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Supplementary Material  
 

 
 
Figure S1. Trajectories of allele frequencies during evolution, as determined by whole-
population sequencing. This figure is identical to Figure 2 in the main text, except that standing 
genetic variants are not shown, and the zeroth-time point is shown for the de novo and HGT genetic 
variants. Each line depicts an individual allele segregating in three HGT (a-c) and three non-HGT 
control (d-f) populations plotted on a symlog scale (linear for values below 0.05). The dashed vertical 
line after 161 generations shows the frequencies of all alleles at the end of the no-antibiotic evolution 
experiment before exposure to metronidazole (8 µg/ml). The frequencies at the end of the plot show 
allele frequencies after the addition of metronidazole. The HGT alleles are shown in light orange 
except for the rdxA (turquoise), frxA (magenta) and hopG (bright orange) HGT alleles. Inactivation of 
the rdxA (turquoise) and frxA (magenta) genes is required for metronidazole resistance. Dashed lines 
show the frequencies of all de novo and HGT alleles at time point zero. 
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Figure S2. Empirical cumulative distribution function (ECDF) for allele distributions before 
and after antibiotic selection. This figure corresponds to figure panels 3c and 3d, showing the 
empirical cumulative distribution function (ECDF) for the scaled rdxA allele distributions before and 
after the addition of antibiotic. The ECDF curves before and after antibiotic selection were found to 
be significantly different (Kolmogorov-Smirnov test, D criterion = 0.3913, p = 0.001103). 
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Figure S3. Maintenance of genetic variation with HGT and fitness estimates from sequence data 
in replicate populations I, II and III. This figure corresponds to figure 4 in the main text, where 
values were calculated from the average trajectory of the synonymous HGT allele (HPP12_0753) that 
segregated in each replicate population. This figure shows alternative numerical evaluations of the 
model, based on each individual replicate population. For each replicate (I-III); panel (a) shows the 
estimates of the effective selection coefficient for donor-derived alleles. Calculations were carried out 
for each of the three independently evolving populations, HGT rep 1 (orange bar), HGT rep 2 (purple 
bar) and HGT rep 3 (green bar). Panel (b) shows the expected frequency of horizontally-acquired 
alleles after 100 generations of evolution for several values of g. The red curve corresponds to the 
HGT invasion rate (g) estimated from our experiments. Panel (c) shows the expected frequencies of 
horizontally-acquired alleles after 10, 100, 500 and 1000 generations, given the HGT invasion rate (g) 
estimated from the evolution experiment. The shaded areas correspond to three equilibrium frequency 
states for donor alleles (undetectably rare, detectable and polymorphic, and fixed). 
 
 
Table S1 

Position Gene Description Population(s)  Frequency 

24,931 hopD Outer membrane protein HopD HGT replicate 3 0.0270 

35,661 HPP12_0032 Hypothetical protein HGT replicate 1 0.0370 

375,321 HPP12_0359 Hypothetical protein HGT replicate 2 0.1040 

643,280 flaA Flagellin A HGT replicate 3 0.2020 

814,592 flaG-2 Polar flagellin HGT replicate 1 0.3040 

1,001,701 dadA D-amino acid dehydrogenase subunit control replicate 2 0.1200 

1,098,003 cheA Autophosphorylating histidine kinase HGT replicate 1 0.1380 

1,376,228 HPP12_1299 Hypothetical protein HGT replicate 1 0.0500 

1,437,437 mod-3 Type III R-M system 
methyltransferase control replicate 2 0.1380 

1,591,063 HPP12_1502 Periplasmic competence protein 
ComH control replicate 2 0.1920 

272,419 ccdA Cytochrome C-type biogenesis 
protein CcdA 

HGT replicate 1 0.0090 

HGT replicate 2 0.0029 

HGT replicate 3 0.0051 

807,151 HPP12_0753 Hypothetical protein 

HGT replicate 1 0.0328 

HGT replicate 2 0.0483 

HGT replicate 3 0.0412 
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1,099,702 cheA Autophosphorylating histidine kinase 

