Supplementary Materials: Association of Common Variants of TNFSF13 and TNFRSF13B Genes with CLL Risk and Clinical Picture, as well as Expression of Their Products—APRIL and TACI Molecules

Monika Jasek, Agnieszka Bojarska-Junak, Maciej Sobczyński, Marta Wagner, Sylwia Chocholska, Jacek Roliński, Dariusz Wołowiec and Lidia Karabon

APRIL		Patient	s (N=439)	Controls	(N=477)	OR	CI95%	Patients vs. Controls
TNFSF13	3							
polymorphi	sms	Ν	%	Ν	%			
rs11552708	GG	385	87.70	417	417 87.42			
	GA	53	12.10	57	11.95	1.01	0.68;1.50	$\chi^2_{df=2}=0.85$
Gly67Arg	AA	1	0.20	3	0.63	0.46	0.07;3.16	p=0.782
HWE	HWE		0.833	p=0	.448			
		<i>f</i> =-0.03		<i>f</i> =0.	031			
		CI95%=	-0.08;0.06	CI95%=-	0.06;0.14			
rs4968210	GG	166	37.80	157	32.90	1*		$\chi^2_{df=2}$ =2.58
Intron 5	GA	198	45.10	237	49.70	0.79	0.59;1.05	p=0.275
	AA	75	17.10	83	17.40	0.86	0.58;1.25	
HWE		p=	0.232	p=0	.778			
		f=(0.057	<i>f</i> =-0	.020			
		CI95%=	-0.04;0.15	CI95%=-	0.11;0.07			
rs6608	CC	350	79.70	385	80.71	1^*		
	CT	85	19.40	88	18.45	1.06	0.76;1.48	$\chi^2_{df=2}=0.14$
3'UTR	TT	4	0.90	4	0.84	1.10	0.30;4.10	p=0.92
HWE		p=	0.804	p=0	.947			
		<i>f</i> =	-0.02	<i>f</i> =-0.02				
		CI95%=	-0.10;0.07	CI95%=-0.09;0.07				

Supplementary Table S1. Genotype distribution of the *APRIL* (*TNFSF13;* 17p13.1) polymorphisms in patients and controls.

Abbreviations : OR, odds ratio; CI, confidence intervals; HWE, Test for Hardy-Weinberg equilibrium; *f*, departure from HWE; * the reference group;

TACI		Patient	s (N=439)	Cor	ntrols (N	N=477)	OR	CI95%	Patients vs. Controls
TNFRSF13 polymorphi		NT	0/		NT	0/			
porymorphi	51115	Ν	%		N	%			
	CC	385	87.70	4	1 16	87.20	1*		
rs12051889	СТ	51	51 11.60 60 12.60 0.92 0.6		0.62;1.37	$\chi^2_{df=2}=1.35$			
intron 1	TT	3 0.70			1	0.20	2.52	0.37;17.16	p=0.515
HWE		p=	0.414		p=0.91	2			
		<i>f</i> =	0.04		<i>f</i> =-0.03	3			
		CI95%=	CI95	5%=-0.08	8;0.045				
rs8072293ª	TT	211	48.10		236	49.48	1*		$\chi^{2}_{df=2}=0.25$
Thr27Thr	TC	195	44.40		204	42.77	1.07	0.82;1.40	p=0.881
	CC	33	7.50		37	7.75	1.00	0.60;1.65	
HWE		p=	0.209		p=0.50	6			
		5	-0.06		<i>f</i> =-0.03				
		CI95%=	-0.15;0.03	CI95	5%=-0.12	2;0.053			
11(=(10)	TT	206	46.90	2	238	49.90	1*		
rs11656106	TC	194	44.20	1	197		1.14	0.87;1.49	$\chi^{2}_{df=2}=0.87$
intron 2	CC	39	8.90		42 8.80			0.67;1.72	p=0.649
HWE		p=	0.576		p=0.91	2			
		<i>f</i> =	-0.03		<i>f</i> =0.00	6			
		CI95%=	-0.12;0.06	CI9	5%=-0.0	8;0.09			
rs11078355	AA	157	35.80	158	33.10	158	1*		$\chi^2_{df=2}=2.03$
Ser277Ser	AG	206	46.90	246	51.60	246	0.84	0.63;1.12	p=0.362
	GG	76	17.30	73	15.30	73	1.05	0.71;1.55	
HWE		p=	0.554		p=0.18	5			
		<i>f</i> =0.028		<i>f</i> =-0.06					
		CI95%=	CI95	CI95%=-0.16;0.021					

Supplementary Table S2. Genotype distribution of the *TACI (TNFRSF13B;* 17p11.2) polymorphisms in patients and controls.

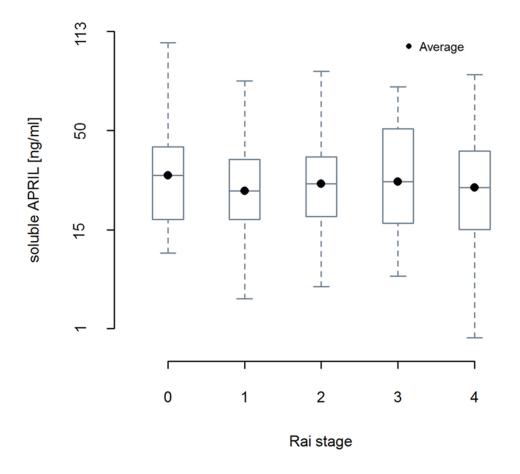
Abbreviations : OR, odds ratio; CI, confidence intervals; HWE, Test for Hardy-Weinberg equilibrium; *f*, ^a T>C according to the frequency of alleles, * the reference group;

APRIL SNP							
MFI APRIL+CD19+ CLL cells		Genotyp	e	F-test	p-value	LSD^*	
rs3803800	AA	GA	GG				
average	81.49	86.76	80.80	0 124	0.002		
n	8	19	45	0.124	0.883	(AA.GA.GG)	
rs11552708	AA	GA	GG				
average	59.63	91.63	81.71	0.36	0.702		
n	1	8	63	0.36	0.702	(AA.GA.GG)	
rs4968210	AA	GA	GG				
average	79.6	75.49	92.32	1 150	0.22		
n	12	32	28	1.159	0.32	(AA.GA.GG)	
rs6608	CC	СТ	TT				
average	78.11	104.34	59.63	2 0 2 1	0.120		
n	57	14	1	2.031	0.139	(CC.CT.TT)	

Supplementary Table S3. Average values of APRIL MFI in CD19⁺ CLL cells in relation to *APRIL* SNP genotypes.

*The ANOVA test with different (homogeneous) groups identified based on Fisher's LSD *post hoc* test was applied.

<i>APRIL</i> SNP % CD19 ⁺ APRIL ⁺ CLL cells	(Genotyj	pe	F-test	p-value	LSD*
% CD19 AFKIL CLL cens						
rs3803800	AA	GA	GG			
average	4.91	8.14	11.18	0.077	0.11	
n	8	19	45	2.277	0.11	(AA.GA.GG)
rs11552708	AA	GA	GG			
average	14.16	6.52	9.79	0 =0	0 = (0	
n	1	8	63	0.58	0.562	(AA.GA.GG)
rs4968210	AA	GA	GG			
average	12.07	12.29	6.17	2 002	0.0051	
n	12	32	28	3.802	0.0271	GG (AA.GA)
rs6608	CC	СТ	TT			
average	10.08	6.9	14.16	0 774	0.465	
n	57	14	1	0.774	0.465	(CC.CT.TT)


Supplementary Table S4. Average percentage of APRIL⁺ CD19⁺ CLL cells according to *APRIL* SNP genotypes.

n 5/ 14 1 *The ANOVA test with different (homogeneous) groups identified based on Fisher's LSD *post hoc* test was applied.

APRIL SNP sAPRIL level [ng/ml]	(Genotyp	e	F-test	p-value	LSD	
rs3803800	AA	GA	GG				
average	31.80	25.69	29.84	0.000	0.400		
n	13	43	66	0.699	0.499	(AA.GA.GG)	
rs11552708	AA	GA	GG				
average	-	23.28	29.09	0.86	0.254	(GA.GG)	
n	0	11	111	0.86	0.354		
rs4968210	AA	GA	GG				
average	32.47	29.5	25.27	0.021	0.401		
n	20	62	40	0.921	0.401	(AA.GA.GG)	
rs6608	CC	CT	TT				
average	29.56	25.5	14.1	1.057	0.251	(CC.CT.TT)	
n	99	21	2	1.056	0.351		

Supplementary Table S5. Average levels of plasma sAPRIL according to APRIL SNP genotypes.

*The ANOVA test with different (homogeneous) groups identified based on Fisher's LSD *post hoc* test was applied.

