APPENDIX

Clustering of strong replicators associated with active promoter are sufficient to establish an earlyreplicating domain

Caroline Brossas¹, Anne-Laure Valton^{2,5}, Sergey V. Venev², Sabarinadh Chilaka³, Antonin Counillon¹, Marc Laurent¹, Coralie Goncalves¹, Bénédicte Duriez¹, Franck Picard⁴, Job Dekker^{2,5} and Marie-Noëlle Prioleau¹*

Page 2-10: Appendix Figures S1-S9

- Page 11-15: Appendix Table S1-S5
- Page 16-21: Appendix Figure legends S1-S9
- Page 21-22: Appendix Table legends S1-S5

Page 22: References

Appendix Figure S3

Appendix Figure S5

Large β -actin (1+3) excision

Large excision Up/Low

Ctrl

500 bp

3

Mod

Wt

Ctrl

В

Appendix Figure S7

Site of insertion	Number of clones and source	RT shift Median values
Mid-Late (1)	Total= 44	
2xFIV 2xFIV Mod	10 $\begin{cases} 2 & Hassan-Zadeh et al. \\ 2012 (Figure 8) \\ & Valton et al. 2014 \\ (Figure 8C, S10) \end{cases}$	-ΔL+ΔE=+6.5%
2xFIV 2xFIV Modβ ^A pro <i>IL2R</i> polyA Wt 1	8 8 2 Hassan-Zadeh et al. 2012 (Figure 6B) Valton et al. 2014 (Figure 8C, S9)	-ΔL+ΔE=+20.2%
Mod → β-act pro BsR → 1	6 6 1 Hassan-Zadeh et al. 2012 (Figure 4A) 5 This study (Figure EV1A.)	-ΔL+ΔE=+19.6%
2xFIV 2xFIV Mod → ₩b ^A pro IL2R PolyA ⊕ β-act pro BsR Wt 1	8 $\begin{cases} 2 & Hassan-Zadeh et al. \\ 2012 (Figure 6A) \\ & This study (Figure 6A) \\ 6 & EV1B., EV2B-C.) \end{cases}$	-ΔL+ΔE=+36.6%
Mid-Late (3)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 { This study (Figure EV2D-E.)	-ΔL+ΔE=+26.8%
Mid-Late (1+3 and 1+2+3)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5 This study (Figure EV3A-B.)	-ΔL+ΔE=+65.2%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5 This study (Figure EV3C.)	-ΔL+ΔE=+38.5%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 { This study 7 { (Figure EV5)	-ΔL+ΔE=+11%
Late (1)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 { This study (Figure 8A.)	-ΔL+ΔE= +29.3% / +51.7%
Late (2)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3 - This study (Figure 8B.)	-ΔL+ΔE=+19.1%