HGT replicate 1 0.0340 

HGT replicate 2 0.0231 

HGT replicate 3 0.0269 

1,580,122 HPP12_1495 Hypothetical protein 

HGT replicate 1 0.0086 

HGT replicate 2 0.0074 

HGT replicate 3 0.0196 

1,585,223 mod-5a Type III R-M system 
methyltransferase 

HGT replicate 1 0.0095 

HGT replicate 2 0.0189 

HGT replicate 3 0.0315 

1,586,017 mod-5b Type III R-M system 
methyltransferase 

HGT replicate 1 0.0268 

HGT replicate 2 0.0138 

HGT replicate 3 0.0143 

1,657,367 HPP12_1559 Hypothetical protein HGT replicate 1 0.0014 

260,922 hopG Outer membrane protein HopG 

HGT replicate 1 0.7225 

HGT replicate 2 0.9800 

HGT replicate 3 0.4238 

315,474 dppC Dipeptide transport system permease 
protein 

HGT replicate 1 0.0247 

HGT replicate 2 0.0275 

HGT replicate 3 0.0469 

1,444,863 lpxA UDP-N-acetylglucosamine 
acyltransferase 

HGT replicate 1 0.0291 

HGT replicate 2 0.0704 

HGT replicate 3 0.0347 

1,010,298 rdxA Oxygen-insensitive NADPH 
nitroreductase 

HGT replicate 1 0.0223 

HGT replicate 2 0.0163 

HGT replicate 3 0.0143 
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1,010,349 rdxA Oxygen-insensitive NADPH 
nitroreductase 

HGT replicate 1 0.0183 

HGT replicate 2 0.0186 

HGT replicate 3 0.0166 

1,010,412 rdxA Oxygen-insensitive NADPH 
nitroreductase 

HGT replicate 1 0.0145 

HGT replicate 2 0.0138 

HGT replicate 3 0.0073 

1,010,524 rdxA Oxygen-insensitive NADPH 
nitroreductase 

HGT replicate 1 0.0090 

HGT replicate 2 0.0182 

HGT replicate 3 0.0220 

1,010,535 rdxA Oxygen-insensitive NADPH 
nitroreductase 

HGT replicate 1 0.0122 

HGT replicate 2 0.0176 

HGT replicate 3 0.0201 

1,010,558 rdxA Oxygen-insensitive NADPH 
nitroreductase 

HGT replicate 1 0.0077 

HGT replicate 2 0.0084 

HGT replicate 3 0.0138 

1,010,560 rdxA Oxygen-insensitive NADPH 
nitroreductase 

HGT replicate 1 0.0078 

HGT replicate 2 0.0084 

HGT replicate 3 0.0114 

1,010,564 rdxA Oxygen-insensitive NADPH 
nitroreductase 

HGT replicate 1 0.0077 

HGT replicate 2 0.0110 

HGT replicate 3 0.0114 

1,010,566 rdxA Oxygen-insensitive NADPH 
nitroreductase 

HGT replicate 1 0.0077 

HGT replicate 2 0.0110 

HGT replicate 3 0.0115 

1,010,570 rdxA Oxygen-insensitive NADPH 
nitroreductase HGT replicate 1 0.0091 
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HGT replicate 2 0.0111 

HGT replicate 3 0.0116 

1,010,577 rdxA Oxygen-insensitive NADPH 
nitroreductase 

HGT replicate 1 0.0061 

HGT replicate 2 0.0083 

HGT replicate 3 0.0071 

1,010,578 rdxA Oxygen-insensitive NADPH 
nitroreductase 

HGT replicate 1 0.0061 

HGT replicate 2 0.0096 

HGT replicate 3 0.0072 

1,010,583 rdxA Oxygen-insensitive NADPH 
nitroreductase 

HGT replicate 1 0.0076 

HGT replicate 2 0.0136 

HGT replicate 3 0.0085 

1,010,601 rdxA Oxygen-insensitive NADPH 
nitroreductase 

HGT replicate 1 0.0073 

HGT replicate 2 0.0118 

HGT replicate 3 0.0097 

1,010,605 rdxA Oxygen-insensitive NADPH 
nitroreductase 

HGT replicate 1 0.0072 

HGT replicate 2 0.0119 

HGT replicate 3 0.0097 

1,010,607 rdxA Oxygen-insensitive NADPH 
nitroreductase 

HGT replicate 1 0.0072 

HGT replicate 2 0.0106 

HGT replicate 3 0.0097 

1,010,619 rdxA Oxygen-insensitive NADPH 
nitroreductase 

HGT replicate 1 0.0075 

HGT replicate 2 0.0122 

HGT replicate 3 0.0098 

1,010,627 rdxA Oxygen-insensitive NADPH 
nitroreductase 

HGT replicate 1 0.0104 

HGT replicate 2 0.0165 
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HGT replicate 3 0.0099 

