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1 Quantification of premature and mature RNA

expression levels from RNA-seq data

The framework of INSPEcT analysis is based on the joint study of premature
(P) and mature (M) RNA expression levels. Premature RNA can be defined
as the ensemble of transcripts that requires additional structural modifica-
tions, i.e. splicing. Alternatively, it can be defined as the transcripts located
in the nuclear compartment at the time of sequencing. INSPEcT exploits
the structural information and quantifies P as the (length and library size
normalized) read counts that overlap gene introns. Additionally, INSPEcT
quantifies total RNA (T = M + P) as the (length and library size normal-
ized) read counts that overlap gene exons. As a consequence of this, mature
RNA descends from the difference between T and P.

The quantification procedure of INSPEcT is implemented by the em-
bedded functions ”quantifyExpressionsFromBAMs” (for BAM input files) or
”quantifyExpressionsFromBWs” (for BigWig). The count of intronic and
exonic reads is inherently an ambiguous task, mainly because of two issues:
(i) the presence of multiple isoforms for the same gene, and (ii) the possible
overlap between the annotation of different genes. To cope with the first
issue, INSPEcT collapse the exons of transcripts belonging to the same gene
and internally defines introns as the gaps between adjacent collapsed exons.
Regarding the second issue, INSPEcT do not assign reads overlapping to
multiple exonic or intronic features. Conversely, reads overlapping to both
an intronic and an exonic feature are assigned to the exonic feature.
The following genomic annotations, in the form of R/Bioconductor Anno-
tation packages were used throughout the text to retrieve exonic genomic
coordinates in the analysis of time-course data:

• TxDb.Athaliana.BioMart.plantsmart28 (Arabidopsis Thaliana)

• TxDb.Hsapiens.UCSC.hg19.knownGene (Homo Sapiens)

• TxDb.Mmusculus.UCSC.mm9.knownGene (Mus Musculus)

For the steady-state analysis, we used the recount2 package function “re-
count exons”, which is based on the GRCh38 annotation.

1.1 Validation using fractionated RNA

We took advantage of fractionated RNA-seq data to validate how we deter-
mine premature and mature RNA expression based on intronic and exonic
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signals of total RNA-seq data, by comparing them to nuclear and cytoplas-
mic RNA. To carry out these analyses, we re-analyzed a previously published
dataset composed of nuclear, cytoplasmic and total RNA-seq data from a
human fetal frontal cortex tissue sample [1]. We downloaded the BAM files
released by the study (ArrayExpress database, accession E-MTAB-1898) and
we quantified the gene counts for each RNA-seq library according to the stan-
dard procedure implemented in the INSPEcT package. Then, we checked the
fraction of intronic reads in the three libraries (Supplemental Fig. 15A). As
expected, a relevant fraction of whole-cell total RNA reads were intronic
(43%). This percentage was even higher for nuclear RNA (58%), while it
dropped to 14% in the cytoplasmic library.
We performed a ranked correlation study on more than 9000 genes, compar-
ing the abundance of nuclear (N) versus premature (P) RNA, and of cytoplas-
mic (C) versus mature (M) RNA, where P and M were quantified through in-
tronic and exonic counts in the total RNA-seq data, respectively. Spearman’s
correlation coefficients were rP,N = 0.75, and rM,C = 0.88 (Supplemental Fig.
15B). We repeated this analysis using partial correlations, to account for the
information shared between nuclear and cytoplasmic RNA (rN,C = 0.86).
The resulting correlations were only partially reduced (rP,N |C = 0.42, and
rM,C|N = 0.74), and were still highly significant (P − values < 1e − 16).
Moreover, they were much higher that the correlations obtained comparing
P versus C, and M versus N (rP,C|N = 0.13, and rM,N |C = −0.17). To
conclude, this analysis shows that premature and mature RNA expression
levels, estimated with whole-cell total RNA-seq intronic and exonic reads,
are in good agreement with nuclear and cytoplasmic RNA expression levels
respectively.

2 Mathematical modelling of RNA life-cycle

(Main Figure 1)

We model the dynamics of premature (P ) and mature (M) RNA according
to the following well established schema

∅ k1−→ P
k2−→M

k3−→ ∅,

where k1 and k2 are the rates of synthesis and processing of the premature
RNA, respectively, while k3 is the rate of degradation of the mature RNA.
Using mass action kinetics, the above system translates in a system of two
ordinary differential Equations:
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{
Ṗ (t) = k1 (t)− k2 (t) · P (t) ,

Ṁ (t) = k2 (t) · P (t)− k3 (t) ·M (t) .

(1a)

(1b)

The system can also be trivially rewritten in terms of total RNA, by
exploiting the linearity of the derivatives:{

Ṗ (t) = k1 (t)− k2 (t) · P (t) ,

Ṫ (t) = k1 (t)− k3 (t) · (T (t)− P (t)) .

(2a)

(2b)

The model presented in Equation 1 can be also simplified to describe
the steady-state of our process. In this condition, by definition, the time
derivatives of premature and mature RNA are equal to zero (Ṗ = 0, Ṁ = 0),
and all the kinetic rates are not changing over time:

P =
k1
k2
,

M =
k1
k3
.

(3a)

(3b)

3 Time-course experimental design (Main Fig-

ure 3)

A general solution for the ODEs systems (Equations 1 and 2) is not possi-
ble without making assumptions on the functional forms of expression data
and/or kinetic rates. Naturally, countless parameterizations could be used,
and INSPEcT is restricted on few of them. The procedure of INSPEcT is
divided into two steps:

1. The first step models k1 as a piecewise linear, and k2, k3 as piecewise
constant, all defined between consecutive experimental time points.
This procedure, described in Section 3.1.2, exploits all the degrees of
freedom of the time-course, fits perfectly to the experimental data, with
the consequence of fitting also the experimental noise. Nonetheless,
this procedure provides a fast solution to check for the quality of the
input data. Moreover, the estimated rates are used to initialize the
parameters of the second modeling step.

