following a triangular distribution 

with a parameter set of (0,0, 3*average number of daily contacts). The mean value for this 

triangular distribution is equal to the average number of daily contacts. 2) A “low variance” 

scenario in which individuals are assigned a daily number of contacts following a triangular 

distribution with a parameter set of (average number of daily contacts, average number of daily 

contacts, average number of daily contacts).  The low variance scenario corresponds to our base 

case.  

We conducted this experiment for NYC. Supplement Table 21 shows the distribution of the 

individuals with different numbers of daily contacts under these two scenarios. Note that the 

number of spreaders with the daily number of contacts less than 2 is higher in the high variance 

scenario, since we had to reduce the number of daily contacts for many other individuals due to a 

large number of “superspreaders” to keep the average number of daily contacts the same. 

Supplement Table 21. Comparison of contagious individuals with different number of daily 

contacts under high variance and low variance scenario 

Spreader type 

(i.e. contagious 

individuals with 

the number of 

daily contacts) 

Proportion of the 

contagious 

individuals in this 

category under 

high variance 

scenario 

Proportion of the 

contagious 

individuals under 

low variance 

scenario (base 

case) 

Proportion of the 

infections caused 

by this group of 

spreaders under 

high variance 

scenario 

Proportion of the 

infections caused 

by this group of 

spreaders under 

low variance 

scenario 

<2 22.43% 29.81% 7.63% 6.50% 

2 to 5 48.94% 40.26% 28.60% 40.76% 

5 to 10 27.85% 22.09% 36.72% 48.65% 

10 to 20 0.55% 7.44% 23.84% 2.24% 

20 to 40 0.23% 0.32% 2.13% 1.85% 

>40 0.00% 0.07% 1.08% 0.00% 

We also estimated that the proportion of infections caused by superspreaders in each scenario 

and reported them in Supplement Table 21. As shown in the table, individuals who have more 

than 10 daily contacts are responsible for 27% of the infections in the high variance whereas they 

are responsible for only 4% of the infections in the low variance scenario. The ability of 

COVAM to estimate the proportion of the infections caused by “superspreaders” demonstrates 

an additional benefit of using agent-based models since such an estimation is not possible via 

compartmental models. If data on the number of superspreaders in a region is available, 

COVAM may help to evaluate the impact of controlling superspreader events on the number of 

confirmed cases.  

We then tested whether using a high variance instead of a low variance changed any of the 

model results. The figures below show the results of this experiment for NYC. We found that the 
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trends observed under our base case did not change under the high variance scenario. This is 

because COVAM models adherence proportional to all individuals. For example, consider two 

individuals: Individual #1 has 40 contacts and Individual #2 has 5 contacts per day. A 70% 

adherence reduces the number of daily contacts for Individual #1 and Individual #2 from 40 to 

28 and from 5 to 1.5, respectively. Therefore, as long as the average number of daily contacts 

remains the same, changing the spread of number of contacts does not substantially change the 

results in our model.   

 

It is likely that controlling superspreaders may be implemented differently than what we 

assumed in the base case. Instead of applying the proportional reduction to the daily number of 

contacts equally between superspreaders and “low-spreaders” as we currently do, one can simply 

reduce the number of contacts for superspreaders and “low-spreaders” from the observed levels 

to 0.  For example, for the example described above, both Individual #1 and Individual #2 could 

end up having 0 contacts per day. This represents the situation of canceling a large gathering 

versus canceling a number of small gatherings. In that case, we would expect the impact of 

adherence to social distancing to be different. We tested this hypothesis by running the following 

experiment. We randomly reduced the number of daily contacts from its current level to 0 for 5% 

of all individuals (low-spreaders and superspreaders equally likely) and compared the results of 

the high-variance and low-variance scenarios. We found that implementing adherence to social 

distancing measures this way led to a 31% reduction in the number of confirmed cases under the 

high variance scenarios and a 30% reduction in the number of confirmed cases under the low 

variance scenario. We observe that although a high variance has led to a larger impact of social 

distancing measures compared to a low variance, the difference was very small.  
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Supplement Figure 17. Comparison of model predictions to actual NYC data when 

superspreaders are modeled explicitly (high variance scenario)   
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Supplement Figure 18. Comparison of total number of confirmed cases over time when 

implementing social distancing measures on different dates in NYC when superspreaders are 

modeled explicitly (high variance scenario)   
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Supplement Table 22. Comparison of total number of confirmed cases over time when 

implementing social distancing measures on different dates in NYC when superspreaders are 

modeled explicitly (high variance scenario) 