Supplementary Figure S1. Levels of sAPRIL in groups of CLL patients according to the Rai stage

Box-and-whiskers plots in standard manner with expected value as central points, 1st and 3rd quartiles and minmax values. Average levels of sAPRIL in groups of patients divided according to Rai stage (0, 1, 2, 3, 4) are 31.33, 25.84, 28.3, 29.06, 27.02 ng/ml, respectively. Figure shows average levels of sAPRIL as well as 1st and 3rd quartiles with min and max levels in each group of Rai stage. There is no relationship between Rai stage and sAPRIL level.

Box-Cox transformation		rs380380	00G>A						
$\lambda = -0.096$	AA	GA	GG						
n	16	68	104						
Mean	0.616	0.304	0.130						
Standard deviation	0.417	0.72	0.803						
Variance	$\chi^2_{df=3} = 6.087; p = 0.04767$ (Fligner-Killeen tes								
homogeneity	$\chi_{df=3} = 0.067, p = 0.04707$ (Figner-Killeen								
	ANOVA	table							
0 (111)	Degrees	Sum	Mean	F-test					
Source of variability	of freedom	of squares	of squares	p-value					
Rai stage (linear contrast)	1	2.385	2.385	F=4.247					
Error	186	104.45	0.562	p=0.0178*					

Supplementary Table S6. ANOVA table with linear contrast for IgA levels [g/l] in CLL patients according to rs3803800G>A genotype.

*F-distribution and p-value estimated numerically based on 10000 bootstrap samples.

Please note, that ANOVA was performed on data transformed with Box-Cox transformation (λ = -0.096). There is minor heterogeneity of variances between groups and correlation between means and SD, so the distribution of the F statistic and p-value were estimated with bootstrap method.

Box-Cox transformation		Rai st	age							
$\lambda = 0.146$	0	1	2	3-4						
п	50	43	40	13						
Mean	2.54	2.73	2.88	3.06						
Standard deviation	1.82	2.08	2.03	2.59						
Variance	$\chi^2_{df=3} = 4.384; p = 0.223$ (Fligner-Killeen test)									
homogeneity	$\chi_{df=3} - \tau.50\tau, p = 0.225$ (Figher-Kineen test)									
	ANOVA	table								
Source of variability	Degrees	Sum	Mean	F-test						
Source of variability	of freedom	of squares	of squares	p-value						
Rai stage (linear contrast)	1	4.12	4.12	F=1.0116						
Error	144	586.16	4.07	p=0.3162						

Supplementary Table S7. ANOVA table with linear contrast for CD19⁺TACI⁺ percentage according to Rai stage.

Please note, that ANOVA was performed on data transformed with Box-Cox transformation ($\lambda = 0.146$). The average levels of CD19⁺TACI⁺ percentage of leukemic cells in groups of patients with Rai stage 0, 1, 2, and 3-4 are 8.7, 10.0, 11.1 and 12.5%, respectively. Pearson's correlation coefficient between these averages and Rai scores 0, 1, 2, 3 is $r_{altering} = 0.998$. It means that there is a strong linear relationship between Rai stage and expected percentage value of CD19⁺TACI⁺ cells, but this coefficient ignores a huge variability of (%) CD19⁺TACI⁺ cells within groups with particular Rai score. When this additional within-group variation is incorporated, the effect size correlation between Rai stage and (%) of CD19⁺TACI⁺ cells is $r_{effect size} = 0.084$. This within-group variability is a reason why mean of squares for the linear contrast in ANOVA is practically the same as mean of squares for error, thus F1:144=1.0116; p=0.3162.

Supplementary Data 8. Prediction of functional effects for: TNFSF13 rs3803800G>A, rs4968210G>A and TNFRSF13B rs4985726C>G and rs11078355A>G.

Since elucidating the function of risk variants and variants associated with phenotypic features is an important step towards a better understanding of the biological processes involved in disease development and outcomes, we used publicly available sources, described below to examine a potential functional relevance of rs3803800G>A, rs4968210G>A, rs4985726C>G, and rs11078355A>G genetic variants.

rs3803800G>A, a missense variant of *TNFSF13* (Ser96Asn, exon 2) and *TNFSF12-TNFSF13* (Ser176Asn, exon 7) has been predicted to be a benign variant by PolyPhen2 (benign: 0.036) and as a tolerated substitution by SIFT (score:0.597, median: 2.93). According to HaploReg tool (v4.1) [1,2] this element is conserved and does not exist in LD with other SNPs (Supplementary Figure S2A).

Of note, *TNFSF13* is located in close proximity to the *TNFSF12* gene for another member of the *TNFSF*, namely the TNF-like weak inducer of apoptosis (TWEAK, TNFSF12). The adjacent localisation and the same transcriptional direction of these two genes enables the production of mRNA molecule (*TNFSF12-TNFSF13*) and protein (TWE-PRIL) consisted of the cytoplasmic/transmembrane and stalk domains of TWEAK and receptor binding domains of APRIL due to and intergenic splicing event.

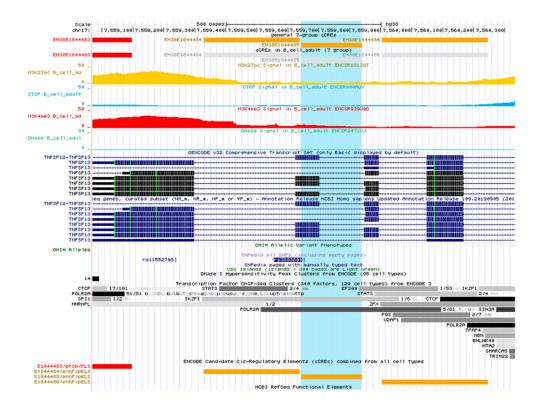
Given the data provided by Bojarska-Junak et al. [3] showed a higher expression of APRIL mRNA and intracellular APRIL in peripheral blood (PB) CD19⁺ leukemic cells than in PB CD19⁺ cells isolated from the control group, we checked if rs3803800 localizes to any regulatory region by applying the ENCODE dataset [4-5]. One matching candidate is the Cis Regulatory Element (cCRE) accession number EH38E1844485 (hg38), which was shown for rs3803800G>A with a proximal enhancer like signature (Supplementary Figure S2B,C, respectively). This cCRE was associated with *TNFSF13* expression and according to ENCODE the IKZF1 transcription factor may bind within this cCRE, which was observed for GM12878 cell line. These data suggest that rs3803800 surrounded by regulatory elements and TF binding sites (hg38). We have also performed an additional examination with application of GTEx [6] multi-tissue eQTLs analysis to see if this variant affect expression in other cells and tissues (Supplementary Figure S2D). The rs3803800 appeared to be significantly associated with *TNFSF13* expression in many tissues (Meta-Analysis RE2: p-value=5.2x10⁻⁵⁵). This analysis showed that the minor allele A of rs3803800 (reference allele in GTEx) is in the majority of tissues associated with higher *TNFSF13* expression.

rs4968210G>A variant constitutes G to A substitution in intron 5 of *TNFSF12-TNFSF13* transcript as well as of *TNFSF12* transcript. As described earlier, we observed that A allele is associated with a higher average percentage of CD19⁺APRIL⁺ CLL cells. Taking this into consideration we employed ENCODE [4-5] to check if this variant or any variant in LD with it (Supplementary Figure S3a) [1-2] localize to regulatory elements. According to ENCODE, rs4968210 variant does not overlap any cCRE, but is located 981 bp from cCRE EH38E1844474 (hg38) which is predicted to have a distal enhancer like signature inter alia in B cells and GM12878 (Supplementary Figure S3B and 3C) cell line and is associated with *TNFSF12-TNFSF13* mRNA expression. Additionally, another SNP in LD with rs4968210 (Supplementary Figure S3A) [1-2] namely rs12942590 is located within 221 bp distance of this cCRE (Supplementary Figure S3B and C). Accordingly, the transcription factors important for B cell biology such as EBF1, PAX5, SPI1, IKZF1, IKZF2, and BHLHE40 were shown to bind in this region (Supplementary Figure S3B and 3C). The ENCODE data suggest that the impact of rs4968210 observed by us on phenotype of CD19⁺ B cells in relation to APRIL may be associated with the fact that rs4968210 and rs12942590 are located near potential regulatory element associated with B cells biology and *TNFSF12-TNFSF13* expression. To further evaluate the association between rs4968210 and *TNFSF12-TNFSF13* expression we performed an additional analysis with application of GTEx multi-tissue eQTLs analysis to see if this variant affect expression in other cells and tissues (Supplementary Figure S3D). The rs4968210 turned out to be significantly associated with *TNFSF12* expression in many types of tissues (Meta -Analysis RE2: p-value=1.2x10⁻⁹⁴). This analysis indicates that the rs4968210G allele (reference allele in GTEx) is associated with higher *TNFSF12* (*TWEAK*) expression. in the majority of tissues for that the data were available. However, in EBV-transformed lymphocytes an opposite effect can be observed, unfortunately this association was not significant. This is in line with our observation that patients with rs4968210GA and rs4968210AA genotypes had higher average percentage of CD19⁺APRIL⁺ CLL cells. The rs4968210 was also associated with *TNFSF13* eQTL expression in multiple tissues (Meta -Analysis RE2: p-value=1.9x10⁻¹¹). The result of this analysis suggests that rs4968210 may be associated with allele specific expression which seems to be tissue specific (Supplementary Figure S3E).

