Supporting Information for:

Identification of Zika Virus Inhibitors Using Homology Modeling and

Similarity-based Screening to Target Glycoprotein E

Stephen M. Telehany,^{a,§} Monica S. Humby,^{b,§} T. Dwight McGee Jr.,^c Sean P. Riley,^b Amy

Jacobs,^{b,*} and Robert C. Rizzo^{c,d,e,*}

^a Department of Chemistry, Stony Brook University, Stony Brook, NY 11794

^b Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York (SUNY) at Buffalo, Buffalo, NY

^c Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY 11794, USA

^d Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY 11794

^e Laufer Center for Physical & Quantitative Biology, Stony Brook University, Stony Brook, NY 11794

§ These authors contributed equally to this work

* Corresponding author e-mails: ajacobs2@buffalo.edu (AJ), rizzorc@gmail.com (RCR)

Molecular Dynamics Simulations. Molecular Dynamics (MD) simulations employed the program AMBER¹ in conjunction with $ff14SB^2$ (protein), TIP3P³ (solvent) and GAFF⁴ plus AM1BCC⁵ (ligand) force fields. Sodium counter ions were added to each simulation setup to neutralize the charge, and each protein-ligand complex was equilibrated using a nine-step

procedure described as follows: (1) 5,000 steps of energy minimization with 5.0 kcal mol⁻¹ Å⁻² restraints, (2) 50,000 steps of MD with 5.0 kcal mol⁻¹ Å⁻² restraints on the non-hydrogen atoms of the ligand and protein, (3) 1,000 steps of minimization with 2.0 kcal mol⁻¹ Å⁻² restraints, (4) 1,000 steps of minimization with 0.1 kcal mol⁻¹ Å⁻² restraints, (5) 1,000 steps of minimization with 0.05 kcal mol⁻¹ Å⁻² restraints, (6) 50,000 steps of MD with 1.0 kcal mol⁻¹ Å⁻² restraints on the nonhydrogen atoms of the ligand and protein, (7) 50,000 steps of MD with 0.5 kcal mol⁻¹ Å⁻² restraints on the non-hydrogen atoms of the ligand and protein, (8) 50,000 steps of MD with 0.5 kcal mol⁻¹ Å⁻² restraints on just the backbone carbons and nitrogens of the protein, and (9) 50,000 steps of MD with 0.1 kcal mol⁻¹ Å⁻² restraints on just the backbone nitrogens and carbons. All minimization steps placed restraints on non-hydrogen atoms of the ligand and protein. All MD simulations were performed at constant pressure, using a timestep of 1fs and a temperature of 298.15K. Production simulations were comprised of 4 replicates for each ligand (20 ns each), employed a 2-femtosecond time step, and were run with relatively weak (0.1 kcal mol⁻¹ Å⁻²) restraints on the protein backbone. MM-GBSA⁶ calculations (single trajectory method without additional entropy terms) were employed to estimate relative binding affinities for hits, and RMSDs were used to gauge their geometric stability over the course of the simulations. The MD trajectories were visualized using the program VMD.⁷

Free Energy Calculations. Table S1 shows MD-derived results from replicate simulations of docked ligands complexed with ZIKV E at various block sizes. Data tabulated includes heavy atom (non-hydrogen) root mean square deviation (RMSD) for ligands relative to their original DOCK poses, free energies of binding (ΔG_{bind}) estimated using the single trajectory MM-GBSA method without additional entropic terms,^{8, 9} autocorrelation function in percent correlated data

(ACF %),^{10, 11} and block-averaged standard error of the mean (BASEM)^{10, 11} for ligands complexed with ZIKV E at various block sizes. For each complex, four independent MD simulations labeled #1-#4 were initiated using different random seeds. We have previously used the ACF/BASEM technique to estimate errors computed by the MM-GBSA method for MD simulations of ligands complexed with HIV gp41, HER2, and FABP5.¹²⁻¹⁴ Based on the present results, the data (on average) is reasonable uncorrelated (~82%) at a block size of 200 frames which corresponds to N=20 blocks. At this block size, the "replicate-averaged" error in ΔG_{bind} ranges from 0.993 to 1.418 kcal/mol while individual MD trajectories yield uncertainties from 0.249 to 0.914 kcal/mol.