2. The second step can be achieved by means of three different implemen-
tations: (i) non-functional approach, described in Section 3.2.1, (ii) in-
tegrative functional approach, and (iii) derivative functional approach.
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The aim of this step of modelling is to control the noise associated to
the experimental data and to statistically assess which are the rates
that are shaping the variation, if any, in premature and mature RNA.
Each of these methods has a peculiar ability in describing the exper-
imental data. Summarizing, the non-functional approach is able to
detect the gene responses of any shape, as it maintains the piecewise
parametrization, but is more affected by the noise than the other two.
The integrative functional approach restricts the shape of k1, k2, and k3
to either sigmoid or impulse functions. This approach requires to solve
the ODE system by integrating it and is the most expensive in terms of
computational time. The derivative functional approach restricts the
shape of M , k2, and k3 to either sigmoid or impulse functions. Due to
the fact that k1 is not constrained to any a-priori functional shape, this
approach could originate over complicated transcriptional responses.
Despite this, the analysis based on simulated datasets did not show
a marked reduction in the performance compared to the integrative
functional approach. Conversely, this method is computationally less
expensive and performs more than one order of magnitude faster (Sup-
plemental Fig. 1). For these reasons, INSPEcT runs the derivative
functional approach by default, and unless differently specified in the
text it has been used to produce all time-course analysis of the paper.

In addition to what previously described, when INSPEcT runs without nascent
RNA (INSPEcT-), there is an additional step prior to all others. This step,
which is described in Section 3.1.1, models constant k2 and k3 and it is nec-
essary to supply the lack of the nascent RNA information.

General notes The X̂ symbol will identify the experimental data of the
variable X, the σX the associated standard deviations, the i index a specific
time point between 1 and n. In the following sections, we will refer to many
numerical optimizations of different cost functions. We always perform them
exploiting the R functions optimize and optim which are implemented in the
built-in stat package and perform univariate and multivariate optimization,
respectively.

3.1 First step of modelling

3.1.1 Constant post-transcriptional rates

As anticipated in the introduction of Section 3, the method described here
is applied only in the absence of nascent RNA (INSPEcT-). In this case,
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the routine provides an initial guess of k1(t), assuming that k2 and k3 are
constant throughout the entire time-course. Despite these assumptions are
probably too strict for a considerable fraction of genes, they allow to solve
the Equation 1b and express M in function of the time t, and two unknowns
k2 and k3.

Ṁ (t) = k2 · P (t)− k3 ·M (t) ,

Ṁ (t) + k3 ·M (t) = k2 · P (t) ,

ek3·t ·
(
Ṁ (t) + k3 ·M (t)

)
= ek3·t · k2 · P (t) ,

dt
(
M(t) · ek3·t

)
= k2 · P (t) · ek3·t,∫ ti+1

ti

dt
(
M(t) · ek3·t

)
dt =

∫ ti+1

ti

k2 · P (t) · ek3·tdt,

M(t) · ek3·t
∣∣ti+1

ti
= k2 ·

∫ ti+1

ti

P (t) · ek3·tdt.

The solution of Equation 1b requires the integration of P (t) along the
time series {t1, . . . , tn}, meaning that P (t) should be expressed in functional
form. We chose to model P (t) as a piecewise linear function, defined at each
pair of consecutive experimental observations:


P (t) = ai + bi · t,
ai = P̂ (ti) · bi · ti, ∀ t ∈ [ti, ti+1] ∧ i ∈ {1, . . . , n− 1}

bi =
P̂ (ti)− P̂ (ti+1)

ti − ti+1

,

(4a)

(4b)

(4c)

allowing to complete the solution of Equation 1b for a generic interval
defined by ti and ti+1:

M(t) · ek3·t
∣∣ti+1

ti
= k2 ·

∫ ti+1

ti

(ai + bi · t) · ek3·tdt,

M(t) · ek3·t
∣∣ti+1

ti
=
k2 · ai
k3
· ek3·t

∣∣∣∣ti+1

ti

+ k2 · bi ·
∫ ti+1

ti

t · ek3·tdt,

M(t) · ek3·t
∣∣ti+1

ti
=
k2 · ai
k3
· ek3·t

∣∣∣∣ti+1

ti

+ k2 · bi ·

(
t · e

k3·t

k3

∣∣∣∣ti+1

ti

− ek3·t

k23

∣∣∣∣ti+1

ti

)
,
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which yields to

M(ti+1) =M(ti) · e−k3·(ti+1−ti) +
k2 · ai
k3
·
(
1− e−k3·(ti+1−ti)

)
+

k2 · bi
k3
·
[(
ti+1 − ti · e−k3·(ti+1−ti)

)
− 1

k3
·
(
1− e−k3·(ti+1−ti)

)]
. (5)

The dependence of M (ti+1) from M (ti) is solved recursively, starting from

the experimental value M̂ (t0). Moreover, applying the post-transcriptional
ratio formula (Equation 42) to the steady-state observations of P and M at
time t = t0:

P (t0)

M(t0)
=
k3
k2
, (6)

it is possible to express M in Equation 5 solely in terms of the time t and
a single unknown (either k2 or k3). To facilitate the inference of the model
parameters, we perform two distinct optimizations of the mature RNA cost
function (standard χ2): (i) the first one is unidimensional and regards k3
only, while k2 is expressed by means of Equation 6, (ii) the second one is
performed on the bi-dimensional k2, k3 space, using the values estimated in
the previous step as a starting point for the minimization of the χ2.

After the estimation of constant k2 and k3, we compute for each gene
k1(t) exploiting the optimized k2 and Equation 1a:

k1 (t) = Ṗ (t) + k2 · P (t) , (7)

where the function Ṗ (t) is approximated by fitting cubic splines to the ex-
perimental data.

3.1.2 Piecewise constant post-transcriptional rates

The aim of the procedure described in this section is to estimate k2(t) and
k3(t) as piecewise constant functions, with intervals defined at the boundaries
of the experimental time points:

k2(t) = k2i ∀ t ∈ (ti, ti+1] ∧ i ∈ {1, . . . , n− 1},
(8)

k3(t) = k3i ∀ t ∈ (ti, ti+1] ∧ i ∈ {1, . . . , n− 1}.

M̂(ti), P̂ (ti), and k̂1(ti) are required (i ∈ {1, . . . , n}). In case of INSPEcT+,

the quantification of k̂1(ti) is available through of the measure of nascent
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RNA, as will be described in Equations 43 and 44. In case of INSPEcT-,
k̂1(ti) is obtained through the procedure described in Section 3.1.1.

In order to estimate k2(t), we define k1(t) as piecewise linear:
k1(t) = ci + di · t,
ci = k̂1(ti) · di · ti, ∀ t ∈ [ti, ti+1] ∧ i ∈ {1, . . . , n− 1}

di =
k̂1(ti)− k̂1(ti+1)

ti − ti+1

.