1,010,643 rdxA Oxygen-insensitive NADPH 
nitroreductase 

HGT replicate 1 0.0117 

HGT replicate 2 0.0151 

HGT replicate 3 0.0147 

1,010,647 rdxA Oxygen-insensitive NADPH 
nitroreductase 

HGT replicate 1 0.0150 

HGT replicate 2 0.0166 

HGT replicate 3 0.0123 

1,010,654 rdxA Oxygen-insensitive NADPH 
nitroreductase 

HGT replicate 1 0.0166 

HGT replicate 2 0.0168 

HGT replicate 3 0.0111 

1,010,679 rdxA Oxygen-insensitive NADPH 
nitroreductase 

HGT replicate 1 0.0134 

HGT replicate 2 0.0233 

HGT replicate 3 0.0099 

1,010,703 rdxA Oxygen-insensitive NADPH 
nitroreductase 

HGT replicate 1 0.0197 

HGT replicate 2 0.0201 

HGT replicate 3 0.0154 

696,808 frxA Oxygen-insensitive NADPH 
nitroreductase 

HGT replicate 1 0.1020 

HGT replicate 2 0.0230 

HGT replicate 3 0.0300 

 
 
 
Table S1. Frequencies of HGT and de novo variants after 161 generations of evolution 
without antibiotic. De novo mutations (blue) evolved during the evolution experiment in 
both HGT and control lines, but did not fix by the end of the evolution experiments. All 
but one HGT-derived allele appeared in all HGT replicate populations. HGT mutations 
listed are either unrelated to antibiotic resistance (orange) or confer resistance through 
disruptions in the rdxA (turquoise) or frxA (purple) gene. 
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Table S2 
 
 
 
 

TableS2:Metronidazole (8 µg/ml) resistance in evolving populations during the 
evolution experiment, without selection on antibiotic. Populations were plated on agar 
plates with and without metronidazole to determine frequency of resistance by CFU 
counts.

Generation Population Resistance (%) 
46 HGT rep.1 0.000572 
- HGT rep.2 0.000984 
- HGT rep.3 0.000648 
- control rep.1 0 
- control rep.2 0 
- control rep.3 0 

69 HGT rep.1 0.002277 
- HGT rep.2 0.007767 
- HGT rep.3 0.003064 
- control rep.1 0 
- control rep.2 0 
- control rep.3 0 

92 HGT rep.1 0.000000 
- HGT rep.2 0.003448 
- HGT rep.3 0.008649 
- control rep.1 0 
- control rep.2 0 
- control rep.3 0 

115 HGT rep.1 0.007387 
- HGT rep.2 0.037812 
- HGT rep.3 0.008656 
- control rep.1 0 
- control rep.2 0 
- control rep.3 0 

138 HGT rep.1 0.015221 
- HGT rep.2 0.059899 
- HGT rep.3 0.011566 
- control rep.1 0 
- control rep.2 0 
- control rep.3 0 

161 HGT rep.1 0.02397 
- HGT rep.2 0.03515 
- HGT rep.3 0.01305 
- control rep.1 0 
- control rep.2 0 
- control rep.3 0 
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Table S3. 

Population 
GC 

(CFU/ml
) 

GCM(0.19) 

(CFU/ml) 
GCM(1) 

(CFU/ml) 
GCM(4) 

(CFU/ml) 
GCM(16) 

(CFU/ml) 

P12 
(ancestor) 

9.00 x 108 
1.40 x 109 

no single 
colonies 

no single 
colonies 

no single 
colonies 

no single 
colonies 

HGT rep 1 7.50 x 108 
8.00 x 108 - 1.25 x 107 

8.50x106 
3.40 x 105 
3.25 x 105 

2.65 x 105 
1.85 x 105 

HGT rep 2 4.50 x 108 
8.00 x 108 - 4.50 x 106 

1.00 x 107 
8.00 x 104 
8.00 x 104 

7.50 x 104 
7.50 x 104 

HGT rep 3 1.25 x 109 
9.50 x 108 - 3.50 x 107 

6.00 x 107 
2.00 x 105 
2.25 x 105 

7.00 x 104 
4.50 x 104 

control rep 1 6.00 x 108 
9.50 x 108 

no single 
colonies 

no single 
colonies 

no single 
colonies 

20 
30 

control rep 2 
5.00 x 108 
No single 
colonies 

no single 
colonies 

no single 
colonies 

no single 
colonies 

no single 
colonies 

control rep 3 
1.30 x 109 
1.30 x 

109 

no single 
colonies 

no single 
colonies 

5 
10 

no single 
colonies 

Table S3. Metronidazole resistance in evolved populations. To determine the 
frequency of metronidazole resistant colonies in control and HGT populations after 
161 generations of evolution, cells were plated onto GC agar plates (See Methods) 
containing metronidazole (GCM), where the subscripts indicate the concentration of 
metronidazole in µg/ml. Numbers are counts for each replicate. We found a 
significant difference in level of resistance between HGT populations and non-HGT 
controls (Mann-Whitney U Test, p < 0.05). 