Table S1. Ligand root mean square deviation (RMSD), free energies of binding (ΔG_{bind}), autocorrelation function in percent correlated data (ΔCE^{9}) and block-averaged standard error of the mean (BASEM) for ligands complexed with ZIKV E at various block sizes										
(ACT 70), and block-averaged standard e			5 ns ^a		250 ns		1000 ns		2000 ns	
			block size 1 frame		block size 50 frame		block size 200 frame		block size 400 frame	
			N blocks = 4000		N blocks $= 80$		N blocks = 20		N blocks = 10	
Lig, MD rep #	RMSD ^a	$\Delta G_{\text{bind}} b$	ACF % ^c	BASEM ^d	ACF %	BASEM	ACF %	BASEM	ACF %	BASEM
BOG, #1	2.48	-36.26	48.33	0.069	15.73	0.267	2.00	0.445	6.91	0.504
BOG, #2	1.93	-37.68	63.37	0.075	44.02	0.389	19.79	0.702	17.81	0.863
BOG, #3	1.77	-40.36	62.59	0.073	47.90	0.390	13.54	0.693	0.08	0.905
BOG, #4	1.70	-38.36	49.93	0.064	24.81	0.284	10.32	0.456	10.29	0.585
BOG, average	1.97	-38.17	56.06	0.141	33.12	0.675	11.41	1.174	8.77	1.470
8, #1	2.69	-37.94	73.18	0.083	60.76	0.485	47.82	0.914	31.10	1.215
8,#2	4.12	-30.96	54.19	0.061	43.05	0.303	25.05	0.552	16.92	0.710
8, #3	5.50	-26.23	81.95	0.073	61.81	0.450	32.40	0.852	8.02	1.078
8, #4	2.59	-38.69	40.20	0.055	22.36	0.218	11.19	0.379	-1.03	0.483
8, average	3.81	-33.46	62.38	0.138	47.00	0.760	29.12	1.418	13.75	1.837
15, #1	3.93	-27.24	70.04	0.068	43.05	0.368	23.06	0.646	26.93	0.800
15, #2	3.62	-30.55	72.21	0.069	49.51	0.388	28.98	0.764	23.02	1.098
15, #3	3.21	-34.95	43.23	0.056	28.01	0.237	11.87	0.419	-10.09	0.551
15, #4	4.43	-25.83	79.58	0.074	59.72	0.444	36.03	0.875	4.42	1.234
15, average	3.80	-29.64	66.27	0.134	45.07	0.734	24.99	1.394	11.07	1.916
			<i></i>							
30, #1	5.98	-27.24	60.29	0.062	26.15	0.298	13.19	0.462	6.26	0.582
30, #2	3.96	-29.05	48.23	0.055	24.33	0.226	8.02	0.382	-1.32	0.482
30, #3	3.80	-23.90	60.98	0.060	38.81	0.299	18.59	0.541	6.50	0.709
30, #4	5.07	-23.60	68.56	0.062	49.37	0.340	32.06	0.626	12.08	0.806
30, average	4.67	-25.96	59.52	0.120	34.67	0.587	17.97	1.022	5.88	1.313
26.11	1	04.54	(=)=	0.050	44.04	0.007	14.00	0.550	= 20	0.540
36, #1	5.51	-24.76	67.07	0.058	44.04	0.307	14.32	0.550	-7.39	0.540
36, #2	5.77	-21.49	/6.84	0.068	49.12	0.394	13.96	0.683	14.83	0.786
36, #3	5.86	-23.30	20.92	0.048	33.08	0.236	8.38	0.395	-10.28	0.441
36,#4	4.0/	-20.32	50.69	0.034	8.33	0.184	0.30	0.249	-0.34	0.344
50, average	5.40	-24.02	39.08	0.115	55.70	0.382	10.81	0.995	-0.80	1.100
41 #1	5 54	-22.97	50.78	0.063	24.02	0.275	5 1 3	0.436	7 37	0 541
41, #2	4.91	-24.43	73.51	0.064	55.13	0.368	38.80	0.680	30.77	0.847
41, #3	4.61	-26.24	64.86	0.056	42.90	0.293	22.10	0.518	5.41	0.721
41, #4	5.41	-24.00	50.79	0.047	21.65	0.203	0.58	0.340	-4.76	0.396
41. average	5.10	-24.41	59.99	0.116	35.93	0.581	16.65	1.018	9.70	1.299
,										
43, #1	3.39	-29.86	63.38	0.068	43.70	0.354	24.58	0.670	3.96	0.856
43, #2	3.71	-29.75	39.03	0.051	18.44	0.195	6.99	0.329	1.02	0.442
43, #3	2.57	-29.65	77.42	0.081	58.83	0.477	30.34	0.885	9.03	1.157
43, #4	3.88	-30.32	50.52	0.055	25.32	0.244	9.31	0.434	-4.12	0.615
43, average	3.37	-29.90	57.59	0.130	36.57	0.671	17.81	1.236	2.47	1.626
at the 1 DMCD	1	1.4	· · · 1 DC		· 11	1 /DC		· 1 1		1