(9a)

(9b)

(9c)

Following this, it is possible to solve the Equation 1a as follows:

Ṗ (t) = k1 (t)− k2i · P (t) ,

Ṗ (t) + k2i · P (t) = k1 (t) ,

ek2i ·t ·
(
Ṗ (t) + k2i · P (t)

)
= ek2i ·t · k1 (t) ,

dt
(
P (t) · ek2i ·t

)
= k1 (t) · ek2i ·t,∫ ti+1

ti

dt
(
P (t) · ek2i ·t

)
dt =

∫ ti+1

ti

k1 (t) · ek2i ·tdt,

P (t) · ek2i ·t
∣∣ti+1

ti
=

∫ ti+1

ti

(ci + di · t) · ek21 ·tdt,

P (t) · ek2i ·t
∣∣ti+1

ti
=

ci
k2i
· ek2i ·t

∣∣∣∣ti+1

ti

+ di ·
∫ ti+1

ti

t · ek2i ·tdt,

P (t) · ek2i ·t
∣∣ti+1

ti
=

ci
k2i
· ek2i ·t

∣∣∣∣ti+1

ti

+ di ·

(
t · e

k2i ·t

k2i

∣∣∣∣ti+1

ti

− ek2i ·t

k22i

∣∣∣∣ti+1

ti

)
,

which yields to

P (ti+1) =P (ti) · e−k2i ·(ti+1−ti) +
ci
k2i
·
(
1− e−k2i ·(ti+1−ti)

)
+

di
k2i
·
[(
ti+1 − ti · e−k2i ·(ti+1−ti)

)
−
(

1− e−k2i ·(ti+1−ti)

k2i

)]
. (10)

The dependence of P (ti+1) from P (ti) is solved recursively, starting from

the experimental value P̂ (t0). At each time interval, k2i is found as the one

that minimizes of the χ2 error with P̂ (ti+1).

In order to estimate k3(t), we define both k1(t) and P (t) as piecewise lin-
ear (Equations 4 and 9). Following this, we solve Equation 2b for a generic
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interval defined by ti and ti+1, assuming piecewise constant k2 and k3 (Equa-
tion 8):

Ṫ (t) = k1 (t)− k3i · (T (t)− P (t)) ,

Ṫ (t) + k3i · T (t) = k1 (t) + k3i · P (t) ,

ek3i ·t ·
(
Ṫ (t) + k3i · T (t)

)
= ek3i ·t · (k1 (t) + k3i · P (t)) ,

dt
(
T (t) · ek3i ·t

)
= (k1 (t) + k3i · P (t)) · ek3i ·t,∫ ti+1

ti

dt
(
T (t) · ek3i ·t

)
dt =

∫ ti+1

ti

(k1 (t) + k3i · P (t)) · ek3i ·tdt,

T (t) · ek3i ·t
∣∣ti+1

ti
=

∫ ti+1

ti

(ci + di · t) · ek31 ·tdt+ k3i ·
∫ ti+1

ti

(ai + bi · t) · ek31 ·tdt,

T (t) · ek3i ·t
∣∣ti+1

ti
=

(ci + k3i · ai)
k3i

· ek3i ·t
∣∣∣∣ti+1

ti

+ (di + k3i · bi) ·
∫ ti+1

ti

t · ek31 ·tdt,

T (t) · ek3i ·t
∣∣ti+1

ti
=

(ci + k3i · ai)
k3i

· ek3i ·t
∣∣∣∣ti+1

ti

+ (di + k3i · bi) ·

(
t · e

k3i ·t

k3i

∣∣∣∣ti+1

ti

− ek3i ·t

k23i

∣∣∣∣ti+1

ti

)
,

which yields to

T (ti+1) =T (ti) · e−k3i ·(ti+1−ti) +

(
ci
k3i

+ ai

)
·
(
1− e−k3i ·(ti+1−ti)

)
+(

di
k3i

+ bi

)
·
[(
ti+1 − ti · e−k3i ·(ti+1−ti)

)
−
(

1− e−k3i ·(ti+1−ti)

k3i

)]
.

(11)

The dependence of T (ti+1) from T (ti) is solved recursively, starting from the

experimental value T̂ (t0). At each time interval, k3i is found as the one that

minimizes of the χ2 error with T̂ (ti+1).

Linear approximation of premature RNA In the solution of Equation
11, we imposed that k1(t) and P (t) are both linear functions defined inde-
pendently for each time window. These assumptions are compatible with
our model as we can easily prove substituting the two lines in equation 1a.
However, nothing guarantees that a linear solution of equation 1a provides
the best fit of the experimental data. Indeed, this particular solution induces
some constrains on the parameters of P (t) and disregards the exponential
terms when Equation 10 is plugged into Equation 11. We tested the good-
ness of our particular solution (linear) comparing it against the most general
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one (exponential) on a set of simulated data. Specifically, we inferred the
best k3 for both the exponential and linear frameworks minimizing the error
of the model defined as, ∣∣∣∣∣1− T (ti+1)

T̂ (ti+1)

∣∣∣∣∣ . (12)

The distributions of this quantity in the two modeling frameworks resulted
very similar and much lower than the same error estimated at one standard
deviation (the medians were 4 orders of magnitude far). We concluded that
the linear solution provides a good fit of the data very similar to the one
obtained including the exponential term. Then, we compared the optimum
degradation rates for the linear solution against the counterpart estimated
taking into account the exponential term and we found very high concordance
(Spearman’s correlation coefficient = 1) except for few conditions character-
ized by very slow processing rates.
We concluded that the differences between linear and exponential solutions
are negligible from the practical point of view.

3.2 Second step of modelling

As anticipated in the introduction of Section 3, the aim of the second step of
modelling is to control the noise associated to the experimental data and to
statistically assess which are the rates that are shaping the variation, if any,
in premature and mature RNA.

3.2.1 Non-functional approach

In this approach, we extend the rates estimated in the first step by calculating
their confidence intervals and we identify, for each gene, the most probable
regulatory scenario. To do that, we developed a profile likelihood based
technique.