Construction tested / site		Both concentration	With concentration	Ratio With/Both	
Insertions at site mid-1					
β-actin (1)		0.97	0.45	0.47	
β-actin (2)		0.78	0.32	0.41	
β-actin (3)	β- <i>actin</i> / 1	0.63	0.37	0.59	
β-actin (4)		0.97	0.62	0.63	
β-actin (5)		0.93	0.41	0.44	
β^{A} -globin+ β -actin (1)		1.34	0.71	0.53	
β^{A} -globin+ β -actin (2)		1.29	0.65	0.5	
$\beta^{A}GFP$ h.K7+ β^{A} -globin+ β -actin (1)	β^{A} -alohin+ β -actin / 1	0.81	0.45	0.55	
$\beta^{A}GFP$ h.K7+ β^{A} -globin+ β -actin (2)	p-giobin+p-actini i	0.84	0.43	0.51	
$\beta^{A}GFP$ h.K7+ β^{A} -globin+ β -actin (3)		0.74	0.4	0.54	
$\beta^{A}GFP$ h.K7+ β^{A} -globin+ β -actin (4)		0.91	0.45	0.49	
LoxP_LE (1)	LoxP_LE / 1	0.58	0.28	0.48	
Insertions at site mid-2					
β ^A GFP h.K7 (1)	β ^A GFP h.K7 / 2	1.12	0.54	0.49	
Insertions at site mid-3					
β^{A} -globin+ β -actin + $\beta^{A}GFP$ h.K7 (1)		1.04	0.57	0.55	
β^{A} -globin+ β -actin + $\beta^{A}GFP$ h.K7 (2)	β^{A} -globin+ β -actin / 3	1.59	0.59	0.37	
β^{A} -globin+ β -actin + $\beta^{A}GFP$ h.K7 (3)		1.08	0.43	0.4	
Insertions at site mid-1 and mid-3		1		r	
β^{A} -globin+ β -actin + $\beta^{A}GFP$ h.K7+ β^{A} -		0.56	0.73	1.29	
globin+β-actin (1)			0.70	1.20	
β^{A} -globin+ β -actin + $\beta^{A}GFP$ h.K7+ β^{A} -		0.54	0.58	1.07	
globin+β-actin (2)	•	0.04	0.00	1.07	
β^{A} -globin+ β -actin + $\beta^{A}GFP$ h.K7+ β^{A} -	β^{A} -alohin+ β -actin / 1 and 3	1 15	1.33	1 16	
globin+β-actin (3)		1.15	1.00	1.10	
β^{A} -globin+ β -actin + $\beta^{A}GFP$ h.K7+ β^{A} -		0.87	0.99	1.13	
globin+β-actin (4)					
β^{A} -globin+ β -actin + $\beta^{A}GFP$ h.K7+ β^{A} -		0 02	0.04	1 13	
globin+β-actin (5)		0.00	0.54	1.15	
β^{A} -globin+ β -actin +LoxP_LE (1)		3.34	2.21	0.66	
β^{A} -globin+ β -actin +LoxP_LE (2)	LoxP_LE / 1	2.19	1.39	0.63	
β^{A} -globin+ β -actin +LoxP_LE (3)	- -	2.12	1.13	0.53	
β- <i>actin</i> (1+3) (1)		1.17	0.71	0.61	
β-actin (1+3) (2)		1.23	0.78	0.64	
β-actin (1+3) (3)	β- <i>actin</i> / 3	1.22	0.7	0.57	
β- <i>actin</i> (1+3) (4)		0.95	0.52	0.55	
β- <i>actin</i> (1+3) (5)		1.04	0.57	0.54	
β ^A -globin (1+3) (1)		0.65	0.63	0.97	
β ^A -globin (1+3) (2)		0.74	0.62	0.83	
β^{A} -globin (1+3) (3)		0.92	1.2	1.31	
β^{A} -alobin (1+3) (4)	β^- <i>globin</i> / 1 and 3	0.77	1.0	1.30	
β^{A} -alobin (1+3) (5)		0.75	0.66	0.88	
β^{A} -alobin (1+3) (6)	•	0.2	0.22	1 1	
Insertions at site late-1		0.2	0.22		
\mathbb{R}^{A} alobint \mathbb{R} actin (1)		2 15	0.96	0.45	
p - globin + p - actin (1)	β^{A} -globin+ β -actin / late 1	2.13	0.30	0.43	
p -giobin+p-actin (2)		1./1	0.75	0.44	
A stabin 0 actin (1)		4.0	0.50	0.07	
	oA stabistic still that o	1.0	0.59	0.37	
$\beta^{-globin+\beta-actin}(2)$	β giobin+β-actin / late 2	1.37	0.5	0.36	
β^-globin+β-actin (3)		0.98	0.43	0.44	