 
 
Table S4. Primer sequences used for amplification of rdxA and frxA genes. 

 
 
 

 

 

 

Primer Oligo sequence 
RdxA_FWD 5’-TTGCTCGGACTCATGGAATTGC-3’ 
RdxA_REV 5’-AGAGAGCCAGATAGCCAAATGG-3’ 
FrxA_FWD 5’-GCAGGAGAGGCGATAAAGTTGC-3’ 
FrxA_REV 5’-TCTTTGTCCGTGTCTTCAATGC-3’ 
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APPENDIX 
Novozhilov et al., (1) developed a single-locus model with two alleles (allele 1 and allele 2), 
with unidirectional mutation and unidirectional horizontal gene transfer (HGT). Below, we 
will first extend their single-locus model to allow for bidirectionality of mutation and HGT, 
and temporal fluctuations in “invasion”, which in the current empirical study should be 
proportional to the concentration of donor DNA in the medium of HGT populations. Building 
on the single-locus model, we subsequently explore the effects of partial linkage between 
alleles within the donor strain, and characterize the evolutionary dynamics of a pair of 
partially linked loci experiencing both HGT and epistatic fitness interactions. 
 

Single locus model with bi-directional mutation and HGT 
We follow the evolutionary dynamics of a single locus with two allele types, A1 and A2, and 
individuals of the population are haploid. Allele A1 is carried by individuals and DNA from 
the “donor” strain, and p and q represent the allele frequencies of A1 and A2 in our focal 
population. We suppose, that the focal population is exponentially growing with population 
size of N = n1 + n2, where n1 and n2 are the numbers of individuals carrying alleles 1 and 2, 
respectively. The population dynamics of individuals carrying each of the two allele types are 
described by the differential equations: 
 

𝑑𝑛#
𝑑𝑡

= 𝑚#𝑛# − 𝑢#𝑛# + 𝑢*𝑛* + 𝛾𝑁 − 𝜃#𝑛#
𝑛*

𝑛# + 𝑛*
+ 𝜃*𝑛*

𝑛#
𝑛# + 𝑛*

 

 
𝑑𝑛*
𝑑𝑡

= 𝑚*𝑛* − 𝑢*𝑛* + 𝑢#𝑛# + 𝜃#𝑛#
𝑛*

𝑛# + 𝑛*
− 𝜃*𝑛*

𝑛#
𝑛# + 𝑛*

 

 
where g represents the “invasion rate” of donor alleles, which in the context of the experiment 
represents the rate with which donor DNA is incorporated into the genomes of individuals 
from the focal population; mi is the Malthusian fitness, ui is the mutation rate, and qi is the 
“infection rate” (i.e., rate of HGT conversion), of individuals carrying allele i. The rate of 
frequency change for A1 in the focal population is: 
 

𝑑𝑝
𝑑𝑡

=
𝑑
𝑑𝑡

𝑛#
𝑛# + 𝑛*

=
1
𝑁

𝑑𝑛#
𝑑𝑡

− 𝑝
𝑑𝑛#
𝑑𝑡

+
𝑑𝑛*
𝑑𝑡

= 𝑝 𝑚# −𝑚 + 𝑢* 1 − 𝑝 − 𝑢#𝑝 + 1 − 𝑝 𝛾 + 𝑝 1 − 𝑝 𝜃* − 𝜃#  
 
where p = n1/N = 1 – n2/N, and 𝑚 = 𝑝#𝑚# + 𝑝*𝑚*. Letting m1 – m2 = s, where s is the 
selection coefficient for the A1 allele, and assuming that the mutation rate is sufficiently small 
given the timescale of the experiment that it can be ignored, the above simplifies to: 
 

𝑑𝑝
𝑑𝑡

= 𝑠 + 𝜃* − 𝜃# 𝑝 1 − 𝑝 + 1 − 𝑝 𝛾 = 𝑠1𝑝 1 − 𝑝 + 1 − 𝑝 𝛾 
 
where 𝑠1 = 𝑠 + 𝜃* − 𝜃# is the effective selection coefficient in favour (when se > 0) or 
against the A1 allele (when se < 0); se takes into account effects of the allele on population 
growth (s) and any biases in the rates of HGT between individuals of the focal population 
with different genotypes (biases arise when 𝜃* ≠ 𝜃#).  
 