Maximum Likelihood Estimation of model parameters Kinetic rates
estimated as described in Section 3.1.2 are further optimized in order to
maximize the Log-Likelihood of the model.
In case if INSPEcT-, we compute this quantity by comparing premature and
total RNA estimated from Equations 10 and 11, expressed as a function of
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the parameters (θ), and their experimental counterparts P̂ and T̂ .

f(θ) ∈ {P1, . . . , Pn, T1, . . . , Tn},
x̂ ∈ {P̂1, . . . , P̂n, T̂1, . . . , T̂n},
σx ∈ {σP1 , . . . , σPn , σT1 , . . . , σTn},

In case of INSPEcT+, we add to the estimation of likelihood also the com-
parison between k1 (estimated from Equations 43 and 44) and k̂1:

f(θ) ∈ {P1, . . . , Pn, T1, . . . , Tn, k11 , . . . , k1n},
x̂ ∈ {P̂1, . . . , P̂n, T̂1, . . . , T̂n, k̂11 , . . . , k̂1n},
σx ∈ {σP1 , . . . , σPn , σT1 , . . . , σTn , σk11 , . . . , σk1n},

Following this, we define the Likelihood function:

L
(
θj|x̂j, σxj

)
= 2 ·

∫ ∞
|f(θ)−x̂j |

N
(
h|µ = 0, σ = σxj

)
dh ∀j ∈ {1, . . . , k},

(13)

and its cumulative logarithmic counterpart:

LL (θ|x̂, σx) =
k∑
j=1

ln
(
L
(
θj|x̂j, σxj

))
. (14)

where k is the number of experimental observations of the model, i.e. 2 · n
in case of INSPEcT- and 3 · n in case of INSPEcT+.

Log-Likelihood based confidence intervals The Log-Likelihood func-
tion (Equation 14) is defined in the space of the model parameters. In the
proximity of a maximum is a concave function, meaning that any pertur-
bation of the parameters results in a decrease of the Log-Likelihood. Pa-
rameters of the model whose perturbation cause a small reduction of the
Log-Likelihood can be considered uncertain. Conversely, parameters whose
perturbations cause a sharp reduction of the Log-Likelihood are considered
well characterized (Method Fig. 1). In order to estimate rigorous confidence
intervals, we exploited the Log-Likelihood ratio test [2]. This method com-
pares two nested models, which differ in the number of parameters, assessing
whether the more complex model explains the data better than the simpler
one. In our set-up, we consider the model corresponding to the maximum
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Method Figure 1: Different shapes of the Log-Likelihood function
according to the precision of the perturbed parameter θi. Cartoon
showing the Log-Likelihood curves for a parameter well (blue) and approxi-
mately (red) characterized.

Method Figure 2: Confidence intervals definition. Cartoon showing
the method we adopt to define the confidence intervals. Box A shows the
identification of the significance threshold while box B shows its application.

likelihood as the more complex, and the perturbed version obtained chang-
ing the value of a single parameter the simpler (θi → θ′i), with one parameter
less. From the theory of Log-Likelihood ratio test we know that

2 · LL (θ′
i)

LL (θi)
∼ χ2 (1) . (15)

Therefore we seek for θ′i that comprehend the 95% of the χ2(1) distribution
(th ≈ 3.8) in both directions (left C.I. θ′i < θi, right C.I. θ′i > θi, Method Fig.
2).

Selection of the regulatory scenario The confidence intervals are ex-
ploited to identify the most probable regulatory scenario, by testing inde-
pendently the variability of k1, k2, and k3. The parameters of our model
correspond to the kinetic rate values estimated at each experimental time
interval:

θ = {k11 , . . . , k1n , k21 , . . . , k2n , k31 , . . . , k3n}). (16)
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For each kinetic rate, we optimize a constant model minimizing its squared
distance from each data point normalized over the associated confidence in-
terval and we interpret the cost function as a χ2(n− 1). Eventually, we use
the expected distribution to compute a p-value for the model, which is cor-
rected for multiple testing (R stat p.adjust function, BH method) and used
to decide if the null hypothesis should be rejected (P-value < 0.05, variable
rate) or not.
In case of absence of nascent RNA (INSPEcT-), the variability of the rates
estimated in Section 3.1.2 is highly dependent upon the order through which
they are estimated. For instance, the k1(t) is the first rate whose variability is
estimated and explains the largest part of the variance of P (t). The variance
of M(t) left unexplained by k1(t) can be absorbed only by k3(t), therefore
k2(t) is usually largely constant. For this reason, we devised a second set
of piecewise kinetic rates, whose order of computation and variability are
different. For instance, k2 is the first rate whose variability is estimated and
explains the largest part of the variance of P (t). Following this, k1(t) and
k2(t) are estimated. The model with the lowest cumulative Log-fold changes
of the kinetic rates calculated over their value at time zero, i.e. the simpler
one, is selected and confidence intervals and model selection are performed.

Method Figure 3: Identification of the most probable transcriptional
and post-transcriptional regulatory scenario. Cartoon showing the
confidence intervals fit to test the variability of a given rate. We start from
the definition of the confidence intervals with parameters perturbation (left)
and we use this information to fit the profile with a constant minimizing a
χ2 function which is then used to estimate e p-value to accept or reject the
constant null hypothesis (right).

3.2.2 Functional approaches

In addition to the non-functional approach (described in Section 3.2.1), IN-
SPEcT provides an alternative modelling framework based on smooth func-
tional forms. As for the non-functional approach, the aim of functional ap-
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proaches is to reduce the impact of noise associated to the experimental data
and identify a regulatory scenario.

INSPEcT provides two ways of solving the ODE system exploiting smooth
functional forms, named integrative and derivative functional approaches.
Each of them applies with different variants when applied to a dataset with or
without nascent RNA, i.e. INSPEcT+ or INSPEcT-, and will be described in
a dedicated paragraph. As introduced in Section 3, the integrative functional
approach restricts the shape of k1, k2, and k3 to one of the adopted smooth
functions, while the derivative functional approach restricts the shape of
M , k2, and k3. As a consequence of this, the integrative approach requires
to solve the ODE system by integrating it and is the most expensive in
terms of computational time, while the derivative functional approach has an
analytical solution and can be solved faster. The main difference between the
application of these approaches to INSPEcT+ and INSPEcT- resides in the
choice of the regulatory scenario. While INSPEcT+ exploits the confidence
intervals of model parameters, INSPEcT- exploits the fit of models with
different degrees of freedom and performs model selection.

In all cases, the adopted functional forms are constants (Equation 17),
sigmoids (Equation 18 and Method Fig. 4) or impulses functions (Equation
19 and Method Fig. 4).

constant (t, k) = k, (17)

sigmoid (t, h0, h1, t1, b) = h0 +
h1 − h0

1 + e−b·(t−t1)
, (18)

impulse (t, h0, h1, h2, t1, t2, b) =
1

h1
·
(
h0 +

h1 − h0
1 + e−b·(t−t1)

)
·
(
h2 +

h1 − h2
1 + eb·(t−t2)

)
.

(19)

These functions are expected to recapitulate biological responses and are
widely used in the field of expression dynamics [3] [4] [5] [6].