Primer name	Primer sequence	Insertion site	galGal5 Assembly	Amplicon size
5'arm_ML1 3'arm_ML1	(Hassan-Zadeh et al., 2012)	site mid-late 1	chr1:72,565,520	
5'arm_ML2_Up	CCAAACCAGGCCACTCTTAGT			2 163 hn
5'arm_ML2_Low	AGTCACTTGGCATAAATAAGAAGCC	site mid-late 2	chr1: 72,548,589	2,105 bp
3'arm_ML2_Up	CTGAGCAGGAAGGGAAACGA			2 068 bp
3'arm_ML2_Low				_,
5'arm_ML3_Up				2.054 bp
5'arm_ML3_Low	AGAICICAGICCIGCCAGCA	site mid-late 3	chr1: 72 536 060	_,
3'arm_ML3_Up		4		2,062 bp
3'arm_ML3_Low				· ·
5'arm_L1_Up		-		2,244 bp
2'orm 11 Up		site late 1	chr1:70,523,649	
3'arm 11 Low		-		2,137 bp
5'arm 12 Un				
5'arm 12 Low				1996 bp
3'arm 12 Un		site late 2	chr1:177,936,192	
3'arm L2 Low	TAAGAAGAGGAGATGGGGGATCAAAC	-		2001 bp
2XEIV β ⁴ alobin-Up	GGGGACAACTITGTATACAAAAGTIGAGGIGGCACGGGATCGCTTTCCTAGGIGGCACGGGATCGCTTTCCTCIGCCCACACCCTCCTG			
2XEIV_B ^A alobin-Low	GGGGACAACTITIGTATAGAAAAGTIGGGGGGCACCACTAGTGATCCGTCATCCAGACATG			
2XEIV B-actin-Up				
2XEIV B-actin-Low				
Xhol+2xFIV-Up	GACTCTCGAGAGGAAAGCGATCCCGTGCCACCTAGGAAAGCGATCCCGTGCCACCTGCTAGCCCTGATCAATAACT			
Xhol+2xFIV-Low	AAGTCCTCGAGCGTATTACAATTCACTGGCCGT			
β ^A -Up	CTGCCCACACCCTCCTG			
β ^A -Low	TICCTGACCCTTGGGACCA			
GFP-Up	GGGTCAGGAAATGGTGAGCAAGGGCGAGG			
GFP-Low	TGAAGCAGCATTTACGCCTTAAG			
h.K7-Up	TGCTGCTTCATTTCTGCTCTC			
h.K7-Low	GCAGAGCCAGAGTCCAAGAG			
loxP_RE-h.K7-Up	GGATCCATAACTTCGTATAGCATACATTATACGAACGGTAACTTGAGCCCAGGAGTTCGA			
loxP_RE-h.K7-rev	AGAGTTCCAACCCCAGCCTC			