A stability analysis of the differential equation shows that there are three possible equilibria 
for the locus:  
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1. 𝑝 = 1, which is stable when 𝛾 + 𝑠1 > 0 (i.e., the invasion rate is strong and/or there is 
positive selection on the donor allele) and unstable when 𝛾 + 𝑠1 < 0 (i.e., purifying 
selection is stronger than the invasion rate: 𝑠1 > 𝛾 > 0 > 𝑠1). 

2. 𝑝 = 0, which is valid when g = 0, is stable when 𝑠1 < 0 and unstable when 𝑠1 > 0 
3. 𝑝 = −𝛾 𝑠1, which is valid (in which case, it will be stable) when 𝑠1 < 0 < 𝛾 < 𝑠1 .  

 
If we assume that the parameters of the model are constant over time (i.e., s, q1, q2, g are 
constant), the general solution for p is: 
 

𝑝6 =
𝑝7𝑠1 + 𝛾 𝑒 9:;< 6 − 𝛾 1 − 𝑝7
𝑝7𝑠1 + 𝛾 𝑒 9:;< 6 + 𝑠1 1 − 𝑝7

 

 
where t refers to time in units of generations.  
 
For the special case of a neutrally evolving locus with symmetric rates of HGT (s = 0, q1 = 
q2; thus, se = 0), the above trajectory simplifies to: 
 

𝑝6 = 1 − 1 − 𝑝7 𝑒=<6 
 
Given empirical data on the frequency dynamics of a neutral donor allele, and provided the 
population is sufficiently large that frequency trajectories are approximately deterministic, we 
can infer the infection rate of donor DNA into the population (𝛾) by rearranging the neutral 
trajectory and solving for 𝛾: 
 

𝛾 =
1
𝑡
ln

1 − 𝑝7
1 − 𝑝6

= −
1
𝑡
ln 1 − 𝑝6  

 
with the final result applying in the case where the population is initially fixed for the 
recipient allele (p0 = 0). 
 
If 𝛾 varies over time, the general solution for the neutral case (se = 0) becomes: 
 

𝑝6 = 1 − 1 − 𝑝7 𝑒= < @ A@B
C = 1 − 1 − 𝑝7 𝑒=6 <B  

 
where 𝛾 𝑥  is a function describing change in infection rate over time, and 𝛾6  is the average 
value of g across the time interval (0, t).  
 
 

Two-locus model with linkage during invasion 
Single-locus models can characterize the dynamics of donor and recipient alleles provided 
epistasis between loci is negligible and linkage between donor alleles is loose with respect to 
the rates at which DNA from pairs of alleles are taken up from the medium. To explore the 
consequences of violating either assumption, we developed a two-locus population genetic 
model. Each locus is bi-allelic, and each experiences symmetric, bi-directional HGT (i.e., 
values of q for a locus are symmetrical between individuals carrying donor and recipient 
alleles). We assume that mutation rates are sufficiently low during the course of the 
experiment that we can neglect mutation between alleles. We explore the extreme case in 
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which invasion events involve pairs of donor alleles rather than either of the two donor alleles 
singly. Populations are assumed to grow exponentially. 
 
Allele 1 at each locus represents the donor allele, and allele 2 represents the recipient allele. 
n11, n12, n21 and n22 represent the number of individuals with the four possible genotypes (11, 
12, 21, 22). The population dynamics of the four genotypes are described by: 
 
𝑑𝑛##
𝑑𝑡

= 𝑛##𝑚## + 𝛾𝑁 + 𝜃E𝑛*#
𝑛##
𝑁
+
𝑛#*
𝑁

+ 𝜃F𝑛#*
𝑛##
𝑁
+
𝑛*#
𝑁

− 𝜃E𝑛##
𝑛*#
𝑁

+
𝑛**
𝑁

− 𝜃F𝑛##
𝑛#*
𝑁
+
𝑛**
𝑁

 
 

𝑑𝑛#*
𝑑𝑡

= 𝑛#*𝑚#* + 𝜃E𝑛**
𝑛#*
𝑁
+
𝑛##
𝑁

+ 𝜃F𝑛##
𝑛#*
𝑁
+
𝑛**
𝑁

− 𝜃E𝑛#*
𝑛*#
𝑁

+
𝑛**
𝑁

− 𝜃F𝑛#*
𝑛##
𝑁
+
𝑛*#
𝑁

 
 

𝑑𝑛*#
𝑑𝑡

= 𝑛*#𝑚*# + 𝜃E𝑛##
𝑛*#
𝑁

+
𝑛**
𝑁

+ 𝜃F𝑛**
𝑛*#
𝑁

+
𝑛##
𝑁

− 𝜃E𝑛*#
𝑛##
𝑁
+
𝑛#*
𝑁

− 𝜃F𝑛*#
𝑛#*
𝑁
+
𝑛**
𝑁

 
 

