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Figure S1. Trajectories of allele frequencies during evolution, as determined by whole-
population sequencing. This figure is identical to Figure 2 in the main text, except that standing
genetic variants are not shown, and the zeroth-time point is shown for the de novo and HGT genetic
variants. Each line depicts an individual allele segregating in three HGT (a-c¢) and three non-HGT
control (d-f) populations plotted on a symlog scale (linear for values below 0.05). The dashed vertical
line after 161 generations shows the frequencies of all alleles at the end of the no-antibiotic evolution
experiment before exposure to metronidazole (8 pg/ml). The frequencies at the end of the plot show
allele frequencies after the addition of metronidazole. The HGT alleles are shown in light orange
except for the rdxA4 (turquoise), frxA (magenta) and hopG (bright orange) HGT alleles. Inactivation of
the rdxA (turquoise) and frx4 (magenta) genes is required for metronidazole resistance. Dashed lines
show the frequencies of all de novo and HGT alleles at time point zero.
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ECDF before and after antibiotic application
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Figure S2. Empirical cumulative distribution function (ECDF) for allele distributions before
and after antibiotic selection. This figure corresponds to figure panels 3¢ and 3d, showing the
empirical cumulative distribution function (ECDF) for the scaled rdxA allele distributions before and
after the addition of antibiotic. The ECDF curves before and after antibiotic selection were found to
be significantly different (Kolmogorov-Smirnov test, D criterion = 0.3913, p = 0.001103).



Effective selection
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Figure S3. Maintenance of genetic variation with HGT and fitness estimates from sequence data
in replicate populations I, IT and III. This figure corresponds to figure 4 in the main text, where
values were calculated from the average trajectory of the synonymous HGT allele (HPP12_0753) that
segregated in each replicate population. This figure shows alternative numerical evaluations of the
model, based on each individual replicate population. For each replicate (I-I1I); panel (a) shows the
estimates of the effective selection coefficient for donor-derived alleles. Calculations were carried out
for each of the three independently evolving populations, HGT rep 1 (orange bar), HGT rep 2 (purple
bar) and HGT rep 3 (green bar). Panel (b) shows the expected frequency of horizontally-acquired
alleles after 100 generations of evolution for several values of y. The red curve corresponds to the
HGT invasion rate (y) estimated from our experiments. Panel (¢) shows the expected frequencies of
horizontally-acquired alleles after 10, 100, 500 and 1000 generations, given the HGT invasion rate ()
estimated from the evolution experiment. The shaded areas correspond to three equilibrium frequency
states for donor alleles (undetectably rare, detectable and polymorphic, and fixed).

Table S1
Position Gene Description Population(s) Frequency
24,931 hopD Outer membrane protein HopD HGT replicate 3 0.0270
35,661 HPPI2 0032 Hypothetical protein HGT replicate 1 0.0370
375,321 HPPI12 0359 Hypothetical protein HGT replicate 2 0.1040
643,280 flaA Flagellin A HGT replicate 3 0.2020
814,592 flaG-2 Polar flagellin HGT replicate 1 0.3040
1,001,701 dadA D-amino acid dehydrogenase subunit| control replicate 2 0.1200
1,098,003 cheA Autophosphorylating histidine kinase| HGT replicate 1 0.1380
1,376,228 HPPI2 1299 Hypothetical protein HGT replicate 1 0.0500
1,437,437 mod-3 L7193 0 STt control replicate 2 0.1380
methyltransferase
L5005 mmEEiy sy || TOMPROmEERESEEE pOE oo erie | L1090
- ComH
HGT replicate 1 0.0090
272,419 cedA Cotosinionals Cype SOgRienll | memp b5 0.0029
protein CcdA
HGT replicate 3 0.0051
HGT replicate 1 0.0328
807,151 | HPPI2 0753 Hypothetical protein HGT replicate 2 0.0483
HGT replicate 3 0.0412




