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SUPPLEMENTARY MATERIAL 

THREE-PORE MODEL OF THE CAPILLARY WALL 

 

Fluid filtration from the capillary compartment to the interstitial compartment depends on the imbalance 

between the Starling forces acting across the capillary walls [1]: the hydraulic capillary blood pressure, 

the hydrostatic interstitial pressure and the osmotic (mainly oncotic) pressures exerted by all solutes on 

both sides of the capillary wall [2,3]. In the three-pore model (3PM) the transcapillary filtration needs 

to be defined separately for each type of pore (Ji) as follows: 

     s,pl,sc s,is

i i sc is p,i p,pl,sc p,is s,i s s

p s pl,sc is

c c
J LpS P P RT

F F

  
              

   
   ( 1 ) 

where LpS is the whole-body hydraulic conductivity of capillary walls (assumed constant), αi is the 

fraction of LpS contributed by the i-th type of pore (αLP + αSP + αUP = 1), Psc is the mean hydraulic 

pressure of systemic capillary blood, Pis is the hydrostatic pressure of the interstitial fluid, σp,i and σs,i 

are the Staverman’s reflection coefficients of protein p and solute s at the i-th pore, πp,pl,sc and πp,is are 

the oncotic pressures (colloid osmotic pressures) of protein p (albumin or globulins) in the capillary 

plasma and interstitial fluid, φs is the osmotic activity coefficient of solute s, αs is the Gibbs-Donnan 

coefficient for ion s with charge zs (for simplicity αs=αZs [8], where α is determined from the steady-

state conditions), and RT is a constant (= 19.3 mmHg/mmol/L). 

The total transcapillary fluid filtration is then expressed as: 
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It was assumed that the mean hydraulic pressure of capillary plasma (Psc) is resistant to isolated changes 

in arterial pressure (the auto-regulatory capacity of the capillary bed), whereas 80% of changes in venous 

pressure are transmitted to the capillaries [4]. Psc is hence calculated as: 

 sc sc,0 v sv sv,0P P w (P P )     ( 3 ) 

where Psc,0 is the initial mean capillary pressure calculated from the initial steady-state conditions, wv is 

a parameter (assumed value of 0.8, based on experimental data [4]) and Psv,0 is the assumed initial 

(normal) pressure in the small veins compartment (12 mm Hg [4]). 

The hydrostatic pressure of the interstitial fluid was described as a linear function of the interstitial 

volume [2,5]: 
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where Pis,n is the normal interstitial pressure corresponding to the normal interstitial volume (Vis,n) and 

Cis is the interstitial compliance, which was assumed to be 12% of normal interstitial volume per mm Hg 

[6]. 
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The plasma oncotic pressure (in mm Hg) exerted by albumin (πalb,pl,sc) and globulins (πglob,pl,sc) are 

calculated using the following equations [4] (based on Landis-Pappenheimer equations [7]). 

  2 3

alb,pl,sc sc p,sc p,sc p,sca 2.8c 0.18c 0.012c     ( 5 ) 

  2 3

glob,pl,sc sc p,sc p,sc p,scb 1.1c 0.13c 0.005c     ( 6 ) 

where cp,sc is the total protein concentration in capillary plasma in g/dL, whereas asc and bsc are variable 

albumin and globulins mass fractions of total plasma proteins (asc + bsc = 1).  

Similar equations were used for calculating the oncotic pressure of interstitial albumin and globulins 

based on the total concentration of proteins in the interstitial compartment (cp,is) and the corresponding 

ais and bis fractions (also variable).  

The transcapillary transport of small solutes (except other anions) through the i-th type of pore can be 

described as a sum of diffusive and convective flows using the following equation [4]: 
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where PSs,i is the permeability-surface product for solute s at the i-th type of pore (assumed constant), 

αs is the Gibbs-Donnan coefficient for ion s, cs,pl,sc and cs,is are the concentrations of solute s in the 

capillary plasma and interstitial fluid, Fpl,sc and Fis are variable water fractions of the capillary plasma 

and interstitial fluid, Jw,i is the water flow through i-th pore from capillaries to interstitium (calculated 

as the difference between fluid filtration and the volumetric flow of convective protein leakage), Ss,i is 

the sieving coefficient for solute s at the i-th type of pore and fs,i is defined as follows [8]: 
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where Pes,i is the modified Peclet number describing the relationship between the convective and 

diffusive transport of solute s through i-th type of pore [8] (if diffusion and convection are of opposite 

directions, the below equation takes the negative sign): 
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The sieving coefficient for each solute at the i-th type of pore is calculated as Ss,i = 1-σs,i, where [9]: 
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where λs,i is the ratio of solute and pore radii (λs,i = rs/ri). 
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Analogically, the transport of protein p through each type of pore is using the diffusive-convective 

equation [8,10]: 
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where p denotes albumin or globulins, PSp,i is the permeability-surface product of the lumped capillary 

wall for protein p (assumed constant), Ji is the rate of fluid filtration from the capillaries to the 

interstitium through i-th type of pore, Sp,i is the capillary sieving coefficient of protein p, and fp is defined 

as in the equation (8). 

The transport of other anions (A2-) is calculated to obtain a zero net flow of charge across the capillary 

wall. 

The volumetric flow of proteins from capillary plasma to interstitium through i-th type of pore is 

calculated as: 
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where MWp is the molecular weight of protein p (assumed 69,000 g/mol for albumin and 170,000 g/mol 

for globulins [11,12]) and ρp is the protein density (assumed 1.37 g/cm3 for both albumin and globulins 

[13]). 

The permeability-surface product for solute s and the i-th type of pore is calculated from the following 

equation [9]: 
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where Ds is the free diffusion coefficient of solute s calculated as [9]: 
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where NA is the Avogadro number, rs is the solute radius and ηH2O is water dynamic viscosity at 37 oC 

(=0.0007 Pa·s), 

A0,i is the total cross-sectional area of pores of type i, Ai is the effective pore area available for restricted 

diffusion, 0,i

i
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is the total unrestricted pore area over unit diffusion length calculated as [9]: 
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 - the fraction of total pore area available for restricted diffusion - is calculated as [9]: 
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