	Forward primer sequence	Reverse primer sequence	Genomic position (Build Dec 2015)			
Replication timing analysis						
With on GFP reporter	GGAATTCGATAGCTTGGCGGC	GCTGAACTTGTGGCCGTTTAC				
With on insertion site 2	GTAATGAAATTCAGCAATGACAGGC TCCTATCTGTTCAAATGTGCATCAG		chr1:72548543+72548676			
With on β ^{<i>A</i>} -globin+β-actin	GGGGACTGCTCACGTTCATCA AATGTGGCGTGTGGGATCTC					
With on β- <i>actin</i>	TGCAGAAATCGGAGGAAGAAGA GAATTGCCGCTCCCACATGA					
Without or Wt allele insertion site 1	CAGGACAGCAGGTATTCACA	GGCCTGAACACTGTGTCAAT	chr1:72565497+72565651			
Without or Wt allele insertion site 2	GTAATGAAATTCAGCAATGACAGGC	TCCTATCTGTTCAAATGTGCATCAG	chr1:72548543+72548676			
Without on GFP reporter site 2	GGAATTCGATAGCTTGGCGGC	GCTGAACTTGTGGCCGTTTAC				
Wt allele insertion site 3	TGGTACAGGCTGAGGACACC	TGATGACTGCAGCTTCCTTCT	chr1:72535996+72536105			
Without or Wt allele insertion site late1	CCCTTGAATCAGACCCTTGA	CCCTCCTTTCTCCATAAAAACA	chr1:70523547+70523674			
Without or Wt allele insertion site late 2	TTTACACTACTCCCACCCCTCG	TTGACCATATGCCACCAACACC	chr1:177936339+177936438			
Controls						
Both or 1+5 kb			chr1:72570952+72571067			
Both or late 1-4.8 kb			chr1:/0518/2/+/0518810			
Both or late 2 - 3.6Kb			chr1:177932452+177932533			
Early timing control			cnr1: 194563998+194564262			
Mitochondrial DNA Chips, Chromatin accessibility and RNA guar	tification	GIAGICCAGGCIICACIIGA	CHTM :54 H7 31			
5' 2vEIV-1	GGGCTATTCAGCTTGTCTAG	GCCACCTCAACTTTGTATAC				
5' 2xFIV-3	TTATGCTGGCAGGACTGAGA	GTGGGCAGAGGAAAGCGAT				
	GGGAGCAAGAGCCCAGAC	GTGAGCAGTCCCCACATCAG				
	GGGACTGCTCACGTTCATCA	AATGTGGCGTGTGGGGATCTC				
IL2R gene	CTACACAGAGGTCCTGCTG	GTGAAGAGAGAGCCTCAGGCA				
3' 2xFIV-1	TGCATTCTAGTTGTGGTTTGTCC	ACCGTCGACCAACTTTGTATAGA				
3' 2xFIV 1-3	AAGCTTGGATCCCCTACCGT	GAGAGTGAAGCAGAACGTGGG				
5' β-actin pro	GTGGGACTTCTTCTAAAGGGCTA	TGATCAATAACTTCGTATAATGTATGCT				
β-actin pro	TGCAGAAATCGGAGGAAGAAGA	GAATTGCCGCTCCCACATGA				
BsR gene	CGGCAGTACATATTGAAGCGT	CCCTACACATACCACAAGGA				
PuroR gene	ACGACCTTCCATGACCGAGT	AGTTCTTGCAGCTCGGTGAC				
β ^A -GFP	GGAATTCGATAGCTTGGCGGC	GCTGAACTTGTGGCCGTTTAC				
GFP gene	GCCCGACAACCACTACCTGAG	GCTTTACTTGTACAGCTCGTCCA				
h.K7	AAGTTTATCATTGTGTGGCAGTCA	GTTCTGGTTGGGTTGTATGTCAC				
LoxP site	CGCCCTATAGTGAGTCGTATTACA	TGTTTAAATGTTTGTAGCCTGCCT				
cond1	CATCTGTGCTCTGGGTCCA	AAGGAGTGGAAGGAACGCATC	chr1:194546368+194546497			
cond 2	TTGGTGCAGTGCCTCAGATAG	ATGTCGCTTGTCACGATGGAT	chr1:194546457+194546563			
MED 14 pro	GGATICACACIGIICCCCICC		chr1:112227330+112227461			
BU1A pro		GIGICAGCICAICIAGGCAAAIC	chr1:91922377+91922546			
			CHF1:91923373+91923517			
MED 14 gene	IGGGCTAATAATGCTGGAAAGGT	TAGAGAAGCCAGACGATCAGCA	CIII 1.112230062+112230623			
I R 1+2 ctrl	GCAAGATGGGCAGAGCTGAGTTAACAAT	TGTCCTGTAAGTCCTGGCAAAACAAAGA	chr1:72548824+72565503			
I R 2+3	GAGCGTATTACAATTCACTGGCCGTC					
LR 2+3 ctrl	GCAGTATAACAAGCACGCCTGAAGTAAA	CAGTCTTATCCCACCCCTTCCTGATAG	chr1:72536307+72548324			
LR 1+3	GAGCGTATTACAATTCACTGGCCGTC	GATCCCGTGCCACCTCAACTTTTGTAT				
LR loxP LE(1)+ β^{A} -globin+ β -actin (3)	GAGCGTATTACAATTCACTGGCCGTC	GACGTTGTGGCTGTTGTAGTTGTACTC				
LR β^{A} -globin (1+3)	TCCAATTCGCCCTATAGTGAGTCGTA	GATCCCGTGCCACCTCAACTTTTGTAT				
LR β <i>-actin</i> (1+3)	CTCCAATTCGCCCTATAGTGAGTCGTAT	GATACCGTCGACCAACTTTGTATAGAAAA				
LR 1+3 ctrl	GCAGTATAACAAGCACGCCTGAAGTAAA	TGTCCTGTAAGTCCTGGCAAAACAAAGA	chr1:72597486+72626682			
Screening of targeted integration	-					
3'-screening-site 2 for GFP reporter	GCTCCAATTCGCCCTATAGTGA	GGCACTCCATTTCCATCTCCT				
5'-screening-site 3 for β^{A} -globin+ β -actin	GGACTGGCTAGGGAACAAGAG	TCTGCCTTCTCCCTGATAACG				
5'-screening-site 1 for β^{A} -globin+ β -actin	GTGCAGCATCAGTGGATAAAGT	TCTGCCTTCTCCCTGATAACG				
<u>3'-screening-site 1 for β-actin</u>	CCCCCTGAACCTGAAACATAA	CCACATGTTTATTGCATACGGC				
3'-screening site 1 for IoxP LE						
3 -screening site iste 1 for 04 glabin 10 actin						
3 -screening site late 2 for B^A -globin+B-actin						
Screening of site specific excision	CACCICCAATICCCCCTAT					
BsR excision at site 2	ССССТБААССТБАААСАТАА	TATCCCACTGCCACTGGAGG				
PuroR excision at site 3	TGCATTCTAGTTGTGGTTTGTCC	GGTCTGAGAGGTCTTGCTGGA				
Large 1+3 excision Up/Low	GGTTCTGGTGCCCTCATTGAT	TGCTCTGCTAGAATTGCCTGT	chr1:72535815+72565623			
Ctrl	ACCCAAGGCAGGCTACAAAC	TGAGTTACTTTGGCATTACTTTTCATC	chr1:72565577+72567483			
No PuroR excision	CCCCCTGAACCTGAAACATAA	GCAGCCTTTTCCAGCAAGAC				
No BsR excision	ACGACCTTCCATGACCGAGT	AGTTCTTGCAGCTCGGTGAC				
PuroR excision	CACGCCACATTCAAAGCCATG	TCCAGCAAGACCTCTCAGACC				
BsR excision	CAGCGGAGACAGAGGAAGAGT	GGCATGGTTTTGATTTCTGGCC				
Copy number quantification		[
IoxP LE	CGCCCTATAGTGAGTCGTATTACA	TGTTTAAATGTTTGTAGCCTGCCT				
PuroR	ACGACCTTCCATGACCGAGT	AGITCTTGCAGCTCGGTGAC				