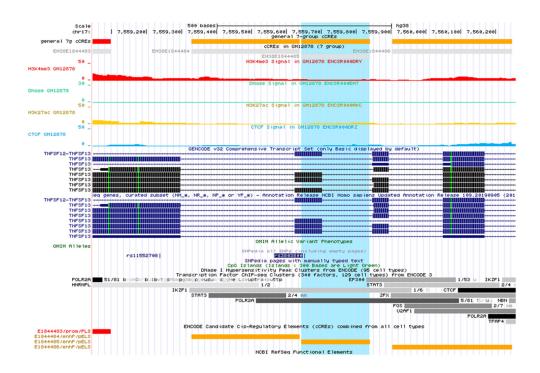
The Supplementary Figure S3A presents SNPs in LD with rs4968210 and Figure S3B,C present 4968210 and rs12942590 surrounded by regulatory elements and TF binding sites (hg38) in PB B cells as well as in GM12878 cell line, respectively.

rs4985726C>G variant is located in intron 1 of TNFRSF13B gene. According to HaploReg tool (v4.1) [1-2] this variant exists in LD with 10 intronic SNPs of TNFRSF13B and one missense rs34562254G>A (Pro251Leu) variant of TNFRSF13B (Supplementary Figure S4A). The rs34562254G>A (Pro251Leu) variant was predicted to be a possibly damaging variant by PolyPhen2 (Exome Variant server: 0.728; Ensembl: 0.476). Rs4985726C>G did not overlap with any cCRE both in PB B cells as well as in GM12878 cell line (Supplementary Figure S4B and S4C, respectively). Accordingly, we did not observe association between this variant and TACI expression in PB CLL cells. Similarly, analysis with GTEx portal [6] did not reveal significant eQTLs associated with rs4985726C>G. However, ENCODE [4-5] analysis for SNPs in LD with rs4985726 revealed data which may provide some potential explanation for the association of rs4985726 with the susceptibility to CLL risk observed by us. One of such SNPs, namely, rs57382045 did not overlap with any cCRE, however it is located 299 bp from EH38E1849614 cCRE (Supplementary Figure S4D,E). This cCRE was predicted to have distal enhancer-like signature in B cells with many TFs shown to bind in this region among others IKZF1 and IKZF2 (Supplementary Figure S4D). What is interesting, EH38E1849614 cCRE seems to be inactive (low DNase) in GM12878 cell line (Supplementary Figure S4E). The Supplementary Figure 4A presents SNPs in LD with rs4985726, Supplementary Figures S4B-E present rs4985726 and rs57382045, chromatin marks in B cells, and GM12878 cell line (hg38).

rs11078355A>G is a synonymous variant (exon 5, Ser277Ser) of the *TNFRSF13B* gene. According to HaploReg tool (v4.1) [1-2] this variant exists in LD with five SNPs (Supplementary Figure S6A). Analysis with application of Human Splicing Finder (HSF) [7] showed that this variant may potentially cause alternation of splicing, by affecting the binding site for 9G8 (also known as SRSF7) splicing factor (Supplementary Figure S5A). Additionally, our studies revealed an association between genotypes of rs11078355A>G and expression of TACI receptor on CD19+TACI+ leukemic cells. Given that, we checked if rs11078355 and/or any variant in LD with it localize to any cCREs with possible impact on B cell biology. We did not find such cCREs (Supplementary Figure S6B,C). Application of GTEx portal [6] did not reveal significant eQTLs and sQTLs for rs11078355A>G


associated with *TNFRSF13B* mRNA levels. The Supplementary Figure S6 displays rs11078355 and the surrounding *TNFRSF13B* gene region as well as SNPs in LD with rs11078355.

S13 of S31


A

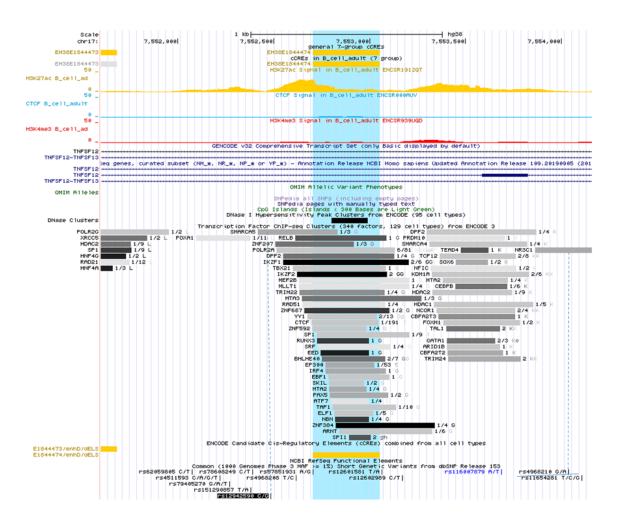
Q	Jery S	SNP:	rs38	03	3800 and	var	riar	its v	with	r ² >	= 0.	8										
cl	ir pos (hg3	8)	LD L (r*) ((0	variant	Ref	Alt	AFR	AMR freq	ASM	EUR freq	SiPhy	Promoter histone marks	Enhancer histone marks	DNAse	Proteins bound	Motifs changed	NHGRIEBI GWAS hits	GRASP QTL hits	Selected eQTL hits	GENCODE genes	dbSNP func annot
17	7556	9652	1 1	1	193803800	A	G	29	0.70	0.67	7 0.78		11 tissues	17 tissues	8 tissues		ERalpha- a,MZF1::1-4	4 hits	10 hits	4 hits	TNFSF13	missense