𝑑𝑛**
𝑑𝑡

= 𝑛**𝑚** + 𝜃E𝑛#*
𝑛*#
𝑁

+
𝑛**
𝑁

+ 𝜃F𝑛*#
𝑛#*
𝑁
+
𝑛**
𝑁

− 𝜃E𝑛**
𝑛#*
𝑁
+
𝑛##
𝑁

− 𝜃F𝑛**
𝑛*#
𝑁

+
𝑛##
𝑁

 
 
where mij is the Malthusian growth rate of genotype ij, qA and qB describe the rates of HGT at 
the first and second locus (labelled locus A and locus B, respectively), gN is the invasion rate 
of the donor alleles at both loci, and N = n11 + n12 + n21 + n22 is the total population size. 
 
Letting pA = (n11 + n12)/N and qA = (n21 + n22)/N be the frequencies of resistant and 
susceptible alleles at locus A, and pB = (n11 + n21)/N and qB = (n12 + n22)/N be the frequencies 
of resistant and susceptible alleles at locus B, the population dynamics simplify to: 
 

𝑑𝑛##
𝑑𝑡

= 𝑛##𝑚## + 𝛾𝑁 + 𝜃E𝑛*#𝑝E + 𝜃F𝑛#*𝑝F − 𝜃E𝑛## 1 − 𝑝E − 𝜃F𝑛## 1 − 𝑝F  
 

𝑑𝑛#*
𝑑𝑡

= 𝑛#*𝑚#* + 𝜃E𝑛**𝑝E + 𝜃F𝑛## 1 − 𝑝F − 𝜃E𝑛#* 1 − 𝑝E − 𝜃F𝑛#*𝑝F 
 

𝑑𝑛*#
𝑑𝑡

= 𝑛*#𝑚*# + 𝜃E𝑛## 1 − 𝑝E + 𝜃F𝑛**𝑝F − 𝜃E𝑛*#𝑝E − 𝜃F𝑛*# 1 − 𝑝F  
 

𝑑𝑛**
𝑑𝑡

= 𝑛**𝑚** + 𝜃E𝑛#* 1 − 𝑝E + 𝜃F𝑛*# 1 − 𝑝F − 𝜃E𝑛**𝑝E − 𝜃F𝑛**𝑝F 
 
The frequency dynamics of the pair of functional alleles and of linkage disequilibrium 
between them (D = p11p22 – p12p21 = p11 – pApB) are described by: 
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𝑑𝑝E
𝑑𝑡

=
1
𝑁

𝑑𝑛##
𝑑𝑡

+
𝑑𝑛#*
𝑑𝑡

−
𝑝E
𝑁

𝑑𝑛##
𝑑𝑡

+
𝑑𝑛#*
𝑑𝑡

+
𝑑𝑛*#
𝑑𝑡

+
𝑑𝑛**
𝑑𝑡

 
 

𝑑𝑝F
𝑑𝑡

=
1
𝑁

𝑑𝑛##
𝑑𝑡

+
𝑑𝑛*#
𝑑𝑡

−
𝑝F
𝑁

𝑑𝑛##
𝑑𝑡

+
𝑑𝑛#*
𝑑𝑡

+
𝑑𝑛*#
𝑑𝑡

+
𝑑𝑛**
𝑑𝑡

 
 

𝑑𝐷
𝑑𝑡

=
1
𝑁

𝑝**
𝑑𝑛##
𝑑𝑡

+ 𝑝##
𝑑𝑛**
𝑑𝑡

− 𝑝*#
𝑑𝑛#*
𝑑𝑡

− 𝑝#*
𝑑𝑛*#
𝑑𝑡

−
2𝐷
𝑁

𝑑𝑛##
𝑑𝑡

+
𝑑𝑛#*
𝑑𝑡

+
𝑑𝑛*#
𝑑𝑡

+
𝑑𝑛**
𝑑𝑡

 
 
Assuming that the rates of HGT are the same at each locus (q = qA = qB), and noting that p11 
= pApB + D, p12 = pAqB – D, p21 = qApB – D, p22 = qAqB + D, we have: 
 

