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Biological background. In this paper, we have included two case studies for AIoA applications, 

in which we recorded the foraging and group behaviours of black-tailed gulls and streaked 

shearwaters, respectively.  

 

Black-tailed gulls. Foraging is one of the most important behaviours exhibited by animals. 

Foraging behaviour has been intensively studied theoretically since the 1970s1, but is still difficult 

to record in the field for various species (e.g., marine animals). Recently, animal-borne video 

cameras have become a promising candidate for recording the foraging behaviour of wild 

animals2. However, video loggers consume considerable battery power for recording videos, 

which limits their maximum recording time to several hours for birds with a body mass of 500 g3. 

While conventional methods such as continuous video recording might still capture occasional 

shots4, such methods make inefficient use of their resources. In fact, previous studies have failed 

to film the foraging behaviour of black-tailed gulls at sea due to this limited battery life5. 

 

When foraging, animals perform a variety of movements. Given that accelerometers can be used 

to identify and categorize behaviour-specific movements of wild animals6,7, e.g., food capture 

events, an accelerometer (low-cost sensor) can therefore be used to control a video camera 

(high-cost sensor), activating the camera when the target behaviour is detected. In this study, we 

recorded the foraging behaviour of omnivorous gulls, including previously unrecorded behaviour, 

using accelerometer-based AI to detect the gulls as they used specific foraging methods, such as 

surface-dipping and plunging. 

 

Streaked shearwaters. Individual animals are expected to perform ARS in areas where they 

encounter more prey resources8. The patchily distributed prey may create a high degree of 

overlap in ARS zones among individuals, possibly causing group foraging9,10, which may be an 

important strategy that provides benefits to the individuals11. However, this behaviour has been 

poorly documented among marine animals due to the limited battery life of video bio-loggers and 

the impracticality of attaching simpler GPS bio-loggers to all the individual animals that make up 
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the groups. By using GPS-based AI to capture videos of streaked shearwaters during ARS, we 

were able to test whether they forage in flocks during ARS, motivated by the flocks of hundreds to 

thousands of the species that are often observed at sea during their breeding season. 

 

Training datasets. The data used to train the AIoA for the black-tailed gulls was collected in 

2017 from five birds from the colony on Kabushima Island (40°32’19”N, 141°33’27”E; Aomori, 

Japan) using Axy-Trek bio-loggers (TechnoSmArt, Roma, Italy). These Axy-Trek bio-loggers were 

mounted on the animals’ backs when collecting data. The data was labelled to identify periods of 

possible foraging, flying, and stationary behaviour, with the goal of training a classifier that could 

differentiate between foraging and non-foraging behaviours based on acceleration data (see Fig. 

3a for examples of acceleration data from foraging and non-foraging behaviours). Note that since 

no video was available when labelling the training data prior to deploying our bio-loggers, the 

ecologists were only able to label possible foraging events, identified based on dips in the 

acceleration data that correspond to short dives. However, each iteration of our experiments 

using AIoA should provide more ground truth information (i.e., video) to use when labelling, 

making more exact labelling possible in the future. 

 

Along with the black-tailed gulls, we also evaluated our proposed method when used on streaked 

shearwaters from a colony on Awashima Island (38°27'57"N, 139°14'03"E; Niigata, Japan). The 

data used to train our models for the shearwaters came from data collected using Axy-Trek bio-

loggers in 2016 from 31 birds at the Awashima colony. These Axy-Trek bio-loggers were 

mounted on the animals’ backs when collecting data. The shearwater data was labelled to identify 

periods of ARS, transit, and stationary behaviours, with the goal of training a classifier that could 

detect ARS behaviour based on GPS data (see GPS features for details). See Yoda et al. 20125 

and Matsumoto et al. 201712 for general details about the field experiments. 
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Supplementary Fig. 1 Video bio-logger hardware. a Images of one of the video bio-loggers 

used in this study. b A list of the low-cost sensors built into the bio-loggers used in this study.
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Supplementary Fig. 2 Examples of GPS-based features. This track shows GPS data collected 

from a streaked shearwater. Two sections of the track are highlighted, with the grey highlighted 

section capturing a 10-minute window of transit behaviour and the blue highlighted section 

capturing a 10-minute window of ARS behaviour. The two inset boxes list several GPS-based 

features extracted from each of these 10-minute windows, with the letters listed corresponding to 

the letters used in Supplementary Table 1.  
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Supplementary Fig. 3 Results of AIoA-based video control for streaked shearwaters. a 

GPS tracks collected by bio-loggers using the proposed method, with the black markers 

representing videos of target (ARS) behaviour and the grey markers representing videos of non-

target (transit and stationary) behaviour. b GPS tracks collected by bio-loggers using the naive 

method (periodic sampling), with the black markers representing videos of target behaviour and 

the grey markers representing videos of non-target behaviour. c Frames taken from video 
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captured using AIoA of a streaked shearwater performing ARS with other birds present in the 

images. d Frames taken from video captured using AIoA of a streaked shearwater performing 

ARS with a fishing boat and several other birds present in the images. Note: The brightness of 

the images in (d) has been increased by 40% from the original video frames.  
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Supplementary Fig. 4 Distribution of the dataset used during analysis of group formation 

during ARS. This violin plot showing the distribution of the dataset used during GLMM analysis 

of the relationship between ARS behaviour and group formation for streaked shearwaters, with 

the y-axis shown in log(10) scale. The dataset is divided into two groups, with the 29,195 data 

points corresponding to ARS behaviour represented on the left and the 23,741 data points 

corresponding to transit behaviour represented on the right.  
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Supplementary Fig. 5 Features ranked by importance. a The acceleration-based features 

ranked by their Normalized Gini Importance (feature importance) with the error bars 

corresponding to the 95% confidence interval based on 10 iterations of decision tree generation. 