B

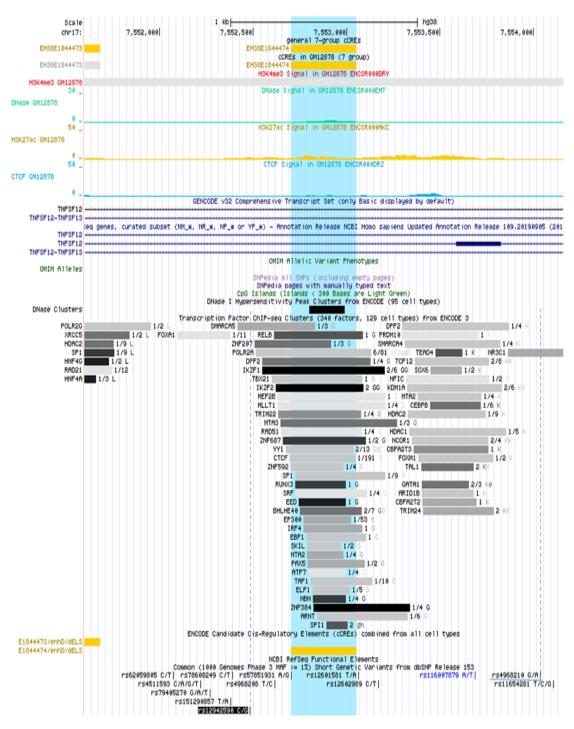
С

D

					Single-tissue e	ITO
Tissue	Samples	NES	p-value	m-value	NES (with 959	
Esophagus - Mucosa	497	0.0438	0.2	0.00		+
Liver	208	0.0294	0.7	0.464		
Spleen	227	0.0215	0.7	0.311	_	-
Small Intestine - Terminal Ileum	174	0.0187	0.8	0.502		-
Ovary	167	0.0181	0.8	0.619		-
Minor Salivary Gland	144	0.0125	0.8	0.317	_	_
Cells - EBV-transformed lymphocytes	147	-0.00538	1	0.661		-
Colon - Sigmoid	318	-0.0109	0.8	0.211	_	
Adrenal Gland	233	-0.0152	0.8	0.418		
Cells - Cultured fibroblasts	483	-0.0248	0.4	0.0980	-	
Esophagus - Muscularis	465	-0.0258	0.5	0.219	_	
Adipose - Visceral (Omentum)	469	-0.0279	0.5	0.347	_	
Breast - Mammary Tissue	396	-0.0564	0.2	0.857		
Colon - Transverse	368	-0.0579	0.08	0.849		
Artery - Aorta	387	-0.0585	0.1	0.799		
Stomach	324	-0.0670	0.1	0.882		<u> </u>
Whole Blood	670	-0.0675	9.5e-4	0.961	-	- I
Brain - Spinal cord (cervical c-1)	126	-0.0697	0.3	0.771		
Artery - Coronary	213	-0.0705	0.2	0.906		
Pancreas	305	-0.0854	0.1	0.950		-
Skin - Not Sun Exposed (Suprapubic)	517	-0.0873	0.009	0.970		-
Muscle - Skeletal	706	-0.0892	0.02	0.970	_	-
Artery - Tibial	584	-0.0956	0.008	0.986		-
Brain - Substantia nigra	114	-0.09\$3	0.2	0.854		
Thyroid	574	-0.103	0.02	0.978		-
Pituitary	237	-0.104	0.05	0.979		-
Heart - Atrial Appendage	372	-0.105	0.01	0.998		-
Kidney - Cortex	73	-0.106	0.4	0.851		
Lung	515	-0.108	1.2e-4	1.00		•
Brain - Cerebellum	209	-0.109	0.03	0.954		_
Testis	322	-0.110	0.02	0.979		-
Skin - Sun Exposed (Lower leg)	605	-0.110	1.2e-3	1.00	_	-
Esophagus - Gastroesophageal Junction	330	-0.112	0.01	0.975		-
Nerve - Tibial	532	-0.115	7.4e-4	1.00		-
Adipose - Subcutaneous	581	-0.123	3.4e-5	1.00		
Heart - Left Ventricle	386	-0.126	0.006	1.00		-
Brain - Cerebellar Hemisphere	175	-0.130	0.04	0.953		_
Brain - Hippocampus	165	-0.150	0.007	0.980		-
Brain - Putamen (basal ganglia)	170	-0.157	8.3e-5	1.00		
Brain - Nucleus accumbens (basal ganglia)	202	-0.159	7.6e-5	1.00		
Brain - Frontal Cortex (BA9)	175	-0.167	2.6e-5	1.00		
Brain - Hypothalamus	170	-0.184	2.1e-3	0.991		
Brain - Anterior cingulate cortex (BA24)	147	-0.188	5.7e-5	1.00		
Brain - Cortex	205	-0.203	2.5e-8	1.00		
Vagina	141	-0.205	0.06	0.917		-
Prostate	221	-0.217	1.7e-3	0.984		
Brain - Caudate (basal ganglia)	194	-0.220	7.8e-7	1.00		
Uterus	129	-0.246	0.03	0.946	-	-
Brain - Amygdala	129	-0.263	1.2e-4	0.998		


Supplementary Figure S2. In silico analysis - rs3803800 of TNFSF13.

(A) The result of analysis performed with application of HaploReg v4.1 tool (https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php) (screen shot) [1-2] (B) Location of rs3803800 (highlighted) of TNFSF13 gene in relation to data from ENCODE project showing potential regulatory elementbinding sites upstream and downstream of rs3803800 in B cells and GM12878 cell lines (C). Figures were downloaded from the UCSC genome browser (http://genome.ucsc.edu) [8-10. A view of the region surrounding the rs3803800 includes also the representation of the ChIP-seq data from the ENCODE project, representing transcription factors (TFs) binding sites (black boxes denote the sites with stronger evidence for TFs binding in that region) (D) GTEx multi-tissue eQTLs analysis of association between rs3803800 and TNFSF13 expression (Meta-Analysis RE2: p-value=5.2x10⁻⁵⁵).


A Query SNP: rs4968210 and variants with r² >= 0.8

chi	pos (hg38)	LD (**)		variant	Ref	AR	AFR A	IR /	ASN EUR SIPHY	Promoter histone marks	Enhancer histone marks	DNAse	Proteins bound	Motifs changed	NHGRIEEK GWAS hits	GRASP QTL NITS	Selected eQTL hits	GENCODE genes	dbSNP func annot
17	7538942	0.8	0.95	rs4958216	G	٨	0.02 0	33 0	0.27 0.40		5 tissues	BRNUNG	CFOS	LBP-1,LBP-9			21 hits	1.7kb 5' of Y_RNA	
17	7541685	0.82	0.97	114958221	G	A	0.12 0	33 0	27 0.40					9 altered motifs			19 hits	4.5kb 5" of Y_RNA	
17	7542075	0.87	0.95	ra148852655	٨	20- mer	0.25 0	47 0	0.47 0.42					111			16 hits	4.9kb 5' of Y_RNA	
17	7552484	0.88	1	(112942590	С	G	0.02 0	32 0	28 0.40		5 tissues			4 altered motifs			22 hits	TNFSF12	intronic
17	7554035	1	1	114958210	G	A	0.45 0	51 0	0.46 0.43	ELD	8 tissues	CRVX	GR	CCNT2,HP1-site- factor		5 hits	20 hits	TNFSF12	intronic
17	7554376	0.85	0.99	ca11871455	С	т	0.14 0	33 0	28 0.39		BLD			E2F,Mat,SREBP			20 hits	TNFSF12	intronic
17	7555265	0.83	-0.99	rs12937543	A	т	0.23 0	45 0	0.41 0.53		BLD, SKIN					3 hits	14 hits	TNFSF12	intronic
17	7557368	0.87	0.99	rs1128953	G	Α	0.02 0	32 0	0.28 0.40	5 bissues	17 bissues	8 tissues	RAD21	SREEP		1 hit	23 hits	TNFSF12	3-UTR

В

С

D

					Allele G Allele A
Tissue					Single-tissue eQTL
	Samples	NES	p-value	m-value	NES (with 95% CI)
Liver	208	0.127	0.04	0.0130	
Kidney - Cortex	73	0.0664	0.5	0.240	
 Cells - EBV-transformed lymphocytes 	147	0.0204	0.8	0.345	
 Muscle - Skeletal 	706	0.0112	0.7	0.00600	
 Artery - Coronary 	213	-0.000239	1	0.0980	
Minor Salivary Gland	144	-0.00655	0.9	0.325	
 Brain - Cerebellar Hemisphere 	175	-0.00672	0.9	0.159	
Pancreas	305	-0.007\$\$	0.8	0.100	
Pituitary	237	-0.0120	0.6	0.00	
Testis	322	-0.0186	0.4	0.0330	
 Thyroid 	574	-0.0223	0.3	0.00	
Artery - Aorta	387	-0.0269	0.4	0.102	
Stomach	324	-0.0272	0.3	0.0590	
 Ovary 	167	-0.0308	0.5	0.399	
 Small Intestine - Terminal Ileum 	174	-0.0311	0.2	0.0740	
Colon - Transverse	368	-0.0342	0.04	0.00700	
 Brain - Cerebellum 	209	-0.0402	0.3	0.488	
 Spleen 	227	-0.0436	0.3	0.502	
 Lung 	515	-0.0445	0.04	0.401	
 Brain - Caudate (basal ganglia) 	194	-0.0449	0.1	0.554	
 Vagina 	141	-0.0461	0.2	0.628	
 Brain - Nucleus accumbens (basal ganglia) 	202	-0.0480	0.1	0.551	
 Brain - Spinal cord (cervical c-1) 	126	-0.0500	0.4	0.620	
 Heart - Left Ventricle 	386	-0.0527	0.02	0.732	
 Heart - Atrial Appendage 	372	-0.0547	0.02	0.784	
 Brain - Cortex 	205	-0.0564	0.1	0.763	
 Brain - Substantia nigra 	114	-0.0636	0.2	0.698	
 Esophagus - Mucosa 	497	-0.0692	9.1e-5	1.00	
Prostate	221	-0.0697	0.01	0.937	
Whole Blood	670	-0.0708	0.007	0.979	
Adrenal Gland Determine (head an attack)	233	-0.0711	0.04	0.892	
 Brain - Putamen (basal ganglia) 	170	-0.0724	0.03	0.967	
Skin - Sun Exposed (Lower leg)	605	-0.0777	5.6e-6	1.00	—
Breast - Mammary Tissue	396	-0.0823	2.0e-4	1.00	
Skin - Not Sun Exposed (Suprapubic)	517	-0.0896	4.2e-6	1.00	—
 Nerve - Tibial Brain - Hypothalamus 	532 170	-0.0936	1.8e-7 0.03	1.00 0.949	
	483	-0.100	2.6e-5	1.00	
 Cells - Cultured fibroblasts Artery - Tibial 	584	-0.100	2.0e-5 1.5e-7	1.00	
Brain - Frontal Cortex (BA9)	175	-0.115	1.8e-3	0.985	
Adipose - Visceral (Omentum)	469	-0.122	3.8e-9	1.00	
Adipose - Subcutaneous	581	-0.134	7.5e-11	1.00	
Brain - Hippocampus Basin - Antonion sin milate conten (BA24)	165	-0.147	1.3e-4	1.00	
 Brain - Anterior cingulate cortex (BA24) Uterror 	147	-0.151	1.2e-3 1.7e-3	1.00	
 Uterus Colon - Sigmoid 	318	-0.182	1.7e-3 8.7e-11	1.00	
 Coton - Sigmoid Esophagus - Gastroesophageal Junction 	330	-0.183	4.1e-9	1.00	
 Esophagus - Gastroesophageal Junction Brain - Amygdala 	129	-0.198	4.1e-9 1.2e-3	1.00	
 Brain - Amygdala Esophagus - Muscularis 	465	-0.213	1.2e-3 5.9e-22	1.00	
- www.magus - returning		-0.212	2.70-22	1.00	

-0.3 -0.2 -0.1 -0.0 0.1 0.2 NES

ы.
L.