Integrative modelling with nascent RNA (INSPEcT+) For each
gene in the dataset, we estimate the mean of k1i , k2i and k3i calculated in
the first step of modelling (Section 3.1) and we optimize them in order to
fit the steady-state solution presented in Equations 3a, 3b. Additionally, the
experimental value of k̂1(t) is calculated as will be described in Equation 45.
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Method Figure 4: Sigmoid and impulse functions. Cartoon showing an
example of sigmoid (left) and impulse (right), in this picture, we highlighted
the role of each parameter in the definition of the shape of the two curves.

We minimize the cumulative χ2 function:

χ2 =
n∑
i=1

(
P (t = ti)− P̂i

)2
σ2
Pi

+

(
M(t = ti)− M̂i

)2
σ2
Mi

+

(
k1(t = ti)− k̂1i

)2
σ2
k1i

.

(20)
The optimized steady-state rates k1SS

, k2SS
and k3SS

are then used as the
initial condition for two new optimizations that involve non steady-state
rates, i.e. k1(t, θk1) , k2(t, θk2) and k3(t, θk3). In one case the rates are fitted
by sigmoids functions:

k1(t, θk1) ∼ k2(t, θk2) ∼ k3(t, θk3) ∼ sigmoid(t, h0, h1, t1, b), (21)

in the other by impulse functions:

k1(t, θk1) ∼ k2(t, θk2) ∼ k3(t, θk3) ∼ impulse(t, h0, h1, h2, t1, t2, b) (22)

In particular, we parametrize each rate with a sigmoid or impulse function
initially defined as flat curve equal to the corresponding steady-state rate.
For sigmoids h0 and h1 are initially set equal to the steady-state rates value
(kxSS

), t1 to (tn−t0)/2 and b to 1. For impulses, h0, h1 and h2 are initially set
equal to the steady-state rates value (kxSS

), t1 to (tn−t0)·1/3, t2 to (tn−t0)·2/3,
and b to 1. Then, we optimize all the parameters of the sigmoid or impulse to
minimize the χ2 introduced in Equation 20. Within the integrative functional
framework an analytical solution of the ODEs system presented in Equations
1a and 1b is not possible, therefore P (t) and M(t) are estimated by numerical
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integration:
P (t) =

k1(0, θ1)

k2(0, θ2)
+

∫ t

0

k1(x, θ1) · dx−
∫ t

0

k2(x, θ2) · P (x) · dx,

M(t) =
k1(0, θ1)

k3(0, θ3)
+

∫ t

0

k2(x, θ2) · P (x) · dx−
∫ t

0

k3(x, θ3) ·M(x) · dx

(23)

using the ode function of the deSolve R-package. Eventually, the p-value
of the sigmoidal and impulsive models are calculated assuming 2 · n − 12
and 2 · n − 18 degrees of freedom, respectively. The model with the lower
associated p-value is chosen.
In order assess which rates are shaping the changes in premature and ma-
ture RNA, we evaluate the confidence intervals of the model parameters, as
described in Section 3.2.1. In this case, the model parameters do not corre-
spond directly to kinetic rates, but are the parameters of sigmoid or impulse
function. To propagate the uncertainties from the model parameters to the
corresponding kinetic rate, we identify the portion of space, per each kinetic
rate, containing all the trajectories computed perturbing the model parame-
ters within their 95% confidence interval (Method Fig. 5). Once obtained the
confidence intervals of each kinetic rate, we fit a linear function, as described
in Method Fig. 3, to estimate a p-value that we use, after correction for
multiple testing, to decide if the constant rate hypothesis should be rejected
(adjusted p-value< 0.05) or not.

Derivative modelling with nascent RNA (INSPEcT+) For each
gene in the dataset, we fit mature RNA expression level both with a sig-
moid and an impulse model. We optimize each fit by minimizing a standard
χ2 cost function and select the model with the minimum associated p-value.
The same functional form selected for M(t) is also used to define the dynam-
ics of k2(t) and k3(t), which are initially defined as flat curves equal to the
mean rate estimated in the first step of modelling (see previous paragraph
for more specifications). Following this, we optimize all the parameters of
the sigmoid or impulse to minimize the χ2 introduced in Equation 20. In
order to define the χ2 function, P (t) is obtained through Equation 1b:

P (t) =
Ṁ (t) + k3 (t) ·M (t)

k2 (t)
. (24)
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Method Figure 5: Uncertainties propagation. Cartoon showing the idea
behind the propagation of the uncertainty from the parameters we use to
describe a kinetic rate to its numerical values along the time-course. Each
solid line represents a trajectory obtained perturbing one parameter of the
function used to describe the generic rate kx (θi → θ′i). We define the rate’s
confidence intervals as the smallest portion of space which includes all the
trajectories (black dashed lines).

Analogously, k1(t) is obtained through Equation 1a:

k1 (t) = dt

(
Ṁ (t) + k3 (t) ·M (t)

k2 (t)

)
+ Ṁ (t) + k3 (t) ·M (t) ,

k1 (t) =
M̈ (t)

k2 (t)
+ Ṁ (t) ·

(
1 +

k3 (t)

k2 (t)
− k̇2 (t)

k22 (t)

)
+M (t) ·

(
k̇3 (t)

k2 (t)
− k̇2 (t) · k3 (t)

k22 (t) + k3 (t)

)
.

(25)

The selection of the regulatory scenario follows the same rationale presented
for the integrative approach.
As previously mentioned, the major improvement of the derivative approach
on the integrative one is the reduction of the computational cost of models
optimization due to the elimination of any numerical solution of the ODEs
system. However, a drawback of such a speed-up is the introduction of first
and second orders time derivatives in the χ2 computation, which results in
an increase of its complexity. For instance, we report the first and second
derivatives of the sigmoid and impulse functions (Equations 26, 27, 28 and
29). During the optimization via the Nelder-Mead procedure, configurations
of parameters that do not returns finite values for M(t), P (t) and k1(t) are

18



discarded and the optimization proceed with a new set of parameters.

d sigmoid (t, h0, h1, t1, b)

dt
=
h1 − h0
h1

· b
1

e−b·(t−t1)
+ 2 + e−b·(t−t1)

,

(26)

d2sigmoid (t, h0, h1, t1, b)

dt2
=

2 · b2 · (h1 − h0) · e−2·b·(t−t1)

(e−b·(t−t1) + 1)3
− b2 · (h1 − h0) · e−b·(t−t1)

(e−b·(t−t1) + 1)2
,

(27)

d impulse (t, h0, h1, h2, t1, t2, b)

dt
=

1

h1
·

[(
(h1 − h0) ·

b
1

e−b·(t−t1)
+ 2 + e−b·(t−t1)