Social distancing 

implementation 

date 

May 15 May 31 June 15 June 30 July 15 July 31 August 15 August 31 

1 week earlier 

(March 5) 
38,601 41,187 43,028 45,639 49,229 54,069 59,570 66,485 

Actual 

(March 12) 
191,489 201,314 205,710 210,495 216,043 222,693 229,580 237,334 

1-week delay 

(March 19) 
1,354,050 1,397,130 1,407,960 1,414,450 1,419,110 1,422,880 1,425,700 1,428,200 

2-week delay 

(March 26) 
4,176,180 4,184,800 4,185,460 4,185,770 4,186,050 4,186,350 4,186,630 4,186,900 

3-week delay 

(April 2) 
6,195,840 6,195,890 6,195,930 6,195,960 6,196,000 6,196,040 6,196,080 6,196,120 

4-week delay 

(April 9) 
6,680,330 6,680,330 6,680,330 6,680,340 6,680,340 6,680,340 6,680,340 6,680,350 
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Supplement Table 23. Comparison of total number of confirmed cases over time for different 

adherence levels in NYC when superspreaders are modeled explicitly (high variance scenario)  

Scenario- 

Adherence Level 
March 31 April 30 May 31 June 30 July 31 August 31 

Actual adherence 39,984 169,286 201,314 210,495 222,693 237,334 

Schools Open – 0% 1,548,790 6,706,480 6,706,480 6,706,480 6,706,480 6,706,480 

Schools Closed-0% 482,720 6,705,550 6,705,570 6,705,580 6,705,580 6,705,580 

Schools Closed-25% 185,036 6,762,380 6,767,550 6,767,560 6,767,560 6,767,570 

Schools Closed-50% 56,044 5,768,740 6,722,910 6,723,170 6,723,220 6,723,260 

Schools Closed-75% 12,656 194,231 1,890,590 4,628,470 5,162,320 5,198,030 

Schools Closed- 90% 4,673 8,798 11,816 14,523 17,317 20,099 
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Supplement Table 24. Comparison of total number of confirmed cases over time when 

implementing social distancing measures on different dates in NYC when superspreaders are 

modeled explicitly (high variance scenario)   

Total 

number of 

infections 

by 

Easing social distancing 

measures on June 1 

Easing social distancing 

measures on June 8 

DAE 

5% 

DAE 

10% 

DAE 

15% 

DAE 

5% 

DAE 

10% 

DAE 

15% 

June 30 213,722 225,753 248,022 210,495 214,966 221,804 

July 31 229,327 319,603 724,327 222,693 269,183 442,423 

August 31 246,648 621,206 3,061,610 237,334 455,653 2,015,180 

Total 

number of 

infections 

by 

Easing social distancing 

measures on June 15 

Easing social distancing 

measures on July 1 

DAE 

5% 

DAE 

10% 

DAE 

15% 

DAE 

5% 

DAE 

10% 

DAE 

15% 

June 30 208,769 210,196 211,976 207,668 207,668 207,668 

July 31 218,501 242,730 316,249 213,450 218,554 228,127 

August 31 231,140 360,940 1,234,760 222,630 264,437 453,116 

DAE: Drop in adherence rates after easing social distancing measures. A value of 5%, 10%, and 15% DAE implies 

that adherence to social distancing measures after the date of easing is at 85%, 80%, and 75%, in NYC, respectively 



59 

 

References 

1. N. G. Davies, A. J. Kucharski, R. M. Eggo, et al., The effect of non-pharmaceutical 

interventions on COVID-19 cases, deaths and demand for hospital services in the UK: a 

modelling study. The Lancet Public Health 5, e375-e385 (2020). 

2. The White House. Guidelines for Opening Up America Again Available: 

https://www.whitehouse.gov/openingamerica/. Accessed April 29, 2020. 

3. A. Hill. Modeling COVID-19 Spread vs Healthcare Capacity Available: 

https://alhill.shinyapps.io/COVID19seir/. Accessed April 2, 2020. 

4. Predictive Healthcare team at Penn Medicine. COVID-19 Hospital Impact Model for 

Epidemics (CHIME) Available: https://penn-chime.phl.io/. Accessed April 2, 2020. 

5. Institute for Health Metrics and Evaluation (IHME). COVID-19 Projections Available: 

https://covid19.healthdata.org/united-states-of-america. Accessed April 26, 2020. 