𝑑𝑛##
𝑑𝑡

= 𝑁 𝑝E𝑝F + 𝐷 𝑚## + 𝛾 − 2𝜃𝐷  
 

𝑑𝑛#*
𝑑𝑡

= 𝑁 𝑝E𝑞F − 𝐷 𝑚#* + 2𝜃𝐷  
 

𝑑𝑛*#
𝑑𝑡

= 𝑁 𝑞E𝑝F − 𝐷 𝑚*# + 2𝜃𝐷  
 

𝑑𝑛**
𝑑𝑡

= 𝑁 𝑞E𝑞F + 𝐷 𝑚** − 2𝜃𝐷  
 

𝑑𝑝E
𝑑𝑡

= 𝑝E𝑝F + 𝐷 𝑚## + 𝑝E𝑞F − 𝐷 𝑚#* − 𝑝E𝑚 + 𝛾 1 − 𝑝E  
 

𝑑𝑝F
𝑑𝑡

= 𝑝E𝑝F + 𝐷 𝑚## + 𝑞E𝑝F − 𝐷 𝑚*# − 𝑝F𝑚 + 𝛾 1 − 𝑝F  
 

𝑑𝐷
𝑑𝑡

= 𝑞E𝑞F − 𝐷 𝑝E𝑝F + 𝐷 𝑚## + 𝑝E𝑝F − 𝐷 𝑞E𝑞F + 𝐷 𝑚**

− 𝑞E𝑝F + 𝐷 𝑝E𝑞F − 𝐷 𝑚#* − 𝑝E𝑞F + 𝐷 𝑞E𝑝F − 𝐷 𝑚*# − 2𝜃𝐷
+ 𝑞E𝑞F − 𝐷 𝛾 

 
 
where 𝑚 = 𝑝E𝑝F + 𝐷 𝑚## + 𝑝E𝑞F − 𝐷 𝑚#* + 𝑞E𝑝F − 𝐷 𝑚*# + 𝑞E𝑞F + 𝐷 𝑚**  
 
Defining fitnesses as m11 = m22 + sA + sB + e, m12 = m22 + sA, and m21 = m22 + sB, we have: 
 

𝑑𝑝E
𝑑𝑡

= 𝑠E𝑝E 1 − 𝑝E + 𝐷𝑠F + 1 − 𝑝E 𝑝E𝑝F + 𝐷 𝜀 + 𝛾 1 − 𝑝E  
 

𝑑𝑝F
𝑑𝑡

= 𝑠F𝑝F 1 − 𝑝F + 𝐷𝑠E + 1 − 𝑝F 𝑝E𝑝F + 𝐷 𝜀 + 𝛾 1 − 𝑝F  
 
𝑑𝐷
𝑑𝑡

= 𝐷 1 − 2𝑝E 𝑠E + 𝐷 1 − 2𝑝F 𝑠F + 𝑞E𝑞F − 𝐷 𝑝E𝑝F + 𝐷 𝜀 − 2𝜃𝐷 + 𝑞E𝑞F − 𝐷 𝛾 
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where sA and sB are the fitness effects of donor alleles at locus A and B, respectively, and e is 
the epistatic fitness interaction between donor alleles at both loci. 
 
 
Linkage disequilibria between linked loci under selection 
The dynamics of the donor allele are mediated by build-up of linkage disequilibrium (D) 
between loci. To explore how much disequilibrium to expect between the pair of loci, we 
carried out a quasi-equilibrium analysis of the two-locus system by first approximating quasi-
equilibrium D between the loci, and then evaluating the allele frequency dynamics following 
the attainment of quasi-equilibrium D (see chapter 9 of Otto and Day 2007)(2). We first write 
the selection and epistasis parameters as functions of a term 𝜁 which we assume is small: 
 

𝑠E = 𝑠E𝜁 
 

𝑠F = 𝑠F𝜁 
 

𝜀 = 𝜀𝜁* 
 
Assuming that D converges rapidly to a quasi-equilibrium state (denoted DQLE) relative to the 
rates of allele frequency change at each locus, we can write DQLE as a polynomial to second 
order in 𝜁: 
 

𝐷LMN = 𝐷7 + 𝐷#𝜁 + 𝐷*𝜁* + 𝑂 𝜁P  
 
in which the individual terms are: 
 

𝐷7 =
𝑞E𝑞F𝛾
𝛾 + 2𝜃

 

 

𝐷# =
𝑞E𝑞F𝛾 𝑞E − 𝑝E 𝑠E + 𝑞F − 𝑝F 𝑠F

𝛾 + 2𝜃 *  

 

𝐷* =
𝑞E𝑞F𝛾 1 − 2𝑝E 𝑠E + 1 − 2𝑝F 𝑠F *

𝛾 + 2𝜃 P

+
1

2𝜃 + 𝛾
𝑞E𝑞F𝛾 𝑞E𝑞F − 𝑝E𝑝F

𝛾 + 2𝜃
+

𝑞E𝑞F𝛾
𝛾 + 2𝜃

*
+ 𝑝E𝑞E𝑝F𝑞F 𝜀 

 
Substituting values of D0, D1, and D2 into the polynomial and dropping terms of 𝑂 𝜁P , we 
have: 
 