)
·

·
(
h2 + (h1− h2) ·

1

1 + eb·(t−t2)

)
+

+

(
h0 + (h1− h0) ·

1

1 + e−b·(t−t1)

)
·

·

(
(h1 − h2) ·

−b
1

eb·(t−t2)
+ 2 + eb·(t−t2)

)]
,

(28)

d2impulse (t, h0, h1, h2, t1, t2, b)

dt2
=− 2 · b2 · (h1− h0) · (h1− h2) · eb·(t−t2)−b·(t−t1)

h1 · (e−b·(t−t1) + 1)
2 · (eb·(t−t2) + 1)

2 +

+
1

h1
·

(
2 · b2 · e2·b·(t−t2)

(eb·(t−t2) + 1)
3 −

b2 · eb·(t−t2)

(eb·(t−t2) + 1)
2

)
·

·
(

(h1 − h2) · (h1− h0)

e−b·(t−t1) + 1
+ h0

)
+

+
1

h1
·

(
2 · b2 · e−2·b·(t−t1)

(e−b·(t−t1) + 1)
3 −

b2 · e−b·(t−t1)

(e−b·(t−t1) + 1)
2

)
·

·
(

(h1− h0) · (h1− h2)

eb·(t−t2) + 1
+ h2

)
(29)

Integrative modelling without nascent RNA (INSPEcT-) Without
an experimental measure of nascent RNA, models where all the kinetic rates
are shaped as sigmoid or impulse functions, as commonly done in INSPEcT+,
are overcomplicated and lead in several cases to data overfitting. In fact,
the χ2 cost function of INSPEcT- is simpler than the one of INSPEcT+
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(Equation 20), as it does not include the fit of the synthesis rate profile:

χ2 =
n∑
i=1

(
P (t = ti)− P̂i

)2
σ2
Pi

+

(
M(t = ti)− M̂i

)2
σ2
Mi

. (30)

To solve this problem, INSPEcT- fits the P̂ and M̂ experimental profiles of
each gene with eight models of different complexity, which represent all the
possible combination of each kinetic rate being constant or variable (Method
Fig. 6). At the end of the procedure, the model with the best trade-off
between fit quality and simplicity is chosen to describe the kinetics of the
gene.

For each gene in the dataset, we estimate the mean of k1i , k2i and k3i cal-
culated in the first step of modelling (Section 3.1) and we optimize them in
order to fit the steady-state solution presented in Equations 3a, 3b, through
the minimization of the cumulative χ2 function described above. This repre-
sent the simplest model (No-reg in Method Fig. 6) and its optimized rates
(kxSS

) are used to initialize the parameters of the following models. Remain-

ing models are fitted to P̂ and M̂ profiles, through the minimization of the
cumulative χ2 function. As for INSPEcT+, we parametrize non-constant
rates with both a sigmoid and an impulse functions and we select the best
model according to the minimum χ2 p-value. For sigmoids h0 and h1 are
initially set equal to the steady-state rates value (kxSS

), t1 to (tn− t0)/2 and
b to 1. For impulses, h0, h1 and h2 are initially set equal to the steady-state
rates value (kxSS

), t1 to (tn− t0) · 1/3, t2 to (tn− t0) · 2/3, and b to 1. Following
the optimization, we estimate per each model the Log-Likelihood (Equation
14) and the Akaike Information Criterion (AIC):

AIC = 2 · k − 2 · LL (θ|x̂, σx) . (31)

where θ is the vector of model parameters and k the complexity of the model,
i.e. dim(θ). The model with the lowest AIC is compared with its nested
neighbours (Method Fig 6) by means of the LLR test (Equation 15) to esti-
mate a p-value for the variability of each kinetic rate.

Derivative modelling without nascent RNA (INSPEcT-) Similarly
to the integrative approach of INSPEcT-, without the information of nascent
RNA it is necessary to fit different models and perform model selection to
discriminate between constant and non-constant rates and avoid overfitting.
Differently from the integrative approach, within the derivative framework
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Method Figure 6: Diagram showing the eight models considered in
our pipeline and their nested relationships. Models are named after
the non-constant rate(s) of the RNA life-cycle. s stands for synthesis (k1),
p for processing (k2), and d for degradation (k3). Each arrow links two
nested models. The direction points to the more complex, while the color
identifies the kinetic rate which is differentially regulated in the two scenarios:
synthesis (red), processing (blue) and degradation (green).

the form of k1(t) is not restricted to any of the functional forms but is ob-
tained assigning a functional form to M(t), k2(t) and k3(t), as described in
Equation 25. As a consequence of this, it is not possible to model a constant
k1 as explicitly required for models p, d and pd (Method Fig. 6). For this
reason, we took advantage of the ODEs system expressed in terms of P and
T (Equations 2a and 2b) to model an explicitly constant k1.
In particular, in the model p (variable k2(t) and constant k1 and k3), P (t)
and k2(t) are expressed in function of T (t), k1 and k3:

Ṫ (t) =k1 − k3 · (T (t)− P (t)) ,

P (t) =T (t) +
Ṫ (t)− k1

k3
,

k2 (t) =
k1 − Ṗ (t)

P (t)
,

k2 (t) =− T̈ (t)− k3 · Ṫ (t)− k1 · k3
Ṫ (t) + k3 · T (t)− k1

. (32)
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Similarly, in the the model d (variable k3(t) and constant k1 and k2), P (t)
and k2(t) are expressed in function of T (t), k1 and k2:

Ṗ (t) =k1 − k2 · P (t) = 0,

P =
k1
k2
,

Ṫ (t) =k1 − k3 (t) · (T (t)− P ) ,

k3(t) =
k1 − Ṫ (t)

T (t)− P.
(33)

In the model pd (variable k2(t) and k3(t), and constant k1), P (t) and k2(t)
are expressed in function of T (t), k1 and k3(t):

Ṫ (t) =k1 − k3 (t) · (T (t)− P (t)) ,

P (t) =T (t) +
Ṫ (t)− k1
k3 (t)

,

k2 (t) =
k1 − Ṗ (t)

P (t)
,

k2 (t) =−
T̈ (t) + Ṫ

(
k23(t)−k̇3(t)

k3(t)

)
+ k1·k̇3(t)

k3(t)
− k1 · k3 (t)

Ṫ (t) + k3 (t) · T (t)− k1
. (34)

These three models are optimized by fitting a sigmoid and an impulse func-
tion on the profile of T̂ . After choosing the best functional form in terms of
the χ2 p-value, the parameters of T (t, θT ), are optimized together with the
parameters associated to the kinetic rates by minimizing the χ2 cost function
defined over P̂ and T̂ :