6. N. P. Jewell, J. A. Lewnard, B. L. Jewell, Predictive Mathematical Models of the 

COVID-19 Pandemic: Underlying Principles and Value of Projections. JAMA,  (2020). 

7. N. P. Jewell, J. A. Lewnard, B. L. Jewell, Caution warranted: using the Institute for 

Health Metrics and Evaluation model for predicting the course of the COVID-19 pandemic. 

Annals of Internal Medicine DOI: 10.7326/m20-1565,  (2020). 

8. C. Rothe, M. Schunk, P. Sothmann, et al., Transmission of 2019-nCoV infection from an 

asymptomatic contact in Germany. New England Journal of Medicine 382, 970-971 (2020). 

9. H. Nishiura, N. M. Linton, A. R. Akhmetzhanov, Serial interval of novel coronavirus 

(COVID-19) infections. International Journal of Infectious Diseases 93, 284-286 (2020). 

10. Z. Du, X. Xu, Y. Wu, et al., The serial interval of COVID-19 from publicly reported 

confirmed cases. Emerging Infectious Diseases 26, https://doi.org/10.3201/eid2606.200357 

(2020). 

11. R. Li, S. Pei, B. Chen, et al., Substantial undocumented infection facilitates the rapid 

dissemination of novel coronavirus (SARS-CoV2). Science 368, 489-493 (2020). 

12. D. D. Rhoads, S. S. Cherian, K. Roman, et al., Comparison of Abbott ID Now, Diasorin 

Simplexa, and CDC FDA EUA methods for the detection of SARS-CoV-2 from nasopharyngeal 

and nasal swabs from individuals diagnosed with COVID-19. Journal of clinical microbiology,  

(2020). 

13. CDC. Interim Clinical Guidance for Management of Patients with Confirmed 

Coronavirus Disease (COVID-19) Available: https://www.cdc.gov/coronavirus/2019-

ncov/hcp/clinical-guidance-management-patients.html#Asymptomatic. Accessed April 2, 2020. 

14. W.-j. Guan, Z.-y. Ni, Y. Hu, et al., Clinical characteristics of coronavirus disease 2019 in 

China. New England Journal of Medicine 382, 1708-1720 (2020). 

15. Q. Li, X. Guan, P. Wu, et al., Early transmission dynamics in Wuhan, China, of novel 

coronavirus–infected pneumonia. New England Journal of Medicine 382, 1199-1207 (2020). 

16. S. A. Lauer, K. H. Grantz, Q. Bi, et al., The incubation period of coronavirus disease 

2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Annals of 

Internal Medicine DOI: 10.7326/M20-0504,  (2020). 

17. D. Wang, B. Hu, C. Hu, et al., Clinical characteristics of 138 hospitalized patients with 

2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA 323, 1061-1069 (2020). 

18. C. Huang, Y. Wang, X. Li, et al., Clinical features of patients infected with 2019 novel 

coronavirus in Wuhan, China. The Lancet 395, 497-506 (2020). 

19. P. K. Bhatraju, B. J. Ghassemieh, M. Nichols, et al., Covid-19 in critically ill patients in 

the Seattle region—case series. New England Journal of Medicine 

DOI:10.1056/NEJMoa2004500,  (2020). 

20. CDC COVID-19 Response Team, S. Bialek, E. Boundy, et al., Severe outcomes among 

patients with coronavirus disease 2019 (Covid-19)—United States, February 12–March 16, 

2020. Morbidity and Mortality Weekly Report MMWR 69, 343-346 (2020). 

https://www.whitehouse.gov/openingamerica/
https://alhill.shinyapps.io/COVID19seir/
https://penn-chime.phl.io/
https://covid19.healthdata.org/united-states-of-america
https://doi.org/10.3201/eid2606.200357
https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html#Asymptomatic
https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html#Asymptomatic


60 

21. Wisconsin Department of Health Services. COVID-19: Wisconsin Data Available:

https://www.dhs.wisconsin.gov/covid-19/data.htm. Accessed August 12, 2020. 

22. B. Y. Lee, S. T. Brown, P. Cooley, et al., Simulating school closure strategies to mitigate

an influenza epidemic. Journal of Public Health Management and Practice 16, 252-261 (2010). 

23. S. Y. Del Valle, J. M. Hyman, H. W. Hethcote, et al., Mixing patterns between age

groups in social networks. Social Networks 29, 539-554 (2007). 