name	length	GC	Dpnll sites/bp	sample	total interactions	cis percent
allele1+3	2532	56.7	0.0043	clone 4	2433	67.41
allele1+3	2532	56.7	0.0043	clone 5	2369	69.78
allele2	2509	46.2	0.0032	clone 4	1318	80.2
allele2	2509	46.2	0.0032	clone 5	1290	78.53
chr1	196202544	40	0.0021	clone 4	121564119	81.08
chr1	196202544	40	0.0021	clone 5	116517761	80.63

Appendix Figure S1: Quantitative analysis of RT shifts by two distinct calculation methods reveals cooperation between two combinations of *cis*-regulatory elements

A. Method for allele-specific analysis of RT by real-time PCR quantification. BrdU pulse-labeled cells were sorted into four S-phase fractions (S1 to S4) and the immunoprecipitated newly synthesized strands (NS) were quantified by real-time qPCR in each fraction. Specific primer pairs determine the RT profile for the modified allele (With), the wt allele (Without) and both alleles (Both). The endogenous β -globin locus was analysed as an early-replicated control.

B-C. Two methods of calculation were used to determine the difference in RT between the wt and modified alleles: the $-\Delta L + \Delta E$ method and the ΔS lope method.

D. The analysis of the correlation between the Δ Slope and the $-\Delta$ L+ Δ E method for all clonal cell lines previously published (Hassan-Zadeh et al., 2012; Valton et al., 2014) or analysed for the first time here is shown. The linear regression curve is shown, with the corresponding equation and the coefficient of determination (R²).

Appendix Figure S2: Endogenous genomic features of early-replicated domains containing the β globin and β -actin loci

A-B. UCSC genome browser visualization (galGal5) of 4 Mb genomic windows inside either the β -globin locus of chromosome 1 or the β -actin locus of chromosome 14 are shown. Annotated genes are represented and the β^{A} -globin and the β -actin genes are indicated by a red arrow. Track of eigenvector 1 values corresponding to A/B compartments at 25 kb resolution after Hi-C analysis are represented. Tracks of nascent strands (NS) enrichments obtained after cells sorting into four S-phase fractions, BrdU pulselabeled nascent strands (NS) immunoprecipitation, and sequencing were represented separately (S1 to S4) for the wt cell line in dense configuration. Below, an enlargement of either the β^{A} -globin or the β -actin promoter region with the ectopic sequence found in our constructs and the single reads from SNS aligned previously published (Massip et al., 2019) are reported.