HGT replicate 1 0.0340
1,099,702 cheA Autophosphorylating histidine kinase| HGT replicate 2 0.0231
HGT replicate 3 0.0269
HGT replicate 1 0.0086
1,580,122| HPPI2 1495 Hypothetical protein HGT replicate 2 0.0074
HGT replicate 3 0.0196
HGT replicate 1 0.0095
1,585.223|  mod-5a Type Il R-M system HGT replicate 2 0.0189
methyltransferase
HGT replicate 3 0.0315
HGT replicate 1 0.0268
1,586,017 mod-5b R e ha HGT replicate 2 0.0138
methyltransferase
HGT replicate 3 0.0143
1,657,367| HPPI2 1559 Hypothetical protein HGT replicate 1 0.0014
HGT replicate 1 0.7225
260,922 hopG Outer membrane protein HopG HGT replicate 2 0.9800
HGT replicate 3 0.4238
HGT replicate 1 0.0247
315,474 dppC DIpepHUe HARSP Ot SySIEpETiEase | S ey o it 2 0.0275
protein
HGT replicate 3 0.0469
HGT replicate 1 0.0291
1,444,863 T CILDIEANF 1o OIS HGT replicate 2 |  0.0704
acyltransferase
HGT replicate 3 0.0347
HGT replicate 1 0.0223
1,010,298 e Orpgem msEnsinvo WADIHEL o s 2 0.0163
nitroreductase
HGT replicate 3 0.0143




HGT replicate 1 0.0183

1,010,349 rdxd Orygambssisiive NADMEL | e e 0.0186
nitroreductase

HGT replicate 3 0.0166

HGT replicate 1 0.0145

1,010,412 e Orpgem IsEnsivo WAOIEL o e 2 0.0138
nitroreductase

HGT replicate 3 0.0073

HGT replicate 1 0.0090

1,010,524 rdxA Oxygen—} RIS NADI | HGT replicate 2 0.0182
nitroreductase

HGT replicate 3 0.0220

HGT replicate 1 0.0122

1,010,535 e Orygambssisiive NADMEL | e e 0.0176
nitroreductase

HGT replicate 3 0.0201

HGT replicate 1 0.0077

1,010,558 e Orpgem IsEnsivo NAOIEL o e 0.0084
nitroreductase

HGT replicate 3 0.0138

HGT replicate 1 0.0078

1,010,560 rdxd Orygambssisiive NADMEL | e e 0.0084
nitroreductase

HGT replicate 3 0.0114

HGT replicate 1 0.0077

1,010,564 e Orygambssisiive NADMEL | e e 0.0110
nitroreductase

HGT replicate 3 0.0114

HGT replicate 1 0.0077

1,010,566 e Orpgem IsEnsivo NAOIEL o e 0.0110
nitroreductase

HGT replicate 3 0.0115

1,010,570 rdid Oryygambssiusitins WADIMEL | v e 1 0.0091

nitroreductase




HGT replicate 2 0.0111

HGT replicate 3 0.0116

HGT replicate 1 0.0061

1,010,577 e Orygambssisiive NADMEL | e e 0.0083
nitroreductase

HGT replicate 3 0.0071

HGT replicate 1 0.0061

1,010,578 e Orpgem IsEnsivo NAOIEL o e 0.0096
nitroreductase

HGT replicate 3 0.0072

HGT replicate 1 0.0076

1,010,583 rdxd Orygambssisiive NADMEL | e e 0.0136
nitroreductase

HGT replicate 3 0.0085

HGT replicate 1 0.0073

1,010,601 e Urpgem TsEnsivo NAOIEL o e 2 0.0118
nitroreductase

HGT replicate 3 0.0097

HGT replicate 1 0.0072

1,010,605 e Orpgem IsEnsivo NAOIEL o e 0.0119
nitroreductase

HGT replicate 3 0.0097

HGT replicate 1 0.0072

1,010,607 e Orygaubssisiive NADIEL | e -geoie o 0.0106
nitroreductase

HGT replicate 3 0.0097

HGT replicate 1 0.0075

1,010,619 e Orpgem IsEnsivo NAOIEL o e 0.0122
nitroreductase

HGT replicate 3 0.0098

. . HGT replicate 1 0.0104

HGT replicate 2 0.0165




HGT replicate 3 0.0099

HGT replicate 1 0.0117

1,010,643 e Orygambssisiive NADMEL | e e 0.0151
nitroreductase

HGT replicate 3 0.0147

HGT replicate 1 0.0150

1,010,647 e Orpgem IsEnsivo WAOIEL o e 2 0.0166
nitroreductase

HGT replicate 3 0.0123

HGT replicate 1 0.0166

1,010,654 rdxd Orygambssisiive NADMEL | e e 0.0168
nitroreductase

HGT replicate 3 0.0111

HGT replicate 1 0.0134

1,010,679 e Orygambssisiive NADMEL | e e 0.0233
nitroreductase

HGT replicate 3 0.0099

HGT replicate 1 0.0197

1,010,703 rdxd Orypgeianinoneians NADIEL ) e o 2 0.0201
nitroreductase

HGT replicate 3 0.0154

HGT replicate 1 0.1020

696,808 fixA Oxygen-insensitive NADPH HGT replicate 2 0.0230
nitroreductase

HGT replicate 3 0.0300

Table S1. Frequencies of HGT and de novo variants after 161 generations of evolution

