

Expanded View Figures

Figure EV1. Clustering of RNAseq datasets defines unexpected cell type-specific diversity to mRNA polarisation.

A Principal component plot depicting the *k*-means clustering analysis of mRNAs enriched across cell protrusion types.

- B Detail of the heat map shown in Fig 1C representing log₂ fold change (FC) levels (protrusions over cell bodies) of mRNAs present in clusters k 2 and k 7. The corresponding HUVEC log₂ FC levels are shown in parallel.
- C Top: distribution pattern of mRNAs clustered in k 2. Bottom: smFISH co-detection of k 2 mRNAs and GAPDH in HUVECs.
- D Top: distribution pattern of mRNAs clustered in k7. Bottom: smFISH co-detection of k7 mRNAs and GAPDH in HUVECs.

Data information: arrows indicate the orientation of RNA localisation; yellow dashed lines outline cell borders; red circles highlight smFISH spots; scale bars = 20 μ m (C, D).

					C					
GAGGGGC	TTGGAGGGTCA	CAT······CTT	[CAGACC	ITACCTGGGTT	TAGGCAAAC	CATTTTCCAGAGO	GACA ······ TGO	GATGCAA	GAGTTA	
Wt <i>RAB13</i> 3'UTR						rab13 3'UTR				
								TTA		
ΔLE <i>RAB13</i> 3'UTR						Δ48	32 <i>rab13</i> 3'U'	TR		
			1		D					
gRNA	Off-target locus	Gene	Region	Notes	gRNA	Off-target locus	Gene	Region	N	
	chr11:-134379673	B3GAT1	3'UTR	Not expressed		chr13:-31783248	hif1aa	CDS	No mis	
	chr4:-177812822	LINC01099	3'UTR	Not expressed		chr9:+47436246	tnsb1	3'UTR	No mi	
5'	chr5:-72194126	MAP1B	CDS	No mismatches	5'	chr25:+34666114	cabz01080568.1	CDS	No mi	
	chr17:+17167885	MPRIP	CDS	No mismatches		chr19:-10383593	zgc:194578	CDS	No mi	
	chr1:+151527003	CGN	CDS	Not expressed		chr16:+46997410	thsd7ab	CDS	Not e	
	chr11:-134379673	B3GAT1	3'UTR	Not expressed		chr5:-60687396	tmem132e	3'UTR	No mi	
	chr9:+130903598	FIBCD1	3'UTR	Not expressed		chr24:+24064786	zgc:194578	CDS	Not e	
	chr19:-23526428	LOC105372337	3'UTR	Not expressed	3'	chr16:-20831666	tax1bp1b	CDS	No mis	
	chr16:+23670135	DCTN5	3'UTR	No mismatches		chr6:+21514803	cacng4a	3'UTR	No mis	
3'	chr2:+85059287	KCMF1	3'UTR	No mismatches						
	chr9:+104776159	NIPSNAP3B	3'UTR	Not expressed						
	chr3:+133766306	TF	CDS	Not expressed						
	chrX:+147271017	LOC105373347	3'UTR	Not expressed						

Figure EV2. CRISPR-Cas9 editing of the RAB 3'UTR in vitro and in vivo does not generate off-target mutations.

- A Chromatogram confirming the excision of the LE within RAB13 3'UTR in HUVECs.
- B List of predicted CRISPR-Cas9 off-target genes and RNAseq mismatch detection in CRISPR-Cas9-derived HUVEC clones (n = 1 each genotype).
- C Chromatogram confirming the CRISPR-Cas9-mediated excision of 482-nt within the *rab13* 3'UTR in zebrafish embryos.
 D List of predicted CRISPR-Cas9 off-target genes and RNAseq mismatch detection in *Tg(kdrl:EGFP) rab13^{+/+}* and *rab13^{A3'UTR/A3'UTR}* embryos (*n* = 2 each genotype).

Figure EV3. Induction of endothelial cell collective migration drives RAB13 mRNA polarisation in leader cells.

- A Top: scratch wound assay generates a free edge on a confluent monolayer of HUVECs and encourages cell migration. Bottom: smFISH co-detection of *RAB13* mRNA and *GAPDH* mRNA in representative HUVECs migrating in a scratch wound assay. ZO-1 immunolabelling defines cell boundaries.
- B Polarisation Index of *RAB13* and *GAPDH* co-detected in HUVECs cultured in scratch wound assays (n ≥ 28 cells; *P < 0.05, ns: not significant; Mann–Whitney test).
 C Quantification of the number of *RAB13* mRNA smFISH spots per cell (n ≥ 28 cells; ***P < 0.001; Mann–Whitney test). Leader: cells identified at the edge of the scratch; follower: cells identified in confluent regions adjacent to leader cells.

Data information: arrows indicate orientation of RNA localisation; yellow dashed lines outline cell borders; red circles highlight smFISH spots; scale bars = 20 μ m (A). Bar charts are presented as means \pm s.d.

- Puro	+ Puro	+ Puro + Aniso			
Phalloidin	Phalloidin	Phalloidin			
Puromycin	Puromycin	Puromycin			
merge	merge	merge			

Figure EV4. Protein translation in endothelial cell protrusions.

Immunofluorescence analysis of HUVEC protrusions generated on the underside of Transwell membranes and exposed to puromycin after cell body removal. Yellow dashed lines outline protrusion borders; scale bars = 10 μ m.

Figure EV5. The 3'UTR of rab13 shows low conservation across species whilst retaining mRNA localisation potential.

- A Tg(fli1ep:MCP-GFPnls) tip cell expressing a control Lyn-mCherry-24xMS2 construct.
- B Percentage identity matrix of rab13 3'UTR orthologue sequences.
- C Multiple sequence alignment between rab13 3'UTR orthologues. Black boxes indicate absolute nucleotide similarity. The human RAB13 3'UTR localisation element is underlined in green.
- D Scheme depicts stages of zebrafish ISV sprouting. DA: dorsal aorta; DLAV: dorsal longitudinal anastomotic vessel; HM: horizontal myoseptum; NC: notochord; NT: neural tube.

Data information: white arrows indicate direction of ISV sprouting; yellow dashed line outlines ISV cell borders; scale bars = 10 µm; scale bar in inset = 5 µm (A).