Appendix Figure S3: P-value distribution for the effect of the β^{A} -globin + β -actin construct on RT in the mid-late locus

A. Replication timings of the WT and the $2x(\beta^A - globin + \beta - actin)$ insert were smoothed using 500kb sliding windows, then centered and normalized so that the variability of timings were comparable between the two conditions.

B. A t-test was performed for each window to assess the significance of the timing differences. Adjusted p-values were computed for each window and smoothed using the PLIS R-package (Wei et al., 2009) to account for their spatial genomic dependency. P-values were then adjusted by the Benjamini-Hochberg procedure to ensure the control of the False Discovery Rate. The dotted line corresponds to a FDR of 5%.

Appendix Figure S4: Interaction profiles of allele 1+3/2 with chromosome 1 for clones 4 and 5

A. Interaction profiles of allele 1+3/2 with chr1 for clone 4 Hi-C libraries: distance-corrected interactions, *i.e.* observed/expected (OE), binned at 500 kb with corresponding compartment (EV1) tracks.

B. OE interactions of allele 1+3 (orange rectangles) and allele 2 (blue rectangles) averaged over A and B compartments for p and q-arms at 100kb bin size for clone 4. Values corresponding to OE interactions of allele 1+3 and allele 2 averaged over shuffled A (red circles, N=1000) and B compartments (blue circles, N=1000) for p and q-arms. ns, not significant; *p<0.05; **p<0.01;***p<0.001.

C. Scatterplot of density of interactions between allele 1+3 and allele 2 with chromosomes larger than 5,000,000 bp for clone 4.

D. Interaction profiles of allele 1+3/2 with chr1 for clone 5 Hi-C libraries : distance-corrected interactions, *i.e.* observed/expected (OE), binned at 500 kb with corresponding compartment (EV1) tracks.

E. OE interactions of allele 1+3 (orange rectangles) and allele 2 (blue rectangles) averaged over A and B compartments for p and q-arms at 100kb bin size for clone 5. Values corresponding to OE interactions of allele 1+3 and allele 2 averaged over shuffled A (red circles, N=1000) and B compartments (blue circles, N=1000) for p and q-arms. ns, not significant; *p<0.05; **p<0.01;***p<0.001.

F. Scatterplot of density of interactions between allele 1+3 and allele 2 with chromosomes larger than 5,000,000 bp for clone 5.

Appendix Figure S5: Validation of MNase digestion patterns before and after size selection (Related to Figure 6 and EV4)

A-B. Chromatin was extracted from two clonal cell lines for each construct or combination (β^{A} -globin, β actin, β^{A} -globin+ β -actin, 1+2+3, 1+3 and loxP_LE (1)+ β^{A} -globin+ β -actin (3) and partially digested with exponentially increasing concentrations of micrococcal nuclease (MNAse; 2.5, 10, 40 and 160 U/mL).

A. After purification, DNA molecules were subjected to a size selection process that removed most DNA molecules over 1000 bp.

B. The four digested DNA samples obtained for each clonal cell line were subjected to electrophoresis in a 1% w/v agarose gel before and after size selection and stained with SYBR safe. The DNA size marker was a commercial 1 kb plus ladder.

Appendix Figure S6: Validation of the semi-quantitative PCR approach used to determine the spatial proximity of different combination of *cis*-regulatory elements separated by 30 kb (Related to Figure

A-B. Images of agarose gels used for the quantification of specific products obtainted after either the large 1+3 and $loxP_LE$ (1)+ β^{A} -globin+ β -actin (3) excision in 1+2+3, 1+3 and $loxP_LE$ (1)+ β^{A} -globin+ β -actin (3) clonal cell lines or the large β -actin (1+3) excision in β -actin (1+3) clonal cell line are shown. After 1, 8, 24 and 48 h of 4-hydroxytamoxifen treatment, genomic DNA was extracted and quantified by semiquantitative PCR. PCR products specific for the large 1+3 or $loxP_LE$ (1)+ β^{A} -globin+ β -actin (3) excision (3.4 kb, in a thick black lines, Up and Low large excision, A left gels), and for the large β -actin (1+3) excision (542 bp, in a thick black lines, Up and Low large excision, B left gels) or used for normalization (1.9 kb, amplification from both chromosomes, in a thick black line, Ctrl, A and B right gels) were run on a 0.8% or 1% w/v agarose gel, respectively, and stained with SYBR safe. The DNA size marker was a commercial 1 kb plus ladder.