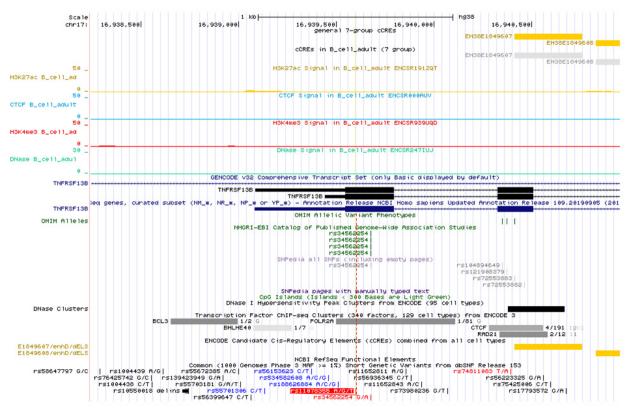
				Allele	G Allele A
Tissue	Samples	NES	p-value	m-value	Single-tissue eQTL NES (with 95% CI)
Kidney - Cortex	73	0.101	0.4	0.0670	
Brain - Spinal cord (cervical c-1)	126	0.0668	0.3	0.0330	
Artery - Coronary	213	0.0645	0.1	0.00	
Heart - Atrial Appendage	372	0.0590	0.08	0.00	
Colon - Transverse	368	0.0444	0.1	0.00	+
Brain - Cerebellar Hemisphere	175	0.0421	0.4	0.00700	-+
Artery - Aorta	387	0.0395	0.2	0.00	+
Stomach	324	0.0370	0.3	0.00	+
Brain - Substantia nigra	114	0.0346	0.6	0.0140	
Brain - Hippocampus	165	0.0342	0.5	0.00900	-+
Brain - Hypothalamus	170	0.0314	0.5	0.00	
Thyroid	574	0.0266	0.4	0.00	
Artery - Tibial	584	0.0202	0.5	0.00	
Adipose - Visceral (Omentum)	469	0.0149	0.6	0.00	
Pancreas	305	0.0145	0.7	0.00500	
Spleen	227	0.0105	0.8	0.0280	
Nerve - Tibial	532	0.00716	0.8	0.00	
Brain - Nucleus accumbens (basal ganglia)	202	0.00709	0.8	0.00100	
Whole Blood	670	0.00298	0.9	0.00	
Lung	515	0.00232	0.9	0.00	
Small Intestine - Terminal Ileum	174	0.00147	1	0.0110	
Brain - Caudate (basal ganglia)	194	-0.000605	1	0.00	<u>+</u>
Minor Salivary Gland	144	-0.00413	0.9	0.0320	
Esophagus - Mucosa	497	-0.00444	0.9	0.00300	
Adrenal Gland	233	-0.00737	0.9	0.00300	
Colon - Sigmoid	318	-0.00843	0.8	0.00	
Brain - Cerebellum	209	-0.00993	0.8	0.0190	
Ovary	167	-0.0103	0.9	0.0530	
Pituitary	237	-0.0273	0.5	0.0150	
Cells - EBV-transformed lymphocytes	147	-0.0315	0.7	0.118	
Esophagus - Gastroesophageal Junction	330	-0.0330	0.4	0.0560	
Esophagus - Muscularis	465	-0.0345	0.2	0.0140	
Muscle - Skeletal	706	-0.0365	0.3	0.0240	
Brain - Frontal Cortex (BA9)	175	-0.0384	0.2	0.0460	
Brain - Putamen (basal ganglia)	170	-0.0385	0.3	0.0260	— <mark>—</mark> —
Skin - Not Sun Exposed (Suprapubic)	517	-0.0403	0.1	0.0570	
Brain - Amygdala	129	-0.0459	0.5	0.150	
Brain - Anterior cingulate cortex (BA24)	147	-0.0464	0.3	0.0570	
Brain - Cortex	205	-0.0542	0.1	0.127	
Testis	322	-0.0633	0.1	0.180	
lestis Heart - Left Ventricle	322	-0.0633	0.09	0.180	
Liver	208	-0.0746	0.3	0.174	
Breast - Mammary Tissue	396	-0.0750	0.04	0.421	
Prostate	221	-0.0758	0.2	0.215	
Vagina	141	-0.0762	0.4	0.122	
Adipose - Subcutaneous	581	-0.106	1.1e-5	0.987	
Skin - Sun Exposed (Lower leg)	605	-0.119	2.4e-5	1.00	
Cells - Cultured fibroblasts	483	-0.154	6.0e-10	1.00	
Uterus	129	-0.169	0.04	0.473 -	
				-0	3 -0.2 -0.1 -0.0 0.1 0.2

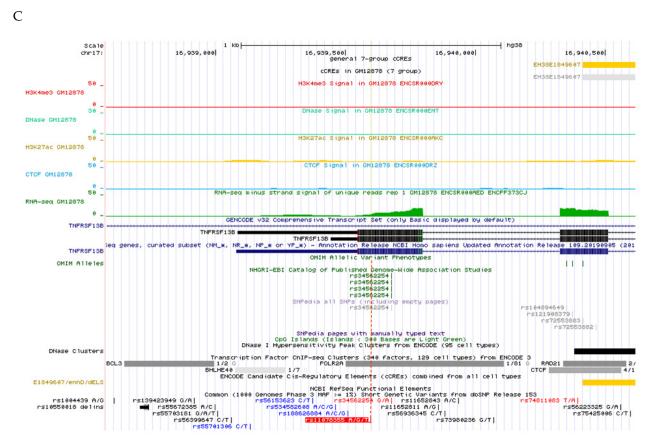
Supplementary Figure S3. In silico analysis - rs4968210 of TNFSF13.

(A) The result of analysis performed with application of HaploReg v4.1 tool (screen shot) [1-2]. (B) Location of rs4968210 (underlined) and rs12942590 (highlighted) (LD with rs4968210) of *TNFSF13* gene in relation to data from ENCODE project showing potential regulatory element-binding in close proximity to rs4968210 in B cells and (C) in GM12878 cell line. A view of the region surrounding the rs4968210 and rs12942590 includes also the representation of the ChIP-seq data from the ENCODE project, representing transcription factors (TFs) binding sites (black boxes denote the sites with stronger evidence for TFs binding in that region). Figures were downloaded from the UCSC genome browser (http://genome.ucsc.edu) [8-10] (D) GTEx multi-tissue eQTLs analysis of association between rs4968210 and TNFSF12 expression (Meta-Analysis RE2: p-value=1.2x10⁻⁹⁴) (E)

GTEx multi-tissue eQTLs analysis of association between rs4968210 and TNFSF13 expression (**Meta -Analysis RE2: p-value=1.9x10**⁻¹¹).

