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Web Appendix 1 

TEMPORAL CONFOUNDING IN A CLOSED POPULATION 
 

 

I. Short vaccine rollout period 

We consider a setting where there is some short period at the start of the season when vaccine is still 

being provided. Vaccination occurs between 0 and 𝑡0. After 𝑡0, no further vaccination occurs. We 

consider an analysis counting only events occurring after 𝑡0. We denote the cumulative cell count from 𝑡0 

to 𝑡 by 𝐸[𝑁̅𝑃0
∗ (𝑡)], etc. 

𝐸[𝑁̅𝑃0
∗ (𝑡)] = 𝑛𝜋𝐼𝜇0(1 − 𝐺(𝑡0))(𝑒

−Λ𝐼(𝑡0) − 𝑒−Λ𝐼(𝑡)) 

𝐸[𝑁̅𝑃1
∗ (𝑡)] = 𝑛𝜋𝐼𝜇1𝐺(𝑡0)(1 − 𝜙)(𝑒−Λ𝐼(𝑡0) − 𝑒−ΛI(𝑡)) 

𝐸[𝑁̅𝑁0
∗ (𝑡)] = 𝑛𝜋𝑁𝜇0(1 − 𝐺(𝑡0))(Λ𝑁(𝑡0) − Λ𝑁(𝑡)) 

𝐸[𝑁̅𝑁1
∗ (𝑡)] = 𝑛𝜋𝑁𝜇1𝐺(𝑡0)(Λ𝑁(𝑡0) − Λ𝑁(𝑡)) 

The restricted analysis simplifies nicely 

𝐸[𝑁̅𝑃1
∗ (𝑡)] 𝐸[𝑁̅𝑁1

∗ (𝑡)]⁄

𝐸[𝑁̅𝑃0
∗ (𝑡)] 𝐸[𝑁̅𝑁0

∗ (𝑡)]⁄
= 1 − 𝜙 

 

II. A generic vaccine setting in which there is no temporal confounding 

We can solve for a theoretical test positive hazard rate that eliminates temporal confounding. If the test 

positive hazard rate has cumulative hazard Λ𝐼(𝑡) = −log⁡(1 − 𝜆𝐼
∗𝑡), this will yield an accumulation of test 

positive cases that is constant over time with rate 𝜆𝐼
∗ (although the underlying hazard rate increases to 

balance ongoing depletion). When this is true and the test negative hazard rate is constant 𝜆𝑁, there is no 

temporal confounding. 

To achieve a setting with no temporal confounding, the expected value of the four cell counts is the 

following for some constant 𝜆𝐼
∗: 



𝐸[𝑁̅𝑃0(𝑡)] = 𝑛𝜋𝐼𝜇0 [∫ 𝑔(𝑣)𝜆𝐼
∗𝑣𝑑𝑣

𝑣=𝑡

𝑣=0

+ (1 − 𝐺(𝑡))𝜆𝐼
∗𝑡] 

𝐸[𝑁̅𝑃1(𝑡)] = 𝑛𝜋𝐼𝜇1∫ 𝑔(𝑣)(1 − 𝜙)(𝜆𝐼
∗𝑡 − 𝜆𝐼

∗𝑣)𝑑𝑣
𝑣=𝑡

𝑣=0

 

𝐸[𝑁̅𝑁0(𝑡)] = 𝑛𝜋𝑁𝜇0 [∫ 𝑔(𝑣)𝜆𝑁𝑣𝑑𝑣
𝑣=𝑡

𝑣=0

+⁡(1 − 𝐺(𝑡))𝜆𝑁𝑡] 

𝐸[𝑁̅𝑁1(𝑡)] = 𝑛𝜋𝑁𝜇1∫ 𝑔(𝑣)(𝜆𝑁𝑡 − 𝜆𝑁𝑣)𝑑𝑣
𝑣=𝑡

𝑣=0

 

So then we must set our function Λ𝐼(𝑡) such that: 

1 − 𝑒−Λ𝐼(𝑡) = 𝜆𝐼
∗𝑡 

Λ𝐼(𝑡) = −log⁡(1 − 𝜆𝐼
∗𝑡) 



Web Appendix 2 

TEMPORAL CONFOUNDING IN AN OPEN POPULATION 

 

I. Open population, vaccination at time of entry into population, unadjusted odds ratio 

Imagine a population that can be subdivided into two cohorts. The first cohort of size 𝑛0 enters at time 𝑡 =

𝑡0. The second cohort of size 𝑛1 enters at time 𝑡 = 𝑡1. Both groups are either immediately vaccinated or 

not (within each cohort, vax coverage does not change over time). Coverage for the first cohort is 𝜌0 and 

coverage for the second cohort is 𝜌1. 

Imagine for time 𝑡 > 𝑡1 (population is comprised of both types of cohorts): 

𝐸[𝑁̅𝑃0(𝑡)] = 𝑛0𝜋𝐼𝜇0(1 − 𝜌0)[1 − 𝑒−(ΛI(𝑡)−Λ𝐼(𝑡0))] + 𝑛1𝜋𝐼𝜇0(1 − 𝜌1)[1 − 𝑒−(ΛI(𝑡)−Λ𝐼(𝑡1))] 

𝐸[𝑁̅𝑃1(𝑡)] = 𝑛0𝜋𝐼𝜇1𝜌0(1 − 𝜙)[1 − 𝑒−(ΛI(𝑡)−Λ𝐼(𝑡0))] + 𝑛1𝜋𝐼𝜇1𝜌1(1 − 𝜙)[1 − 𝑒−(ΛI(𝑡)−Λ𝐼(𝑡1)) ] 