Appendix Figure S7: PCR validation of clones selected for homologous recombination

A-H. Schematic diagrams showing genomic region containing a site-specific integrated construct. The 5' and 3' arms of the targeted vector are shown as black boxes. Arrows #1 and #2 represent primer sets used for the analysis of correct integration of the constructs by homologous recombination. Other arrows represent primer sets used for the analysis of the correct excision of the *BsR* gene at site 2 (#3 and #4) or the correct excision of the *PuroR* gene at site 3 (#5 and #6). PCR products were subjected to electrophoresis in a 1-1.5% w/v agarose gel and stained with SYBR safe. The DNA size marker was a commercial 1 kb plus DNA ladder (M). Lanes marked with a red star correspond to clonal cell lines selected for further analysis.

A-C. Insertion site 1, containing the β -actin construct, one $loxP_LE$ element or the β^{A} -globin+ β -actin construct is shown.

D. Insertion site 2 containing the *GFP* reporter construct is shown.

E-F. Insertion site 3, containing the β^{A} -globin+ β -actin or the β -actin construct construct is shown.

G-H. The two genomic regions containing the β^{A} -globin+ β -actin construct inserted at the late 1 or late 2 site are shown.

A-H. The sizes of the different PCR products obtained after amplification with primers #1 and #2, to check for correct integration, are 2.4 kb (A), 2.6 kb (B), 2.3 kb (C), 2.6 kb (D, left gel), 2.3 kb (E except the last right gel), 2.9kb (F), 2.6 kb (G) and 2.2 kb (H). The sizes of the different PCR products for the screening of cell lines correctly recombined for the BsR gene cassette after amplification with primers #3 and #4 are 2.1 kb (D, insertion site 2, right gel) or 1.2 kb with the primers #5 and #6 (F, insertion site 3, last right gel). The clonal cell line containing the GFP reporter construct without the BsR cassette at site 2 (D, 1-BsR) was used for further insertions at site 1 (B, #2 and C, #3 to #6) or at site 3 (E, #1 to #4). The clonal cell lines containing the GFP reporter construct without the BsR cassette at site 2 and one autonomous replicon at site 1 (C, #3, #4, #5) were used for further insertions at site 3 (E #5 to #9). The clonal cell lines containing the GFP reporter construct without the BsR cassette at site 2 and one loxP_LE at site 1 (B, #2) were used for further insertions of an autonomous replicon at site 3 (E, #10 to #12). Clone 1 with the β^{A} -globin construct inserted at site 1, as previously obtained (Hassan-Zadeh 2012, Fig.6B), was used for the further insertion of a β^{A} globin+ β -actin construct at site 3 (E #13 to #18). Clonal cell lines containing two minimal β^{A} -globin modules at sites 1 and 3 were obtained after excision of the PuroR cassette at site 3 (E, -PuroR, #13 to 18). Clone 2 with the β -actin construct inserted at site 1 (B, #2) was used for further insertions of the β -actin construct at site 3 (F, #19 to #23).

Appendix Figure S8: Validation of transgene integration into the same chromosome

A. The insertion of transgenes into the same or a different chromosome was analyzed by long-range PCR, with a primer set composed of an upstream primer binding within one construct and a downstream primer binding to the other construct. The amplicons generated after PCR amplification to test for insertion into the same chromosome are represented by red arrows (LR1+2, LR2+3, LR1+3, LR loxP_LE (1)+ β^A -globin+ β -actin (3), LR β^A -globin (1+3), LR β -actin (1+3)). The absence of an amplicon indicates that the two constructs were inserted into distinct chromosomes. The quality of the DNA was checked with primer sets amplifying, on the two chromosomes, a genomic region located between the two insertion sites (black arrows, LR 1+2 ctrl, LR 2+3 ctrl, LR 1+3 ctrl).