without antibiotic. De novo mutations (blue) evolved during the evolution experiment in
both HGT and control lines, but did not fix by the end of the evolution experiments. All
but one HGT-derived allele appeared in all HGT replicate populations. HGT mutations
listed are either unrelated to antibiotic resistance (orange) or confer resistance through

disruptions in the rdxA (turquoise) or frxA (purple) gene.




Table S2

Generation Population Resistance (%)

46 HGT rep.1 0.000572
- HGT rep.2 0.000984
- HGT rep.3 0.000648
- control rep.1 0
- control rep.2 0
- control rep.3 0

69 HGT rep.1 0.002277
- HGT rep.2 0.007767
- HGT rep.3 0.003064
- control rep.1 0
- control rep.2 0
- control rep.3 0

92 HGT rep.1 0.000000
- HGT rep.2 0.003448
- HGT rep.3 0.008649
- control rep.1 0
- control rep.2 0
- control rep.3 0

115 HGT rep.1 0.007387
- HGT rep.2 0.037812
- HGT rep.3 0.008656
- control rep.1 0
- control rep.2 0
- control rep.3 0

138 HGT rep.1 0.015221
- HGT rep.2 0.059899
- HGT rep.3 0.011566
- control rep.1 0
- control rep.2 0
- control rep.3 0

161 HGT rep.1 0.02397
- HGT rep.2 0.03515
- HGT rep.3 0.01305
- control rep.1 0
- control rep.2 0
- control rep.3 0

TableS2:Metronidazole (8 pg/ml) resistance in evolving populations during the
evolution experiment, without selection on antibiotic. Populations were plated on agar
plates with and without metronidazole to determine frequency of resistance by CFU
counts.



Table S3.

GC
. GCMg.19) GCM, GCMy, GCMy6)
Population (CF;J/ ml | (CFUMml) | (CFUml) | (CFUMml) | (CFU/mI)
P12 9.00x10°| no single no single no single no single
(ancestor) 1.40 x 10° colonies colonies colonies colonies
HGT ren 1 7.50 x 10° 1.25x 10’ 3.40x 10° 2.65x 10°
fep 8.00 x 10° ; 8.50x10° 325x10° | 1.85x10°
HGTrenn | 450% 10° 4.50 x 10° 8.00 x 10* 7.50 x 10*
°P 8.00 x 10° ; 1.00x107 | 8.00x10* |  7.50x 10*
HGT ren 3 1.25x 10 3.50x 10’ 2.00x 10° 7.00 x 10*
°P 9.50x 10° ; 6.00x107 | 225x10° | 4.50x10*
control rep 1 6.00 x 10° no single no single no single 20
P 9.50 x 10 colonies colonies colonies 30
5.00 x 10° inol inol inol no single
No sinele no single no single no single _
control rep 2 coloniges colonies colonies colonies colonies
1.30 x 10° , , ,
control ren 3 no single no single 5 no single
p l'f’(())gx colonies colonies 10 colonies

Table S3. Metronidazole resistance in evolved populations. To determine the

frequency of metronidazole resistant colonies in control and HGT populations after
161 generations of evolution, cells were plated onto GC agar plates (See Methods)
containing metronidazole (GCM), where the subscripts indicate the concentration of
metronidazole in pg/ml. Numbers are counts for each replicate. We found a
significant difference in level of resistance between HGT populations and non-HGT
controls (Mann-Whitney U Test, p < 0.05).

Table S4. Primer sequences used for amplification of rdxA4 and frxA genes.