24. M. É. Czeisler, M. A. Tynan, M. E. Howard, et al., Public Attitudes, Behaviors, and

Beliefs Related to COVID-19, Stay-at-Home Orders, Nonessential Business Closures, and Public 

Health Guidance—United States, New York City, and Los Angeles, May 5–12, 2020. Morbidity 

and Mortality Weekly Report 69, 751 (2020). 

25. X. He, E. H. Lau, P. Wu, et al., Temporal dynamics in viral shedding and transmissibility

of COVID-19. Nature Medicine, 1-4 (2020). 

26. Y. Liu, A. A. Gayle, A. Wilder-Smith, et al., The reproductive number of COVID-19 is

higher compared to SARS coronavirus. Journal of Travel Medicine 27, 

https://doi.org/10.1093/jtm/taaa1021 (2020). 

27. N. Imai, A. Cori, I. Dorigatti, et al. Report 3: transmissibility of 2019-nCov. Imperial

College London. Available from https://www.imperial.ac.uk/media/imperial-

college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-transmissibility-25-01-

2020.pdf, Accessed April 30, 2020. 

28. M. G. Pedersen, M. Meneghini, Quantifying undetected COVID-19 cases and effects of

containment measures in Italy. ResearchGate Preprint Available from 

https://www.researchgate.net/publication/339915690_Quantifying_undetected_COVID-

19_cases_and_effects_of_containment_measures_in_Italy_Predicting_phase_2_dynamics, 

Accessed April 30, 2020,  (2020). 

29. A. Crisanti, A. Cassone. In one Italian town, we showed mass testing could eradicate the

coronavirus. The Guardian 2020, March 20, 2020 

30. Z. Hu, C. Song, C. Xu, et al., Clinical characteristics of 24 asymptomatic infections with

COVID-19 screened among close contacts in Nanjing, China. Science China Life Sciences 63, 

706-711 (2020). 

31. Unacast. Social Distancing Scoreboard Available:

https://www.unacast.com/covid19/social-distancing-scoreboard. Accessed August 10, 2020. 

32. GeoDS Lab @ UW-Madison. Mapping Mobility Changes in Response to COVID-19

Available: https://geods.geography.wisc.edu/covid19/physical-distancing/. Accessed August 10, 

2020. 

33. Google. COVID-19 Community Mobility Report Available:

https://www.google.com/covid19/mobility/. Accessed August 10, 2020. 

34. S. Gao, J. Rao, Y. Kang, et al., Mobile phone location data reveal the effect and

geographic variation of social distancing on the spread of the COVID-19 epidemic. JAMA Open 

Network In press, Previously: arXiv:2004.11430v11431 12020 April 11423. (2020). 

35. J. Mossong, N. Hens, M. Jit, et al., Social contacts and mixing patterns relevant to the

spread of infectious diseases. PLoS Med 5, e74 (2008). 

36. D. Canning, M. Karra, R. Dayalu, et al., The association between age, COVID-19

symptoms, and social distancing behavior in the United States. medRxiv,  (2020). 

37. M. J. Pedersen, N. Favero, Social Distancing During the COVID‐19 Pandemic: Who Are

the Present and Future Non‐compliers? Public Administration Review,  (2020). 

38. United States Census Bureau. Age and Sex Table Available:

https://data.census.gov/cedsci/. Accessed August 18, 2020. 

39. Wisconsin Legislature v. Andrea Palm,. Wisconsin Supreme Court (Wis. 2020) 2020:No.

2020AP000765-OA 

https://www.dhs.wisconsin.gov/covid-19/data.htm
https://doi.org/10.1093/jtm/taaa1021
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-transmissibility-25-01-2020.pdf
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-transmissibility-25-01-2020.pdf
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-transmissibility-25-01-2020.pdf
https://www.researchgate.net/publication/339915690_Quantifying_undetected_COVID-19_cases_and_effects_of_containment_measures_in_Italy_Predicting_phase_2_dynamics
https://www.researchgate.net/publication/339915690_Quantifying_undetected_COVID-19_cases_and_effects_of_containment_measures_in_Italy_Predicting_phase_2_dynamics
https://www.unacast.com/covid19/social-distancing-scoreboard
https://geods.geography.wisc.edu/covid19/physical-distancing/
https://www.google.com/covid19/mobility/
https://data.census.gov/cedsci/


61 

 

40. Z. Feng, A. N. Hill, P. J. Smith, et al., An elaboration of theory about preventing 

outbreaks in homogeneous populations to include heterogeneity or preferential mixing. Journal 

of Theoretical Biology 386, 177-187 (2015). 