B. PCR products were subjected to electrophoresis in a 0.8% w/v agarose gel and stained with SYBR safe. The DNA size marker used was a commercial 20 kb plus ladder. 1+2 clonal lines #3 and #4 were used to generate 1+3 clonal lines #1 and #2 with the *GFP* reporter construct inserted at site 2 on the same chromosome and 1+2 clonal line #2 was used to generate 1+3 clonal lines #3 to #5 with the *GFP* reporter construct inserted at site 2 on the other chromosome. Clonal line with the *GFP* reporter construct inserted at site 1, which itself generated *loxP_LE* (1)+ β^A -globin+ β -actin (3) clonal lines #1, #2 and #3 with the *GFP* reporter construct inserted at site 2 on the other chromosome. Clonal lines #1, #2 and #3 with the *GFP* reporter construct inserted at site 1, which itself generated *loxP_LE* (1)+ β^A -globin+ β -actin (3) clonal lines #1, #2 and #3 with the *GFP* reporter construct inserted at site 2 on the other chromosome. Clonal line 1 with the β^A -globin construct inserted at site 1, as previously obtained (Hassan-Zadeh 2012, Fig.6B), was used to generate β^A -globin (1+3) clonal lines #1 to #6. Clonal line with the β -actin construct inserted at site 1 was used to generate β -actin (1+3) clonal lines #1 to #5.

Appendix Figure S9: Additional filtering of Hi-C interactions

A. Heatmap of interaction frequencies for p-arm of chr1, demonstrating the position of the insertion site (red arrow) relative to filtered translocations (blue arrows).

B. Raw and unfiltered interactions profiles for allele 1+3 and allele 2 with chr1 p-arm, observed in two clones and their combination, with the corresponding EV1 compartment track. Translocations are highlighted on the compartment track with light blue color and with blue arrows. The insertion site is highlighted with a red arrow.

C-D. Raw and unfiltered interactions profiles for allele 1+3 and allele 2 with chr1 and chr9, observed in two clones and their combination. Blue arrow indicates the location of the β^{A} -globin promoter.

 Table 1: Summary of all clonal cell lines (previously published or new clonal lines) analysed in this

 study

Table 2: Transgene copy number determination in clonal cell lines

The table shows the qPCR results obtained with genomic DNA extracted from the clones selected for the experiments. For each clone, 2 ng of genomic DNA was amplified with a primer set amplifying a sequence within the construct (With) and another primer set amplifying a sequence 5 kb downstream from the insertion site for both alleles (Both). The ratio of the amounts of DNA obtained with the With and Both primer sets was used to determine transgene copy number in all clonal cell lines. For each line, the construct for which the copy number was tested is indicated with the corresponding insertion site.

Table 3: Primers sets used for plasmids constructions

Table 4: Primer sets used for quantitative PCR

Table 5: Characterization of the reference sequences of allele 1+3/2

Characterization of the sequences of allele 1+3 and allele 2 inserts and raw interactions involving the inserts obtained from Hi-C experiments for clones 4 and 5. Characterization of the entire chr1 is added as a reference.

References

Hassan-Zadeh, V., Chilaka, S., Cadoret, J.-C., Ma, M.K.-W., Boggetto, N., West, A.G., and Prioleau, M.-N. (2012). USF binding sequences from the HS4 insulator element impose early replication timing on a vertebrate replicator. PLoS Biol. *10*, e1001277.

Massip, F., Laurent, M., Brossas, C., Fernández-Justel, J.M., Gómez, M., Prioleau, M.-N., Duret, L., and Picard, F. (2019). Evolution of replication origins in vertebrate genomes: rapid turnover despite selective constraints. Nucleic Acids Res. 47, 5114–5125.

Valton, A.-L., Hassan-Zadeh, V., Lema, I., Boggetto, N., Alberti, P., Saintomé, C., Riou, J.-F., and Prioleau, M.-N. (2014). G4 motifs affect origin positioning and efficiency in two vertebrate replicators. EMBO J. *33*, 732–746.

Wei, Z., Sun, W., Wang, K., and Hakonarson, H. (2009). Multiple testing in genome-wide association studies via hidden Markov models. Bioinformatics 25, 2802–2808.