lequences							
ефенсе							
leference seque	CC You analyze y	your own sequence.					
1 TCCAGCACAA GTG		ACACACAA TOCCI	ARGOCC ACTOTOTOGG	ATGTGTGGGC AAG	GCTGCAG GAG	TOTODIC CIGOTOT	GGC ACCCCACCT
lutant sequence	Substitution et positi	ion-411 (ar-G)					
		ACACACAA TOCC	AAGGCC OCTOTOTOGGG	ATGTGTGGGC AND	CTGCAG GA	TOTOTO CTOOTOT	GGC ACCCCACCT
1 TCCAGCACAA GTO							
e sequences analyzed	d in HSF are un	idenlined.					
terpreted Data							
			on position and context. ing table show results of	donor spice sites. E	SE and ESS tha	t could be affected by	the mutation
						-	
Predicted signal	Pre	diction algorithm		cDNA Position		Inter	pretation
ESE Site Broken	1 - H	ISF Matrices - 9G8	CAAG	1	10	Alteration of a	n exonic ESE site.
ESE Site Broken	2 - E	SE-Finder - SRp40		38 40 42 44 48	2	Potential alte	wation of splicing.
					-		
law Data Tatalos							
Potential splice site	Potenti	ial Branch Points	Enhancer motifs	Silencer motifs	Other soli	cing motifs	
			Entrance into the	aneneer mount	Conner open	and a mount	
				· · · · · · · · · · · · · · · · · · ·			
* HSF Matrices					<u> </u>		
• HSF Matrices Sequence Position	n cDNA Pos	sition Splice site	e type Motif	New splice site	Wild Type Mu	tant If cryptic sib	
	cDNA Pos	sition Splice sit		New splice site		tant If cryptic sit exon length v 86 -41	
Sequence Position						exon length v	variation (%)
Sequence Position 41						exon length v	variation (%)
Sequence Position 41	41	Dono	e actotetos			exon length v	variation (%)
Sequence Position 41 • MaxGet • ESE Finder matrices	41	Dono	e actotetos			exon length v	variation (%)
Sequence Position 41 • MaxEnt • ESE Finder matrices Threshold values: SF2/ASF: 72	41	Dono	r aCTOTOTOS 5 proteins 1 SRp40: 78.08 SC35	007gtotgg	67.67 66	exon length v	variation (%)
Sequence Position 41 • MaxEst • ESE Finder matrices Threshold values: SF2/ASF: 72 Variation expresses 1	41 In SRp40, SC35 98 SF2/ASF (he difference b	(gM-BRCA1): 70.5' tetween reference a	r aCTGTCTGG 5 prutoines 1 SRp40: 78.08 SC35 nd mutant values. Wild T	GCTgtetgg 75.05 SRp55:73.6 ype value is taken ad	6 reference.	ami exon length v 86 -41	ariation (%) -1.2
Sequence Position 41 • MaxGet • ESE Finder matrices Threshold values: SF2/ASF: 72 Variation expresses 1	41 In SRp40, SC35 98 SF2/ASF (he difference b	Construction of the second sec	r aCTGTCTGG 5 proteins 1 SRp40: 78.08 SC35 nd mutant values. Wild T Reference Motif (value	GCTgtotgg 75.05 SRp55: 73.6 (ype value is taken a: 0-100) Linked SR	6 sreterence.	tt Motif (value 0-100)	Variation (%)
Sequence Position 41 • MaxErt • ESE Finder matrices Threshold values: SF2/ASF: 72 Variation expresses II Sequence Position	41 ter SRp+0, SC35 98 SF2/ASF (he difference b cDNA Position	(gM-BRCA1): 70.5' tetween reference a	r aCTGTCTGG 5 prutoines 1 SRp40: 78.08 SC35 nd mutant values. Wild T	GCTgtotgg 75.05 SRp55: 73.6 (ype value is taken a: 0-100) Linked SR	6 cr. 67 66	ami exon length v 86 -41	ariation (%) -1.2
Sequence Position 41 • MaxGet • ESE Finder matrices Threshold values: SF2/ASF: 72 Variation expresses II Sequence Position 37	41 w SRps0, SC35 98 SF2/ASF he difference b cDNA Position 37 39	(gM-BRCA1): 70.5' etween reference a Linked SR protein SC35	r aCTGTCTGG 5 proteins 1 SRp40: 78.08 SC35 nd mutant values. Wild T Reference Motif (value osccactG (97.11)	0CTgtotgg 75.05 SRp55: 73.8 ype value is taken as 0-100] Linked SR SC35	6 cr. 67 66	t Motif (value 0.100)	Variation (%) -1.2 Variation -2.66 %
Sequence Position 41 • MaxGet • ESE Finder matrices SE2/ASF: 72 Variation expresses th Sequence Position 37 39	41 ter SRp40, SC35 198 SF2/ASF of the difference of cDNA Position 37 39	00M-BRCA1): 70.5 etween reference a Linked SR protein SC35 SRp40	r aCTGTCTGG 5 proteins 1 SRp40: 78.08 SC35 nd mutant values. Wild T Reference Motif (value osccactG (97.11)	0CTgtotgg 75.05 SRp55: 73.8 ype value is taken as 0-100] Linked SR SC35	6 cr. 67 66	t Motif (value 0.100)	Variation (%) -1.2 Variation -2.66 %
Sequence Position 41 • MaxGet • ESE Finder matrices SF2/ASF: 72 Variation expresses II Sequence Position 37 39 • RESOLE ESE herein • Precisico PESE Octa	41 In Step 50, 5035 98 SF2/ASF (be difference b cDNA Position 37 39 1005 1005	00M-BRCA1): 70.5 etween reference a Linked SR protein SC35 SRp40	r aCTGTCTGG 5 proteins 1 SRp40: 78.08 SC35 nd mutant values. Wild T Reference Motif (value osccactG (97.11)	0CTgtotgg 75.05 SRp55: 73.8 ype value is taken as 0-100] Linked SR SC35	6 cr. 67 66	t Motif (value 0.100)	Variation (%) -1.2 Variation -2.66 %
Sequence Position 41 • MaxEnt • ESE Finder matrices Threshold values: SF2/ASF: 72 Variation expresses ti Sequence Position 37 39 • RESOLE ESE hours • Predicted pase Octa • Des from Zhang of a	41 Ser SRps6), 9C35 98 SF2/ASF he difference b cDNA Position 37 39 tors more form Zhan 4	00M-BRCA1): 70.5 etween reference a Linked SR protein SC35 SRp40	r aCTGTCTGG 5 proteins 1 SRp40: 78.08 SC35 nd mutant values. Wild T Reference Motif (value osccactG (97.11)	0CTgtotgg 75.05 SRp55: 73.8 ype value is taken as 0-100] Linked SR SC35	6 cr. 67 66	t Motif (value 0.100)	Variation -2.56 %
Sequence Position 41 • MaxEnt • ESE Finder matrices Threshold values: SF2/ASF-72 Variation expresses to Sequence Position 37 39 • RESCUE ESE horsem • Predicted PESE Octa	41 Ser SRps6), 9C35 98 SF2/ASF he difference b cDNA Position 37 39 tors more form Zhan 4	00M-BRCA1): 70.5 etween reference a Linked SR protein SC35 SRp40	r aCTGTCTGG 5 proteins 1 SRp40: 78.08 SC35 nd mutant values. Wild T Reference Motif (value osccactG (97.11)	0CTgtotgg 75.05 SRp55: 73.8 ype value is taken as 0-100] Linked SR SC35	6 cr. 67 66	t Motif (value 0.100)	Variation -2.56 %
Sequence Position 41 • MaxEx • ESE Finder matrices. Threshold values: SF2/ASF: 72 Variation expresses to Sequence Position 37 39 • RESCLE ESE horam • Predicted RESE Octa • EEs from Zheng et al • ESE motion from HEE Threshold values:	41 In SR040, SC35 SR SF2/ASF (be difference be cDNA Position 37 39 Inters from 22 con 4 Inters from 22 con 4	00M-BRCA1): 70.5 etween reference a Linked SR protein SC35 SRp40	r aCTGTCTGG 5 proteins 1 SRp40: 78.08 SC35 nd mutant values. Wild T Reference Motif (value osccactG (97.11)	0CTgtotgg 75.05 SRp55: 73.8 ype value is taken as 0-100] Linked SR SC35	6 cr. 67 66	t Motif (value 0.100)	Variation (%) -1.2 Variation -2.66 %
Sequence Position 41 • MaxEnt • ESE Finder matrices Threshold values: SF2/ASF: 72 Variation expresses to Sequence Position 37 39 • RESCLE ESE house • RESCLE	41 ter SRpst), SC35 98 SF2/ASF he difference b cDNA Position 37 39 tors tors CDNA Position 37 39 tors CDNA Position 37 39 tors CDNA Position 37 39 tors CDNA Position 37 39 tors CDNA Position 37 39 tors CDNA Position 37 39 tors CDNA Position 37 39 tors CDNA Position 37 39 tors CDNA Position 2000 CDNA Position 2000 CDNA Position 2000 CDNA Position 2000 CDNA Position 37 39 tors CDNA Position 2000 CDNA Position 37 39 tors CDNA Position 2000 CDNA Position 2000 CDNA Position 2000 CDNA Position 2000 CDNA Position 2000 CDNA Position CDNA Position 2000 CDNA Position CDNA Position	Construction of the second sec	r aCTGTCTGG 5 proteins 1 SRp40: 78.08 SC35 nd mutant values. Wild T Reference Motif (value osccactG (97.11)	GCTgtotgg 75.05 SRp55:73.6 (ype value is taken a: 0-100) Linked SR SF2/ASF (gM	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	t Motif (value 0.100)	Variation -2.56 %
Sequence Position 41 • MaxEnt • ESE Finder matrices Threshold values: SF2/ASF: 72 Variation expresses to Sequence Position 37 39 • RESCLE ESE Incom • Produced FISE Occa • EEE from Zhang et al • EEE from Zhang et al • EEE from Zhang et al	41 av SRpst), SC35 98 SF2/ASF he difference b cDNA Position 37 39 con con con con con con con con	(gM-BRCA1): 70.5 etween reference a	r aCTGTCTGG 5 proteins 1 SRp40: 78.08 SC35 nd mutant values. Wild T Reference Motif (value osccarto (97.11) ccartor (82.10)	OCTgtotgg 75.05 SRp55: 73.8 (ype value is taken as 0-100) Linked SR SC35 SF2/ASF (gM	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	t Motif (value 0.100) accostra (94.53) costrar (70.77)	Variation -2.56 %
Sequence Position 41 • MaxEnt • ESE Finder matrices Threshold values: SF2/ASF: 72 Variation expresses to Sequence Position 37 39 • RESCLE ESE Incom • Produced FISE Occa • EEE from Zhang et al • EEE from Zhang et al • EEE from Zhang et al	41 av SRpst), SC35 98 SF2/ASF he difference b cDNA Position 37 39 con con con con con con con con	(gM-BRCA1): 70.5 etween reference a	r aCTGTCTGG	GCTgtotgg 75.05 SRp55: 73.8 ype value is taken as SF2/ASF (gM ype value is taken as e 0-100) Linked ESE	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	t Motif (value 0.100) accostra (94.53) costrar (70.77)	Variation (%) -1.2 Variation -2.66 % -13.8 %