^aLigand RMSD values in Å relative to the original DOCK pose (hits) or modeled pose (BOG) from four independent MD simulations each. ^b ΔG_{bind} (MM-GBSA method) in kcal/mol recorded every 5 ps which corresponds to one frame over 20 ns of production time (4000 frames total). ^cACF in % of correlated data. ^dBASEM energies in kcal/mol with average values computed as square root of the sum of the squares.

References

[1] Case, D. A., Ben-Shalom, I. Y., Brozell, S. R., Cerutti, D. S., Cheatham, T. E., 3rd, Cruzeiro, V. W. D., Darden, T. A., Duke, R. E., Ghoreishi, D., Gilson, M. K., Gohlke, H., Goetz, A. W., Greene, D., Harris, R., Homeyer, N., Izadi, S., Kovalenko, A., Kurtzman, T., Lee, T. S., LeGrand, S., Li, P., Lin, C., Liu, J., Luchko, T., Luo, R., Mermelstein, D. J., Merz, K. M., Miao, Y., Monard, G., Nguyen, C., Nguyen, H., Omelyan, I., Onufriev, A., Pan, F., Qi, R., Roe, D. R., Roitberg, A., Sagui, C., Schott-Verdugo, S., Shen, J., Simmerling, C. L., Smith, J., Salomon-Ferrer, R., Swails, J., Walker, R. C., Wang, J., Wei, H., Wolf, R. M., Wu, X., Xiao, L., York, D. M., and Kollman, P. A. (2018) AMBER 2018, University of California, San Francisco.

[2] Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., and Simmerling, C. (2015) ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB, *J Chem Theory Comput 11*, 3696-3713.

[3] Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., and Klein, M. L. (1983) Comparison of simple potential functions for simulating liquid water, *J Chem Phys* 79, 926-935.

[4] Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., and Case, D. A. (2004) Development and testing of a general amber force field, *J Comput Chem* 25, 1157-1174.

[5] Jakalian, A., Jack, D. B., and Bayly, C. I. (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation, *J Comput Chem 23*, 1623-1641.

[6] Miller, B. R., 3rd, McGee, T. D., Jr., Swails, J. M., Homeyer, N., Gohlke, H., and Roitberg, A. E. (2012) MMPBSA.py: An Efficient Program for End-State Free Energy Calculations, *J Chem Theory Comput 8*, 3314-3321.

[7] Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD: visual molecular dynamics, *J Mol Graph 14*, 33-38.

[8] Srinivasan, J., Cheatham, T. E., 3rd, Cieplak, P., Kollman, P. A., and Case, D. A. (1998) Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate - DNA helices, *JACS 120*, 9401-9409.

[9] Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., and Cheatham, T. E., 3rd. (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models, *Acc Chem Res 33*, 889-897.

[10] Hess, B. (2002) Determining the shear viscosity of model liquids from molecular dynamics simulations, *J Chem Phys 116*, 209-217.

[11] Grossfield, A., and Zuckerman, D. M. (2009) Quantifying uncertainty and sampling quality in biomolecular simulations, *Annu Rep Comput Chem* 5, 23-48.

[12] Huang, Y. L., and Rizzo, R. C. (2012) A Water-Based Mechanism of Specificity and Resistance for Lapatinib with ErbB Family Kinases, *Biochemistry* 51, 2390-2406.

[13] McGillick, B. E., Balius, T. E., Mukherjee, S., and Rizzo, R. C. (2010) Origins of resistance to the HIVgp41 viral entry inhibitor T20, *Biochemistry* 49, 3575-3592.

[14] Zhou, Y., Elmes, M. W., Sweeney, J. M., Joseph, O. M., Che, J., Hsu, H. C., Li, H., Deutsch, D. G., Ojima, I., Kaczocha, M., and Rizzo, R. C. (2019) Identification of Fatty Acid Binding Protein 5 Inhibitors Through Similarity-Based Screening, *Biochemistry* 58, 4304-4316.