Primer Oligo sequence

RdxA FWD 5’-TTGCTCGGACTCATGGAATTGC-3’
RdxA REV 5’-AGAGAGCCAGATAGCCAAATGG-3’
FrxA FWD 5’-GCAGGAGAGGCGATAAAGTTGC-3’
FrxA REV 5’-TCTTTGTCCGTGTCTTCAATGC-3’




APPENDIX
Novozhilov et al., (1) developed a single-locus model with two alleles (allele 1 and allele 2),
with unidirectional mutation and unidirectional horizontal gene transfer (HGT). Below, we
will first extend their single-locus model to allow for bidirectionality of mutation and HGT,
and temporal fluctuations in “invasion”, which in the current empirical study should be
proportional to the concentration of donor DNA in the medium of HGT populations. Building
on the single-locus model, we subsequently explore the effects of partial linkage between
alleles within the donor strain, and characterize the evolutionary dynamics of a pair of
partially linked loci experiencing both HGT and epistatic fitness interactions.

Single locus model with bi-directional mutation and HGT
We follow the evolutionary dynamics of a single locus with two allele types, 4; and 4,, and
individuals of the population are haploid. Allele A4, is carried by individuals and DNA from
the “donor” strain, and p and g represent the allele frequencies of 4; and 4, in our focal
population. We suppose, that the focal population is exponentially growing with population
size of N = n; + ny, where n; and n; are the numbers of individuals carrying alleles 1 and 2,
respectively. The population dynamics of individuals carrying each of the two allele types are
described by the differential equations:

dny + +yN -6 e B el

— =mqn, — U N Uu,n —06,n n

dt 1My 1M 2Ny TY 11n1+n2 22n1+n2
an, + +6 e 6 he!
— =m,n, — U,N un n —6,n
dt 2N, 2N, 1M 11n1+n2 22n1+n2

where y represents the “invasion rate” of donor alleles, which in the context of the experiment
represents the rate with which donor DNA is incorporated into the genomes of individuals
from the focal population; m; is the Malthusian fitness, ; is the mutation rate, and 6; is the
“infection rate” (i.e., rate of HGT conversion), of individuals carrying allele i. The rate of
frequency change for 4; in the focal population is:

dp_d( n, )_1 dn, (dn1+dn2)
dt dt\n, +n,/ N\ dt dt = dt

=pm —m) +u,(1-p)—up+ 1 —py+p—p)(6, —6))

where p = n;/N=1-ny/N, and m = p;m; + p,m,. Letting m; — m, = s, where s is the
selection coefficient for the 4, allele, and assuming that the mutation rate is sufficiently small
given the timescale of the experiment that it can be ignored, the above simplifies to:

d
d—’Z:(s+92—el)p(l—p)+(1—p)y=sep(1—p)+(1—p)y

where s, = s + 6, — 0, is the effective selection coefficient in favour (when s, > 0) or
against the 4, allele (when s, < 0); s, takes into account effects of the allele on population
growth (s) and any biases in the rates of HGT between individuals of the focal population
with different genotypes (biases arise when 6, # 6;).

A stability analysis of the differential equation shows that there are three possible equilibria
for the locus:

11



1. p =1, which is stable when ¥y + s, > 0 (i.e., the invasion rate is strong and/or there is
positive selection on the donor allele) and unstable when y + s, < 0 (i.e., purifying
selection is stronger than the invasion rate: |s,| >y > 0 > s,).

2. p = 0, which is valid when y =0, is stable when s, < 0 and unstable when s, > 0

3. p = —v/s., which is valid (in which case, it will be stable) when s, < 0 < y < |s,|.

If we assume that the parameters of the model are constant over time (i.e., s, ), 65, y are
constant), the general solution for p is:

_ (pose + P)eCett —y(1 - py)
(PoSe +¥)eGett +5,(1 — py)

t

where ¢ refers to time in units of generations.

For the special case of a neutrally evolving locus with symmetric rates of HGT (s =0, 6 =
6»; thus, s, = 0), the above trajectory simplifies to:

pr=1—(1—pyle "t

Given empirical data on the frequency dynamics of a neutral donor allele, and provided the
population is sufficiently large that frequency trajectories are approximately deterministic, we
can infer the infection rate of donor DNA into the population (y) by rearranging the neutral
trajectory and solving for y:

_1l (1—p0)_ 11(1 )
y_tnl—pt_ tn bt

with the final result applying in the case where the population is initially fixed for the
recipient allele (po = 0).

If y varies over time, the general solution for the neutral case (s, = 0) becomes:

pe=1—(1—ppe br®& =1 _ (1 - py)et

where y(x) is a function describing change in infection rate over time, and (y;) is the average
value of y across the time interval (0, 7).