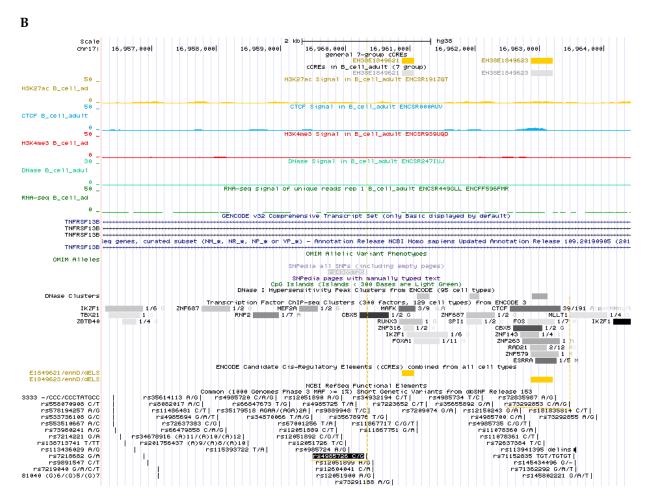

Supplementary Figure S4. Analysis of potential effects of rs11078355 A>G on splicing of *TNFRSF13B* gene. A Human Splicing Finder (HSF version 3.1) [7] prediction showing that allele G of rs11078355 may potentially cause alternation of an exonic ESE site (screen shot).

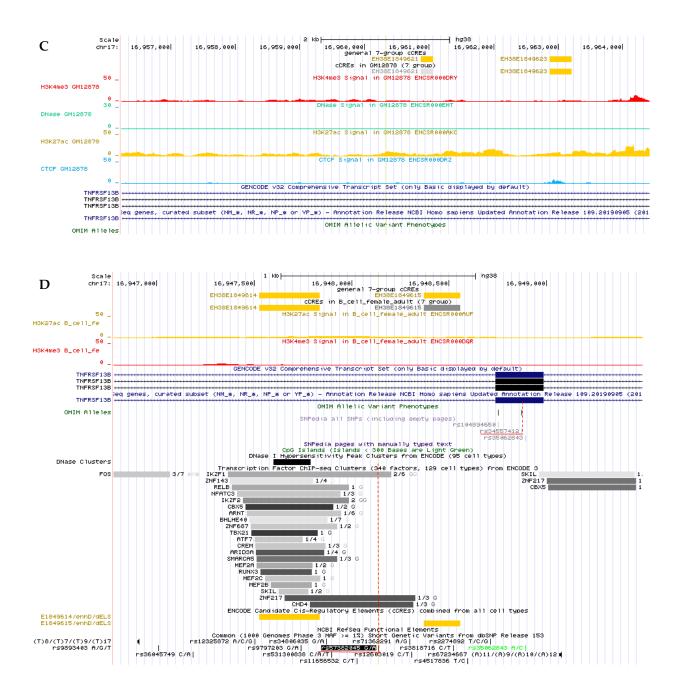

Α	Query	SNP:	rs11	078355	and	variants	with r ²	>= 0.8	
---	-------	------	------	--------	-----	----------	---------------------	--------	--

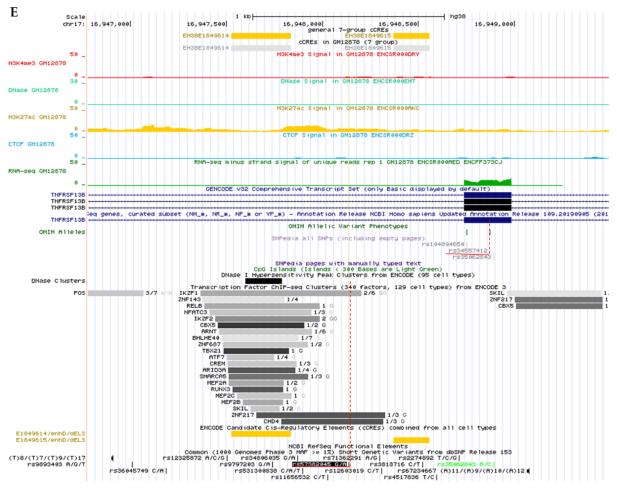
chr		LD (r*)		variant	Ref	Alt	AFR freq	AMR freq	ASN freq	EUR freq	Promoter histone marks	Enhancer histone marks		Proteins bound	Motifs changed	NHGRIEBI GWAS hits	GRASP QTL hits	Selected eQTL hits		dbSNP func annot
17	16935416	0.97	0.99	1555898532	A	G	0.63	0.53	0.79	0.36		ADRL, MUS	4 tissues	FOSL2	8 altered motifs			4 hits	TNFRSF13B	
17	16939598	1	1	rs11078355	A	G	0.60	0.55	0.79	0.37		5 tissues	BLD		6 altered motifs			3 hits	TNFRSF13B	synonymous
17	16942841	0.8	0.99	rs12938061	т	с	0.56	0.56	0.79	0.41		4 tissues	10 tissues		9 altered motifs			4 hits	TNFRSF13B	intronic
17	16942862	0.8	0.99	rs12938073	т	A	0.56	0.56	0.79	0.41		4 tissues	9 tissues		4 altered motifs			4 hits	TNFRSF13B	intronic
17	16942984	0.82	0.99	rs11078357	т	С	0.67	0.56	0.79	0.41		6 tissues	BLD,MUS	POL2	Nko2			3 hits	TNFRSF13B	intronic
17	16943483	0.82	0.99	rs10852841	т	с	0.59	0.55	0.79	0.41					5 altered motifs			3 hits	TNFRSF13B	intronic

В

.




Supplementary Figure S5. *In silico* analysis - rs11078355 of *TNFRSF13B* (**A**) The result of analysis performed with application of HaploReg v4.1 tool (screen shot) [1-2]. Location of rs11078355 of *TNFRSF13B* gene (highlighted) in relation to data from ENCODE project for B cells (**B**) and GM12878 cell line (**D**) showing lack of cCRE in close distance to rs11078355. A view of the region surrounding the rs4968210 and rs12942590 includes also the representation of the ChIP-seq data from the ENCODE project, representing transcription factors (TFs) binding sites (black boxes denote the sites with stronger evidence for TFs binding in that region). Figures were downloaded from the UCSC genome browser (http://genome.ucsc.edu) [8-10].


A

Query SNP: rs4985726 and variants with $r^2 >= 0.8$

ch	r pos (hg38)	LD (r²)	LD (D')	variant	Ref	Alt	AFR freq	AMR freq	ASN E freq f	UR Si req co	iPhy his	stone	Enhancer histone marks	DNAse	Proteins bound	Motifs changed	NHGRI/EBI GWAS hits	GRASP QTL hits	Selected eQTL hits	GENCODE genes	dbSNP func annot
17	16938999	8.0 9	0.94	rs55672385	Α	С	0.11	0.09	0.38 ().11	BL	D	6 tissues	THYM,LNG		4 altered motifs				TNFRSF13B	3
17	16939677	0.84	0.92	rs34562254	G	А	0.12	0.10	0.39 ().10			5 tissues		POL2	7 altered motifs				TNFRSF13B	missense
17	16941853	8 0.89	0.97	<u>rs4792800</u>	A	G	0.12	0.10	0.39 ().11			4 tissues	11 tissues		12 altered motifs	1 hit			TNFRSF13B	intronic
17	16945251	0.89	0.97	<u>rs4500785</u>	С	G	0.18	0.11	0.38 ().11			7 tissues	IPSC	POL2	AP-2,NRSF				TNFRSF13B	intronic
17	16945436	6 0.93	0.97	<u>rs4561508</u>	С	т	0.13	0.10	0.38 ().11			7 tissues			GLI	4 hits			TNFRSF13B	intronic
17	16945825	5 0.93	0.97	rs4273077	Α	G	0.14	0.15	0.47 ().11			8 tissues	20 tissues	CTCF,RAD21	CTCF,Myf,Nkx2	2 hits			TNFRSF13B	intronic
17	16948136	6 0.93	0.97	rs57382045	G	А	0.13	0.10	0.38 ().11			BLD, BRN	BLD		Brachyury, Msx-1				TNFRSF13B	intronic
17	16951166	0.94	0.97	rs74892229	G	А	0.13	0.10	0.38 0).10				BLD		4 altered motifs				TNFRSF13B	intronic
17	16953548	3 0.97	0.99	<u>rs57293260</u>	A	т	0.13	0.10	0.38 ().10			BLD, THYM	5 tissues	CTCF	Arid5a				TNFRSF13B	intronic
17	16953863	8 0.97	0.99	<u>rs57166795</u>	G	A	0.14	0.10	0.38 ().10			BLD, BRN, THYM			7 altered motifs				TNFRSF13B	intronic
17	16960324	1	1	<u>rs4985726</u>	С	G	0.08	0.09	0.38 ().10				BLD			2 hits		1 hit	TNFRSF13B	intronic
17	16963463	3 0.94	0.97	<u>rs73292853</u>	с	G	0.32	0.17	0.47 ().10			BLD, PANC	IPSC		4 altered motifs				TNFRSF13B	intronic