41. B. Xu, H. Tian, C. E. Sabel, et al., Impacts of Road Traffic Network and Socioeconomic 

Factors on the Diffusion of 2009 Pandemic Influenza A (H1N1) in Mainland China. 

International Journal of Environmental Research and Public Health 16, pii: E1223 (2019). 

42. S. Mei, B. Chen, Y. Zhu, et al., Simulating city-level airborne infectious diseases. 

Computers, Environment and Urban Systems 51, 97-105 (2015). 

43. X. Wang, R. F. Pasco, Z. Du, et al., Impact of Social Distancing Measures on COVID-19 

Healthcare Demand in Central Texas. medRxiv,  (2020). 

44. S. Pei, S. Kandula, J. Shaman, Differential Effects of Intervention Timing on COVID-19 

Spread in the United States. medRxiv,  (2020). 

45. D. M. Altmann, D. C. Douek, R. J. Boyton, What policy makers need to know about 

COVID-19 protective immunity. The Lancet https://doi.org/10.1016/S0140-6736(20)30985-5,  

(2020). 

46. A. A. o. Pediatrics, COVID-19 planning considerations: guidance for school re-entry. 

Retrieved July 7, 2020 (2020). 

47. M. Nicola, Z. Alsafi, C. Sohrabi, et al., The socio-economic implications of the 

coronavirus pandemic (COVID-19): A review. International journal of surgery (London, 

England) 78, 185 (2020). 

48. N. E. Sharpless. COVID-19 and cancer. American Association for the Advancement of 

Science 2020. 

49. M. B. Araujo, B. Naimi, Spread of SARS-CoV-2 Coronavirus likely to be constrained by 

climate. medRxiv https://doi.org/10.1101/2020.03.12.20034728,  (2020). 

50. W. Luo, M. Majumder, D. Liu, et al., The role of absolute humidity on transmission rates 

of the COVID-19 outbreak.  (2020). 

51. A. K. Barker, O. Alagoz, N. Safdar, Interventions to reduce the incidence of hospital-

onset Clostridium difficile infection: An agent-based modeling approach to evaluate clinical 

effectiveness in adult acute care hospitals. Clinical Infectious Diseases 66, 1192-1203 (2018). 

52. S. Sanche, Y. Lin, C. Xu, et al., High Contagiousness and Rapid Spread of Severe Acute 

Respiratory Syndrome Coronavirus 2. Emerging Infectious Diseases 26, DOI: 

10.3201/eid2607.200282. (2020). 

53. C. Courtemanche, J. Garuccio, A. Le, et al., Strong Social Distancing Measures In The 

United States Reduced The COVID-19 Growth Rate: Study evaluates the impact of social 

distancing measures on the growth rate of confirmed COVID-19 cases across the United States. 

Health Affairs, 10.1377/hlthaff. 2020.00608 (2020). 

54. W. Lyu, G. L. Wehby, Comparison of Estimated Rates of Coronavirus Disease 2019 

(COVID-19) in Border Counties in Iowa Without a Stay-at-Home Order and Border Counties in 

Illinois With a Stay-at-Home Order. JAMA Network Open 3, e2011102-e2011102 (2020). 

55. T. VoPham, M. D. Weaver, J. E. Hart, et al., Effect of social distancing on COVID-19 

incidence and mortality in the US. medRxiv,  (2020). 

56. T. P. B. Thu, P. N. H. Ngoc, N. M. Hai, Effect of the social distancing measures on the 

spread of COVID-19 in 10 highly infected countries. Science of the Total Environment, 140430 

(2020). 

57. K. Prem, Y. Liu, T. W. Russell, et al., The effect of control strategies to reduce social 

mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. The 

Lancet Public Health,  (2020). 

58. C. N. Ngonghala, E. Iboi, S. Eikenberry, et al., Mathematical assessment of the impact of 

non-pharmaceutical interventions on curtailing the 2019 novel Coronavirus. Mathematical 

Biosciences, 108364 (2020). 

https://doi.org/10.1016/S0140-6736(20)30985-5
https://doi.org/10.1101/2020.03.12.20034728


62 

 

59. J. Zhang, M. Litvinova, Y. Liang, et al., Changes in contact patterns shape the dynamics 

of the COVID-19 outbreak in China. Science,  (2020). 