Two-locus model with linkage during invasion
Single-locus models can characterize the dynamics of donor and recipient alleles provided
epistasis between loci is negligible and linkage between donor alleles is loose with respect to
the rates at which DNA from pairs of alleles are taken up from the medium. To explore the
consequences of violating either assumption, we developed a two-locus population genetic
model. Each locus is bi-allelic, and each experiences symmetric, bi-directional HGT (i.e.,
values of 6 for a locus are symmetrical between individuals carrying donor and recipient
alleles). We assume that mutation rates are sufficiently low during the course of the
experiment that we can neglect mutation between alleles. We explore the extreme case in

12



which invasion events involve pairs of donor alleles rather than either of the two donor alleles
singly. Populations are assumed to grow exponentially.

Allele 1 at each locus represents the donor allele, and allele 2 represents the recipient allele.
ni, N2, N1 and ny; represent the number of individuals with the four possible genotypes (11,
12, 21, 22). The population dynamics of the four genotypes are described by:

d;lgl =nymqy; + YN + 04154 ( N + %) + 614, (Tl]\1/1 + %) 0,M11 (Tl]\2[1 + %)
Ny Ny
— Opnyy ( N + T)

dni, =Ny,Myy + 041y, (n + &) + 0gnqy (Yl1z + 2) 0,4n4, (nZl + @)

dt N N N N N N
—d;lil =Ny Myy + 04044 ( N + %) + 01y, (n]\z; + %) — O4mn2 (% + %)
Nz Ny
= Bamn (T )
Ny1  MNq1
= Oamaz () +T)

where m;; is the Malthusian growth rate of genotype ij, 64 and 6z describe the rates of HGT at
the first and second locus (labelled locus 4 and locus B, respectively), ¥V is the invasion rate
of the donor alleles at both loci, and N = nj; + n12 + na1 + na; is the total population size.

Letting p4 = (n11 + n12)/N and g4 = (n21 + n22)/N be the frequencies of resistant and
susceptible alleles at locus 4, and pg = (n11 + n21)/N and gz = (n12 + n22)/N be the frequencies
of resistant and susceptible alleles at locus B, the population dynamics simplify to:

dng,
dt =nyMyq + YN + 04N104 + Opnyopp — 04n11 (1 —py) — 01y, (1 — pp)

dn,,

dt =Ny,Myy + Ognppa + 0pn11 (1 —pg) — 04n1,(1 — py) — Opny,05
dny,

dt =nNy1Myq + 0an11(1 — pa) + Opnyopp — BaNp1Pa — 0Ny (1 — pp)
dn,,

dt = NyMyp + 0415 (1 —pa) + Opny (1 — pp) — 04,04 — OpNyopp

The frequency dynamics of the pair of functional alleles and of linkage disequilibrium
between them (D = p11p2 — p1ap21 = p11 — paps) are described by:

13



dt N

dPA_ 1 dny; | dngy Pa(dnyy  dng; dny; | dny,
(dt + dt) N(dt + dt + dt + dt)

dpg _ l(dnn 4 dn21) B p_3<dn11 N dny, dny N dnzz)
dt N\ dt dt N\ dt dt dt dt
ap 1 ( dng, N dn,, dn,, dn21)
dt N D22 dt P11 dt D21 dt P12 dt

2D (dnll N dn12 anl n dnzz)
N \ dt dt dt dt

Assuming that the rates of HGT are the same at each locus (6= 6, = 65), and noting that py,
=paps + D, p12 = paqs — D, pr1 = q4pp — D, p2» = quqp + D, we have:

dgf = N[(paps + D)my; +v — 26D]
d;lzz = N[(paqs — D)my, + 26D]
d;lil = N[(qups — D)my, + 26D]
d;liz = N[(qaqp + D)my, — 26D]

dr = (papp + D)my1 + (Paqp — D)my; —pam +y(1 —py)

ar = (papg + D)myq + (qapp — D)my; —ppm +y(1 — pp)

dD
dat = (qaqs — D)(Papp + D)my; + (papp — D)(qaqp + D)my,

— (qaps + D)(Paqs — D)Mmyy — (Paqp + D)(qapp — D)my; — 26D
+(qaqs — D)y
where m = (papp + D)my1 + (Paqp — D)myy + (qapp — D)myy + (qaqp + D)my,
Defining fitnesses as m; = may + 54 + 55 + & mia = my + 54, and my; = may + 55, we have:

dp
d—t“ = 5a0a(1 —p4a) + Dsg + (1 —pa)(aps + D)e +y(1 — p4)

dp
d_: = sgpp(1 —pp) + Dsy + (1 — pp)(app + D)e + y(1 — pp)

dD
T D(1—2p4)sa+D(1 — 2pg)sg + (qaqs — D)(papp + D)e — 26D + (qaqp — D)y
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where s4 and sp are the fitness effects of donor alleles at locus 4 and B, respectively, and ¢ is
the epistatic fitness interaction between donor alleles at both loci.