These values were computed using the tree module of Python’s scikit-learn package (v.0.20.0) 

using the data described in Training datasets. b The GPS-based features ranked by their 

Normalized Gini Importance (feature importance) with the error bars corresponding to the 95% 

confidence interval based on 10 iterations of decision tree generation. These values were 

computed using the tree module of Python’s scikit-learn package (v.0.20.0) using the data 

described in Training Datasets.  

ba
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Supplementary Fig. 6 Improving the robustness of animal-borne AI. a Results from testing 

the effect of simulated device rotation on accuracy. Each solid line represents a training dataset 

in which the original dataset has been augmented with rotated data, while each testing dataset (x-

axis) includes only rotated data. The values given for rotation indicate the maximum rotation 

applied to any axis, with each 1-second window rotated on each axis by a random amount up to 

that value. The shaded areas correspond to 95% confidence intervals based on running the test 

10 times using 10 separately generated datasets. b Results from testing the effect of artificial 

noise on accuracy. Each line represents a training dataset in which the original dataset has been 

augmented with data that has artificial noise added, while each testing dataset (x-axis) includes 

only data that has noise added. The value (n) given for the artificial noise indicates the maximum 

amount of noise added to any 1-second window of data, with each window altered by multiplying 

all its original values by a random factor in the range [1-n, 1+n]. The shaded areas correspond to 

95% confidence intervals based on running the test 10 times using 10 separately generated 

datasets.  
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Supplementary Table 1 Feature descriptions and estimated costs. 

  
Feature 
Name Data 

Type

Estimated  
Size 
(Bytes) Requires Description 

A mean ACC 40 None Mean value.

B mean cross ACC 102 A
Count of how many times two adjacent values cross over the mean value. Gives an approximate 
measure of frequency.

C one cross ACC 94 None
Count of how many times two adjacent values cross over 1. Gives an approximate measure of 
frequency.

D energy ACC 60 None
Computed as the sum of squared discrete samples in the window divided by the number of 
samples in the window.

E RMS ACC 246 None Root mean square.

F kurtosis ACC 680 None The fourth standardized moment. Measures presence of extreme outlying values.

G variance ACC 210 None Variance.

H crest ACC 240 E Crest factor. Measures shape of wave peaks in the signal (sharp vs rounded).

I FPT  GPS 144 X First passage time. Time before displacement exceeds 2 km from first location in the window.

J primary 
variance GPS 0 Y Variance in longitude values after running rotation (Y).  

K secondary 
variance GPS 0 Y Variance in latitude values after running rotation (Y). 

L primary 
mean cross GPS 204 Y Mean cross in longitude values after running rotation (Y). 

M secondary 
mean cross GPS 204 Y Mean cross in latitude values after running rotation (Y). 

N mean speed GPS 108 X Mean speed computed based on Manhattan distance.  
O variance 

speed GPS 202 X Variance in speed computed based on Manhattan distance. 
P displacement GPS 6 X Distance between the first and last locations in the window. 
Q distance GPS 114 X Sum of the distances between each location in the window. 
R max 

displacement GPS 114 X Maximum displacement between first location and any following location in the window.

S mean 
displacement GPS 338 X Mean displacement from first location and all following locations in the window.

T variance 
displacement GPS 448 X Variance in displacements between first location and all following locations in the window.

U mean angle GPS 112 Z Mean of angles formed by all sets of three adjacent locations in the window.

V variance 
angle GPS 234 Z Variance in angles formed by all sets of three adjacent locations in the window.

W mean 
displacement 
angle GPS 110 Z Mean displacement angle for all locations in the window. Displacement angle is computed as the 

angle formed when using the first and last locations in the window as endpoints and any other 
location in the window as the midpoint. 

X distance GPS 828 None Helper function run to compute Manhattan distance between pairs of GPS coordinates.

Y rotation GPS 1,874 None
Helper function run to enable computation of other features. Rotates the coordinates window 
around their mean latitude and longitude values to maximize the variance in the longitudinal axis.

Z angle GPS 1,712 None Helper function run to compute angles formed by sets of three GPS coordinates.

Each of the features extracted on board the bio-logger for use in AIoA. The data type ACC 

indicates features extracted from magnitude of acceleration values obtained from the acceleration 

sensor while GPS refers to features extracted from GPS data. The Requires column lists any 

features that must be extracted prior to extracting the feature listed in that row. For example, 
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feature B (mean cross) requires that you first compute feature A (mean). Features X, Y, and Z 

are helper functions that are only computed as a prerequisite for other GPS features, and are not 

directly used during classification.  
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