60. H. Yin, Z. Liu, D. M. Kammen, Impacts of Early Interventions on the Age-Specific 

Incidence of COVID-19 in New York, Los Angeles, Daegu and Nairobi. medRxiv,  (2020). 

61. M. J. Siedner, G. Harling, Z. Reynolds, et al., Social distancing to slow the US COVID-

19 epidemic: an interrupted time-series analysis. PLoS Medicine 17, e1003244 (2020). 

62. A. B. Wagner, E. L. Hill, S. E. Ryan, et al., Social distancing merely stabilized COVID‐

19 in the US. Stat, e302. 

63. D. Kai, G.-P. Goldstein, A. Morgunov, et al., Universal masking is urgent in the covid-19 

pandemic: Seir and agent based models, empirical validation, policy recommendations. arXiv 

preprint arXiv:200413553,  (2020). 

64. P. C. Silva, P. V. Batista, H. S. Lima, et al., COVID-ABS: An agent-based model of 

COVID-19 epidemic to simulate health and economic effects of social distancing interventions. 

Chaos, Solitons & Fractals, 110088 (2020). 

65. New York City Department of Health. COVID-19: Data Available: 

https://www1.nyc.gov/site/doh/covid/covid-19-data.page. Accessed August 12, 2020. 

66. D. J. Goodman, M. Rothfeld. 1 in 5 New Yorkers May Have Had Covid-19, Antibody 

Tests Suggest Available: https://www.nytimes.com/2020/04/23/nyregion/coronavirus-antibodies-

test-ny.html?action=click&module=Spotlight&pgtype=Homepage, April 23, 2020. 

67. A. S. Gonzalez-Reiche, M. M. Hernandez, M. J. Sullivan, et al., Introductions and early 

spread of SARS-CoV-2 in the New York City area. Science,  (2020). 

68. United States Census Bureau. Commuting Characteristics by Sex Available: 

https://data.census.gov/cedsci/. Accessed August 18, 2020. 

69. A. Heinzerling, M. Stuckey, T. Scheuer, et al., Transmission of COVID-19 to Health 

Care Personnel During Exposures to a Hospitalized Patient-Solano County, California, February 

2020. MMWR Morbidity and mortality weekly report 69, 472 (2020). 

70. K. Ng, B. H. Poon, T. H. Kiat Puar, et al., COVID-19 and the risk to health care workers: 

a case report. Annals of internal medicine. 

71. R. S. Sikkema, S. D. Pas, D. F. Nieuwenhuijse, et al., COVID-19 in health-care workers 

in three hospitals in the south of the Netherlands: a cross-sectional study. The Lancet Infectious 

Diseases,  (2020). 

72. V. C. Cheng, S.-C. Wong, J. H. Chen, et al., Escalating infection control response to the 

rapidly evolving epidemiology of the Coronavirus disease 2019 (COVID-19) due to SARS-CoV-

2 in Hong Kong. Infection Control & Hospital Epidemiology 41, 493-498 (2020). 

73. D. Lazer, M. Santillana, R. H. Perlis, et al. The State of the Nation: A 50-state COVID-19 

Survey Report #8: Failing the test 2020. 

74. Department of Health & Human Services. HHS Details Multiple COVID-19 Testing 

Statistics as National Test Volume Surges Available: 

https://www.hhs.gov/about/news/2020/07/31/hhs-details-multiple-covid-19-testing-statistics-as-

national-test-volume-surges.html. Accessed August 18, 2020. 

75. D. K. Chu, E. A. Akl, S. Duda, et al., Physical distancing, face masks, and eye protection 

to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review 

and meta-analysis. The Lancet,  (2020). 

 

https://www1.nyc.gov/site/doh/covid/covid-19-data.page
https://www.nytimes.com/2020/04/23/nyregion/coronavirus-antibodies-test-ny.html?action=click&module=Spotlight&pgtype=Homepage
https://www.nytimes.com/2020/04/23/nyregion/coronavirus-antibodies-test-ny.html?action=click&module=Spotlight&pgtype=Homepage
https://data.census.gov/cedsci/
https://www.hhs.gov/about/news/2020/07/31/hhs-details-multiple-covid-19-testing-statistics-as-national-test-volume-surges.html
https://www.hhs.gov/about/news/2020/07/31/hhs-details-multiple-covid-19-testing-statistics-as-national-test-volume-surges.html