Linkage disequilibria between linked loci under selection

The dynamics of the donor allele are mediated by build-up of linkage disequilibrium (D)
between loci. To explore how much disequilibrium to expect between the pair of loci, we
carried out a quasi-equilibrium analysis of the two-locus system by first approximating quasi-
equilibrium D between the loci, and then evaluating the allele frequency dynamics following
the attainment of quasi-equilibrium D (see chapter 9 of Otto and Day 2007)(2). We first write
the selection and epistasis parameters as functions of a term { which we assume is small:

Sa = 54¢
Sp = Sg¢
£ = &7?

Assuming that D converges rapidly to a quasi-equilibrium state (denoted Dy, r) relative to the
rates of allele frequency change at each locus, we can write Do, £ as a polynomial to second
order in {:

DQLE =Dy + D:{ + szz + 0(53)

in which the individual terms are:

_ qaqsY

° "y 426
p. = 9498Y1(q4 — Pa)$a + (95 — P5)SE]
! (y + 260)?
D. = qaqsY[(1 = 2pa)$a + (1 — 2pp)S5]?
2 (y +26)3
N 1 q495Y (4498 — PaPs) <quBV)2 N p
(260 +y) y + 26 y + 26 Pa94Pe4s

Substituting values of Dy, D1, and D, into the polynomial and dropping terms of 0({3), we
have:

qaqsY . 9aqeY[(1 —2pa)ss + (1 — 2pp)sg] [(1—2pa)s, + (1 — 2pp)sg]
DoLe = + 1+

y + 26 (y + 26)2 y + 26
£ (quBy(quB — PaPs) N (cmay

+29+y y + 260 y + 20

2
) + pAquBqB>
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To isolate effects of epistasis and linkage between donor alleles during invasion and DNA
uptake, we can explore two special cases of Dy, r. First, in a polymorphic population in
which invasion ceases (y = 0), the QLE approximation will converge to:

Do~ Paq4PpYBE
QLE S T g

in which case the allele frequency dynamics at the pair of loci will be approximately
independent of one another provided the rate of HGT between individuals is high relative to
the strength of epistatic interaction (see chapter 9 of Otto and Day 2007 for similar results
based on discrete-time model with meiotic recombination rather than HGT)(2).

Second, when invasion rates are high relative to the strength of selection, we have:

_ 9498Y
CLE Ty + 20

which illustrates that invasion tends to generate coupling disequilibrium between donor
alleles, and which facilitates their removal when donor alleles are deleterious (as is readily
confirmed by numerical evaluation of the differential equations presented above).

Evolutionary spread of an epistatic-beneficial donor allele combination

In a population initially fixed for the recipient genotype (4, at the 4 locus, and B, at the B
locus) and no longer receiving donor genes (y = 0), conditions for invasion of donor alleles or
genotypes can be determined by a linear stability analysis of the system of differential
equations for the two-locus system. The Jacobian matrix for the equilibrium p; =1 is:

0pz2 \ dt Op1z \ dt 0pz1 \ dt Op11 \ dt

0 (dpzz) —my, —my, —Mmyy —04 — Op
apl] dt - m11

a (dpu) 0 my; — My, 0 64 + 0p

a (dp21) 0 O m21 - mzz HA + BB

d (dpn) 0 0 0 myq — My
Op;; \ dt — 0, — 05

Ty = —My,

T = My — My,

1 = My — My,
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Ty =My — My, — 04 — Op

Selection favours fixation of the recipient genotype (selection disfavours invasion of donor
alleles/genotypes) when all four eigenvalues are negative (722, 712, 721, 711 < 0). Three
conditions can favour invasion of a donor allele or genotype:
e The 4, donor allele is beneficial (m,, — m,, > 0)
e The B, donor allele is beneficial (m,; — m,, > 0)
e The pair of donor alleles, 4,B), is beneficial and linkage between them is sufficiently
tight that m;; — my, > 6, + 05 = 20

The final scenario is reminiscent of the condition for a selectively favoured peak shift in
classical population genetic models of selection with linkage(3).
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