χ2 =
n∑
i=1

(
P (t = ti)− P̂i

)2
σ2
Pi

+

(
T (t = ti)− T̂i

)2
σ2
Ti

. (35)

All other models (s, sp, sd, spd) are optimized by fitting a sigmoid and an

impulse function on the profile of M̂ . After choosing the best functional
form in terms of the χ2 p-value, the parameters of M(t, θT ), are optimized
together with the parameters associated to the kinetic rates by minimizing
the χ2 cost function defined in Equation 30 and expressing P (t) and k1(t) as
defined in the Equations 24 and 25.
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In all cases, parameters associated to the kinetic rates are initialized as
the population median of the rates calculated in first step of the modeling
(i.e. median(kx), see Section 3.1), optimized in order to fit the steady-state
solution presented in Equations 3a, 3b, through the minimization of the cu-
mulative χ2 function described in Equation 30, i.e. kxSS

. For sigmoids h0
and h1 are initially set equal to kxSS

, t1 to (tn − t0)/2 and b to 1. For im-
pulses, h0, h1 and h2 are initially set equal to kxSS

, t1 to (tn − t0) · 1/3, t2 to
(tn − t0) · 2/3, and b to 1. The choice of using population medians instead of
gene specific parameters at the beginning of the optimization procedure is
motivated by the fact that the derivative approach in the absence of nascent
RNA may result in undefined models for specific set of parameters. By em-
pirical observation, the optimized population medians kxSS

returned a lower
fraction of undefined models compared to optimized gene medians. In any
case, if the cost function is not defined in the initial condition of the opti-
mization we search for the minimum increase of kxSS

which guarantees the
correct initialization. We account for this correction and we added a term in
the cost function which penalizes the distance of k1(0), k2(0) and k3(0) from
their steady state values (i.e. ”no-reg” model).
After the optimization of the eight models, we perform the model selec-
tion following the same procedure presented for the integrative approach of
INSPEcT-.

4 Validation of INSPEcT- time-course frame-

work (Main Figures 2, 4, 5, 6)

4.1 Contamination between unlabelled and labelled RNA

In order to estimate the amount of unlabelled RNA in the labelled fraction,
we quantified the amount labelled RNA extracted at increasing labelling
times, namely 0, 10, 20, 30, 60, 120 min. We reasoned that in the absence
of contamination from the unlabelled fraction, labelled RNA (TL) should be
absent at labelling time equal to 0 and increase following the kinetics of 4sU
incorporation (k) and preexisting RNA degradation (j):{

ṪL = k − j · TL,
TL(0) = 0.

(36a)

The model was not able to recapitulate the experimental data (red line in
Main Fig. 2A, Likelihood lower than 1e−80), mainly due to a lower amount
labelled RNA recovered in the early time points compared to modeled. We
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reasoned that 4sU incorporation could be limited at initial time-points by the
intracellular 4sU availability. For this reason, we modeled 4sU incorporation
with an exponential increase with parameter b:{

ṪL = k ·
(
1− e−b·t

)
− j · TL,

TL(0) = 0.

(37a)

This model (green line in Main Fig. 2A) had a Likelihood of about 1e −
20. To establish if the increase in performance was sufficient to justify the
new degree of freedom, we performed a Log-Likelihood ratio test. The test
returned a very significant p-value (2.0e − 27), therefore we concluded that
the assumption of an exponential 4sU incorporation rate was reasonable.
Nonetheless, this model is not able to recapitulate the amount of labeled
RNA at early time pints. To test if a constant contamination term (C) could
recapitulate our experimental observations during the whole time frame of
our analysis, we devised the following model:{

ṪL = k ·
(
1− e−b·t

)
− j · TL,

TL(0) = C.

(38a)

This model fitted the early data point as well as later time points (blue line
in Main Fig. 2A), which reflected in an increase of the Likelihood. Moreover,
this model performed significantly better than the previous one, as attested
by the Log-Likelihood ratio test (3.1e − 7). Finally, we tried to model a
variable contamination coefficient linearly increasing over time:{

ṪL = k ·
(
1− e−b·t

)
− j · TL + a,

TL(0) = C.

(39a)

In this case, the additional complexity did not resulted in a significantly
better fit (Log-Likelihood ratio test p-value = 1).
Concluding, based on the modeling of labeled RNA extracted at different
labelling times, we estimated a 30% of unlabeled RNA contamination at 10
minutes of 4sU pulse.

4sU labeling, extraction and quantification protocol. Detection of
nascent RNA by metabolic labeling using 4-thiouridine (4sU, Sigma T4509)
has been performed as previously described (Sabo’ et al 2014). Briefly, cells
were labeled with 300 µM 4sU for 10, 20, 30, 60, 120 min respectively. RNA
was extracted using the Qiagen miRNeasy kit according to the manufac-
turer’s instructions. 50 µg of total RNA were subject to biotinylation reac-
tion: RNA was diluted in 100 µl of RNase-free water, 100 µl of biotinylation
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buffer (2.5 x stock: 25 mM Tris pH 7.4, 2.5 mM EDTA) and 50 µl of EZ-link
biotin-HPDP (1 mg ml-1 in DMF; PierceThermo Scientific 21341) were then
added to diluted RNA and incubated for 2 h at room temperature (RT).
RNA was precipitated and unbound biotin-HPDP was removed by chloro-
formisoamylalcohol (24:1) and purified using MaXtract high density tubes
(Qiagen). Resulted biotinylated RNA was purified using Dynabeads MyOne
Streptavidin T1 (Invitrogen). 50 µl of beads were washed 2 times in washing
buffer A (100 mM NaOH, 50 mM NaCl), once in washing buffer B (100 mM
NaCl) and resuspended in 100 µl of buffer C (2 M NaCl, 10 mM Tris pH
7.5, 1 mM EDTA, 0.1 Tween-20). RNA was added in an equal volume and
rotated at RT for 20 min. Next, beads were washed 3 times with washing
buffer D (1 M NaCl, 5 mM Tris pH 7.5, 0.5 mM EDTA, 0.05% Tween-20).
RNA was eluted from the beads in 100 µl of 10 mM EDTA in 95% formamide
(65 ◦C, 10 min). After that, RNA was extracted with the RNeasy MinE-
lute Spin columns (Qiagen) according to the manufacturer’s instruction and
eluted in 15 µl of RNase-free water. RNA quality was assessed using the
Agilent 2100 Bioanalyzer (Agilent Technologies). 4sU-labeled purified RNA
was quantified by the Qubit R©2.0 Fluorometer according to manufacturer’s
instruction.