𝐸[𝑁̅𝑁0(𝑡)] = 𝑛0𝜋𝑁𝜇0(1 − 𝜌0)(Λ𝑁(𝑡) − Λ𝑁(𝑡0)) + 𝑛1𝜋𝑁𝜇0(1 − 𝜌1)(Λ𝑁(𝑡) − Λ𝑁(𝑡1)) 

𝐸[𝑁̅𝑁1(𝑡)] = 𝑛0𝜋𝑁𝜇1𝜌0(Λ𝑁(𝑡) − Λ𝑁(𝑡0)) + 𝑛1𝜋𝑁𝜇1𝜌1(Λ𝑁(𝑡) − Λ𝑁(𝑡1)) 

Where 𝜌0 = 𝜌1, the unadjusted test negative design odds ratio simplifies to 𝜙. Where 𝜌0 ≠ 𝜌1, this will not 

simplify. This logic extends to more than two cohorts. 

Adjusting for calendar time does not eliminate this bias. 

𝐸[𝑑𝑁̅𝑃0(𝑡)] = 𝑛0(1 − 𝜌0)𝜆𝐼(𝑡)𝑒−(Λ𝐼(𝑡)−Λ𝐼(𝑡0))𝑑𝑡 + 𝑛1(1 − 𝜌1)𝜆𝐼(𝑡)𝑒−(Λ𝐼(𝑡)−Λ𝐼(𝑡1))𝑑𝑡 

𝐸[𝑑𝑁̅𝑃1(𝑡)] = 𝑛0𝜌0(1 − 𝜙)𝜆𝐼(𝑡)𝑒−(Λ𝐼(𝑡)−Λ𝐼(𝑡0))𝑑𝑡 + 𝑛1𝜌1(1 − 𝜙)𝜆𝐼(𝑡)𝑒−(Λ𝐼(𝑡)−Λ𝐼(𝑡1))𝑑𝑡 

𝐸[𝑑𝑁̅𝑁0(𝑡)] = 𝑛0(1 − 𝜌0)𝜆𝑁(𝑡)𝑑𝑡 + 𝑛1(1 − 𝜌1)𝜆𝑁(𝑡)𝑑𝑡 

𝐸[𝑑𝑁̅𝑁1(𝑡)] = 𝑛0𝜌0𝜆𝑁(𝑡)𝑑𝑡 + 𝑛1𝜌1𝜆𝑁(𝑡)𝑑𝑡 

The time-adjusted odds ratio has expected value: 



𝐸[𝑂𝑅𝑑𝑡(𝑡)] =
(1 − 𝜙)[𝑛0𝜌0𝑒−(Λ𝐼(𝑡1)−Λ𝐼(𝑡0)) + 𝑛1𝜌1] (𝑛0𝜌0 + 𝑛1𝜌1)⁄

[𝑛0(1 − 𝜌0)𝑒−(Λ𝐼(𝑡1)−Λ𝐼(𝑡0)) + 𝑛1(1 − 𝜌1)] [𝑛0(1 − 𝜌0) + 𝑛1(1 − 𝜌1)]⁄
≠ (1 − 𝜙) 

Instead, it is necessary to adjust for cohort. If the population is analyzed separately by cohort, we know 

from earlier results that this is unbiased within cohorts. This logic extends to more than two cohorts. 

 

II. Open population, vaccination over time but at same rate across cohorts 

Consider two cohorts, as in the earlier setting in (B.1). Vaccine is provided over time in each cohort. As 

vaccine status varies over time, we know that it is necessary to adjust for time. The time-adjusted expected 

cell counts are: 

𝐸[𝑑𝑁̅𝑃0(𝑡)] = 𝑛0𝜋𝐼𝜇0(1 − 𝐺0(𝑡))𝜆𝐼(𝑡)𝑒−(Λ𝐼(𝑡)−Λ𝐼(𝑡0))𝑑𝑡 + 𝑛1𝜋𝐼𝜇0(1 − 𝐺1(𝑡))𝜆𝐼(𝑡)𝑒−(Λ𝐼(𝑡)−Λ𝐼(𝑡1))𝑑𝑡 

𝐸[𝑑𝑁̅𝑃1(𝑡)] = 𝑛0𝜋𝐼𝜇1𝐺0(𝑡)(1 − 𝜙)𝜆𝐼(𝑡)𝑒−(Λ𝐼(𝑡)−Λ𝐼(𝑡0))𝑑𝑡

+ 𝑛1𝜋𝐼𝜇1𝐺1(𝑡)(1 − 𝜙)𝜆𝐼(𝑡)𝑒−(Λ𝐼(𝑡)−Λ𝐼(𝑡1))𝑑𝑡 

𝐸[𝑑𝑁̅𝑁0(𝑡)] = 𝑛0𝜋𝑁𝜇0(1 − 𝐺0(𝑡))𝜆𝑁(𝑡)𝑑𝑡 + 𝑛1𝜋𝑁𝜇0(1 − 𝐺1(𝑡))𝜆𝑁(𝑡)𝑑𝑡 

𝐸[𝑑𝑁̅𝑁1(𝑡)] = 𝑛0𝜋𝑁𝜇1𝐺1(𝑡)𝜆𝑁(𝑡)𝑑𝑡 + 𝑛0𝜋𝑁𝜇1𝐺1(𝑡)𝜆𝑁(𝑡)𝑑𝑡 

In the setting where coverage increases in the same pattern across both cohorts, i.e., where 𝐺0(𝑡) = 𝐺1(𝑡) ≡

𝐺(𝑡), the time-adjusted odds ratio has expected value: 

𝐸[𝑂𝑅𝑑𝑡(𝑡)] = 1 − 𝜙 

This logic extends to more than two cohorts. 

 