Supplementary Figure S6. *In silico* analysis - rs4985726 of *TNFRSF13B* (**A**) The result of analysis performed with application of HaploReg v4.1 tool (screen shot) [1-2] (**B**, **D**) Location of rs4985726 (highlighted) and rs57382045 (highlighted) (LD with rs4985726) and of *TNFRSF13B* gene in relation to data from ENCODE project for B cells and (**C**, **E**) GM12878 cell line. The dotted lines indicated SNPs in LD with rs4985726. A view of the region surrounding the rs4968210 and rs12942590 includes also the representation of the ChIP-seq data from the ENCODE project, representing transcription factors (TFs) binding sites (black boxes denote the sites with stronger evidence for TFs binding in that region). Figures were downloaded from the UCSC genome browser (http://genome.ucsc.edu) [8-10].

BCMA		Patient	s (N=439)	Controls	(N=477)	OR	CI95%	Patients vs. Controls
TNFRSF17 polymorphisms		Ν	%	Ν	%			
	TT	205	46.70	213	44.70	1*		
rs11570136	TA	185	42.10	204	42.80	0.72	0.68 ;1.24	$\chi^2_{df=2} = 0.61$
2KB Upstream Variant	AA	49	11.20	60	12.60	0.85	0.56 ;1.30	p=0.735
HWE		p=	0.587	p=0.3	3032			
		<i>f</i> =(0.035	<i>f</i> =0.0	046			
		CI95%=	-0.06;0.13	CI95%=-(0.04;0.14			
rs2017662	GG	386	87.90	421	88.30	1*		$\chi^2_{df=2}$ =2.18
Thr159Thr	GA	51	11.60	56	11.70	0.99	0.66; 1.49	p=0.336
	AA	2	0.50	0	0.00	5.45	0.26; 113.94	
HWE		p=().8217	p=0.1	1732			
		<i>f</i> =(0.011	<i>f</i> =-0.	.062			
		CI95%=	=0.07;0.12	CI95%=-().08;-0.05			
rs373496	CC	424	96.60	453	95.00	1*		
Ser81Asn	CT	14	3.20	24	5.00	0.63	0.33 ;1.23	$\chi^2_{df=2}=3.14$
	TT	1	0.20	0	0.00	3.20	0.13 ;78.89	p=0.2210
HWE		p=	0.027	p=0.5730				
		<i>f</i> =-0.11		<i>f</i> =-0.02				
		CI95%=	0.02;0.35	CI95%=-(0.04;0.02			

Supplementary Table S8. Genotype distribution of the *BCMA* (*TNFRSF17*; 16p13.13) polymorphisms in patients and controls.

rs2017662 GA+AA vs. GG (OR=1.03; CI95%=0.69-1.54; p-value=0.8765)

rs373496 CT+TT vs. CC (OR=0.68; CI95%=0.35-1.29; p-value=0.2269)

Rai	0	1	2	3	4	Sum
n	73	67	74	12	20	246
%	29.7	27.2	30.1	4.9	8.1	100%
	Min	Q1	Median	Sn	Q3	Max
IgA [g/l]	0.13	0.8	1.375	0.82	2.192	127
sAPRIL [ng/ml]	0.02	16.8	28.1	15.8	42.75	162.4
APRIL ⁺ CD19 ⁺ [%]	0.79	4.298	8.89	8	19.08	73.74
APRIL ⁺ CD19 ⁺ [MFI]	30.12	53.47	82.82	38	121.2	226.6
TACI ⁺ CD19 ⁺ [%]	0.18	3.043	10.32	10.1	33.09	92.31
TACI +CD19+[MFI]	18.88	28.45	38.35	16.1	58.05	152.8

Supplementary Table S9. Basic statistics of the main variables considered in the paper.

Q1, Q3 – 1^{st} and 3^{rd} quartile

Sn – variability measure

MFI – Mean Fluorescence Intensit

Supplementary Table S10. Primer sequences, annealing temperatures and restriction enzymes used for PCR-RFLP genotyping.

SNP	Forward primer (5'-3')	Reverse primer (5'-3')	Ta	Restriction enzyme
rs4985726	TTCTATTTCTTTTTCTTGTCTAAGTGC	TGGTAGTTCCACACTAAAGGAATG	52°C	DpnII
rs8072293ª	CATCAGGGACAAGAGGCC	CCTGACTGTGGGGGCCAGA	55°C	BslI
rs11078355	AGCCCTGTGAGCACATCC	TCTTTCTCTCTCCCCTCCTCT	52°C	AciI

Ta – annealing temperatures

^a OneTaq Hot Start 2X Master Mix with GC Buffer (New England BioLabs) was used for PCR

SNP	ID of TaqMan SNP Genotyping Assays
rs11552708	C_25630192_20
rs3803800	C_12115389_10
rs4968210	C_26603822_10
rs6608	C_247220_20
rs12051889	C_31002822_20
rs11656106	C_12121510_10

Supplementary Table S11. TaqMan SNP Genotyping Assays used for genotyping with applying the allelic discrimination method.

References

1. Ward, L. D.; Kellis, M., HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. *Nucleic Acids Res* **2012**, *40* (Database issue), D930-4.

2. Ward, L. D.; Kellis, M., HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. *Nucleic Acids Res* **2016**, 44 (D1), D877-81.

3. Bojarska-Junak, A.; Hus, I.; Chocholska, S.; Wasik-Szczepanek, E.; Sieklucka, M.; Dmoszynska, A.; Rolinski, J., BAFF and APRIL expression in B-cell chronic lymphocytic leukemia: correlation with biological and clinical features. *Leuk Res* **2009**, *33* (10), 1319-27.

4. Davis, C. A.; Hitz, B. C.; Sloan, C. A.; Chan, E. T.; Davidson, J. M.; Gabdank, I.; Hilton, J. A.; Jain, K.; Baymuradov, U. K.; Narayanan, A. K.; Onate, K. C.; Graham, K.; Miyasato, S. R.; Dreszer, T. R.; Strattan, J. S.; Jolanki, O.; Tanaka, F. Y.; Cherry, J. M., The Encyclopedia of DNA elements (ENCODE): data portal update. *Nucleic Acids Res* **2018**, *46* (D1), D794-D801.

5. Consortium, E. P., An integrated encyclopedia of DNA elements in the human genome. *Nature* **2012**, *489* (7414), 57-74.

6. Consortium, G. T., The Genotype-Tissue Expression (GTEx) project. Nat Genet 2013, 45 (6), 580-5.

7. Desmet, F. O.; Hamroun, D.; Lalande, M.; Collod-Beroud, G.; Claustres, M.; Beroud, C., Human Splicing Finder: an online bioinformatics tool to predict splicing signals. *Nucleic Acids Res* **2009**, *37* (9), e67.

 Lee, C. M.; Barber, G. P.; Casper, J.; Clawson, H.; Diekhans, M.; Gonzalez, J. N.; Hinrichs, A. S.; Lee, B. T.; Nassar, L. R.; Powell, C. C.; Raney, B. J.; Rosenbloom, K. R.; Schmelter, D.; Speir, M. L.; Zweig, A. S.; Haussler, D.; Haeussler, M.; Kuhn, R. M.; Kent, W. J., UCSC Genome Browser enters 20th year. *Nucleic Acids Res* 2020, *48* (D1), D756-D761.

9. Kent, W. J.; Sugnet, C. W.; Furey, T. S.; Roskin, K. M.; Pringle, T. H.; Zahler, A. M.; Haussler, D., The human genome browser at UCSC. *Genome Res* **2002**, *12* (6), 996-1006.

10. Rosenbloom, K. R.; Sloan, C. A.; Malladi, V. S.; Dreszer, T. R.; Learned, K.; Kirkup, V. M.; Wong, M. C.; Maddren, M.; Fang, R.; Heitner, S. G.; Lee, B. T.; Barber, G. P.; Harte, R. A.; Diekhans, M.; Long, J. C.; Wilder, S. P.; Zweig, A. S.; Karolchik, D.; Kuhn, R. M.; Haussler, D.; Kent, W. J., ENCODE data in the UCSC Genome Browser: year 5 update. *Nucleic Acids Res* **2013**, *41* (Database issue), D56-63.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).