𝐷LMN ≈
𝑞E𝑞F𝛾
𝛾 + 2𝜃

+
𝑞E𝑞F𝛾 1 − 2𝑝E 𝑠E + 1 − 2𝑝F 𝑠F

𝛾 + 2𝜃 * 1 +
1 − 2𝑝E 𝑠E + 1 − 2𝑝F 𝑠F

𝛾 + 2𝜃

+
𝜀

2𝜃 + 𝛾
𝑞E𝑞F𝛾 𝑞E𝑞F − 𝑝E𝑝F

𝛾 + 2𝜃
+

𝑞E𝑞F𝛾
𝛾 + 2𝜃

*
+ 𝑝E𝑞E𝑝F𝑞F  
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To isolate effects of epistasis and linkage between donor alleles during invasion and DNA 
uptake, we can explore two special cases of DQLE. First, in a polymorphic population in 
which invasion ceases (𝛾 = 0), the QLE approximation will converge to: 
 

𝐷LMN ≈
𝑝E𝑞E𝑝F𝑞F𝜀

2𝜃
 

 
in which case the allele frequency dynamics at the pair of loci will be approximately 
independent of one another provided the rate of HGT between individuals is high relative to 
the strength of epistatic interaction (see chapter 9 of Otto and Day 2007 for similar results 
based on discrete-time model with meiotic recombination rather than HGT)(2). 
 
Second, when invasion rates are high relative to the strength of selection, we have: 
 

𝐷LMN ≈
𝑞E𝑞F𝛾
𝛾 + 2𝜃

 

 
which illustrates that invasion tends to generate coupling disequilibrium between donor 
alleles, and which facilitates their removal when donor alleles are deleterious (as is readily 
confirmed by numerical evaluation of the differential equations presented above).  
 
 
Evolutionary spread of an epistatic-beneficial donor allele combination 
In a population initially fixed for the recipient genotype (A2 at the A locus, and B2 at the B 
locus) and no longer receiving donor genes (𝛾 = 0), conditions for invasion of donor alleles or 
genotypes can be determined by a linear stability analysis of the system of differential 
equations for the two-locus system. The Jacobian matrix for the equilibrium p22 = 1 is: 
 
 𝜕

𝜕𝑝**
𝑑𝑝ST
𝑑𝑡

 
𝜕

𝜕𝑝#*
𝑑𝑝ST
𝑑𝑡

 
𝜕

𝜕𝑝*#
𝑑𝑝ST
𝑑𝑡

 
𝜕

𝜕𝑝##
𝑑𝑝ST
𝑑𝑡

 

𝜕
𝜕𝑝ST

𝑑𝑝**
𝑑𝑡

 −𝑚** −𝑚#* −𝑚*# −𝜃E − 𝜃F
−𝑚## 

𝜕
𝜕𝑝ST

𝑑𝑝#*
𝑑𝑡

 0 𝑚#* − 𝑚** 0 𝜃E + 𝜃F 

𝜕
𝜕𝑝ST

𝑑𝑝*#
𝑑𝑡

 0 0 𝑚*# − 𝑚** 𝜃E + 𝜃F 

𝜕
𝜕𝑝ST

𝑑𝑝##
𝑑𝑡

 0 0 0 𝑚## − 𝑚**
− 𝜃E − 𝜃F 

 
which has the following eigenvalues: 
 

𝑟** = −𝑚** 
 

𝑟#* = 𝑚#* − 𝑚** 
 

𝑟*# = 𝑚*# − 𝑚** 
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𝑟## = 𝑚## − 𝑚** − 𝜃E − 𝜃F 
 
Selection favours fixation of the recipient genotype (selection disfavours invasion of donor 
alleles/genotypes) when all four eigenvalues are negative (r22, r12, r21, r11 < 0). Three 
conditions can favour invasion of a donor allele or genotype: 

• The A1 donor allele is beneficial (𝑚#* − 𝑚** > 0) 
• The B1 donor allele is beneficial (𝑚*# − 𝑚** > 0) 
• The pair of donor alleles, A1B1, is beneficial and linkage between them is sufficiently 

tight that 𝑚## − 𝑚** > 𝜃E + 𝜃F = 2𝜃 
 
The final scenario is reminiscent of the condition for a selectively favoured peak shift in 
classical population genetic models of selection with linkage(3).  
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