4.2 Simulation of RNA life-cycle data

In this section, we present our routine for simulated data genesis (graphically
represented in Supplemental Fig. 2). The possibility to model the contam-
ination of nascent RNA with unlabelled RNA is the major improvement of
data simulation routine, compared to the version provided in the first release
of the package [7].

Sampling of RNA life-cycle kinetic rates and fold-changes. Gene
expression levels and RNA life-cycle kinetic rates (estimated in the first step
of modelling, described in Section 3.1) are retrieved from an object of class
INSPEcT. From the empirical distribution P (k1), one value is extracted
through random sampling (kg1). Then, we subdivide P (k1) in quantiles to
select the genes with a similar k1. From those genes three empirical distri-
butions are generated: P (k2|kg1), P (k3|kg1) and P (k1FC

|kg1). We iterate the
procedure to sample the maximum Log2 fold change distributions for the
rates of processing and degradation conditioned to the corresponding rate
and kg1FC

. At the end of this process, we obtain, for each artificial gene, a set
of six numerical values that provide its RNA life-cycle dynamics. The condi-
tional sampling guarantees to preserve the correlations which are known to
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exist between rates absolute levels and Log2 fold changes (see the paragraph
Comparison between simulated and real data in this section).

Selection of RNA life-cycle functional forms. We proceed defining
the dynamic response of each gene in the simulated dataset. For any rate,
we select one among three possible functional forms (constant, sigmoid, im-
pulse), according to a specific probability provided by the user (by default
0.5, 0.3, 0.2), and we shape it using the parameters previously defined. In
this manner, we set the order of magnitude of the rate and, for sigmoids
and impulses, also the maximum fold change; the response times are ran-
domly selected according to the time window of the INSPEcT object used as
reference. After the kinetic rates parametrization, we can solve numerically
the ODEs system (Equations 1 and 2) to estimate an expression profile for
nascent, premature and total RNA.

Sampling of gene specific contamination. We simulate a gene specific
contamination of the nascent portion of the transcriptome from the pre-
existing counterpart, modelled as a linear combination of the two fractions,
the latter one scaled by a numerical corruption coefficient bg ∼ N(µbg , σbg).
This coefficient serves as a fraction of contamination, therefore values lower
than 0, or larger than 1 are set equal to the extremes of the interval. The
parameters µbg and σbg can be set by the user. By default, µbg is set to
reproduce the 30% average contamination estimated experimentally in Sec-
tion 4.1, while σbg is set to reproduce a correlation score of 0.7 [8] between
the estimated k3 and the true ones, as often reported for k3 calculated by
independent methods.

Sampling of variability between replicates. We exploit the Plgem Bio-
conductor package [9] to estimate a power law relation between each experi-
mental expression data (premature RNA, total RNA and nascent RNA) and
the associated variances. These functions allow to associate a standard devi-
ation to each simulated expression level. In this manner, we pass from a set
of numerical values, the simulated expression levels, to a group of Gaussian
distributions. Finally, we sample them to simulate a real sequencing exper-
iment. The number of samplings is defined by the user according to the
number of biological replicates to simulate. All these values are then used
to evaluate the mean simulated expression data profiles and the associated
standard deviations.
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Comparison between simulated and real data. We modelled a simu-
lated dataset of 1000 genes in 11 time points and 3 replicates from a small set
of genes released with the INSPEcT package and we compared the expression
values and the rates first guess against the counterparts obtained from the
analysis of the experimental data (Supplemental Fig. 3). Specifically, we
compared the Log2 distributions of total RNA, premature RNA, synthesis,
processing and degradation rates first guess estimated at the steady-state.
For the same quantities, we also compared the distributions of mean Log2
fold change against the 0 minutes condition. Finally, we confronted the
mean-variance relations of the experimental data. For each couple of box
plots we used a non-parametric Two-Sided Wilcoxon test and we always got
either not or barely significant p-values which attested very small differences
between the two distributions. This is evident for the steady-state absolute
values while the mean Log2 fold changes distributions appear to be more dif-
ferent. This higher variability could be explained by different proportions of
constant and variable rates in the two conditions. In the simulated dataset,
each rate has the same probability to be constant or variable while the real
genes we used to generate the data are mainly regulated in synthesis.

4.3 Measure of the classification performance

Simulated data created as described in the previous section are used as a
benchmark to measure the ability of INSPEcT in discriminating between
constant versus variable rates of the RNA life-cycle throughout a time course
analysis. In particular, we measured the ability of INSPEcT in the identifi-
cation of the variability of individual rates (i.e. k1, k2 or k3) for all the genes
of the simulated dataset by comparing INSPEcT results with the true class
that generated the simulated profile.

ROC curves analysis Considering that we analyze the classification per-
formance individually for each rate, we used the Receiver Operating Charac-
teristic (ROC) curves, which are commonly used for binary classification. In
our case, they were created by measuring, at each p-value threshold resulting
from the model selection of INSPEcT, the True Positive Rate (TPR, sensi-
tivity) and the False Positive Rate (FPR, 1 - specificity) defined as follow:

TPR =
true positive

condition positive
=

TP

P
,

TNR =
true negative

condition negative
=

TN

N
.
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The TPR and FPR calculated for each kinetic rate defined the ROC curves
plotted in Main Figure 6C. The integral of a ROC curve is called Area Under
the Curve (AUC), and is an indicator of the performance. AUC ranges from
0 (completely wrong classifier) to 1 (perfect classifier), and 0.5 is the score
expected from a random classification. In this research article, we often
reported the AUC score without showing the original ROC curve for graphical
reasons (Main Fig. 2E, Supplemental Fig. 10, Supplemental Fig. 7 - 9).

Measure of cross-classification performance The performance analy-
sis reported in Supplemental Fig. 10 is atypical because we classified the vari-
ability of one rate (i.e. k1) according to the p-values estimated by INSPEcT
relative to the variability of the other two (k2 and k3). In this situation, our
expectation was to observe AUCs close to 0.5 as the variability of each rate
was selected independently to the others.

Measure of the performance at fixed threshold The ROC analysis
provides an overview of the performance of a binary classifier. However,
it lacks measuring the classification performance at a given threshold. In
fact, INSPEcT returns a classification based on the p-value of each rate.
Specifically, if the (adjusted) p-value is lower than a certain threshold the
rate is considered variable, otherwise it is constant. For this reason, INSPEcT
classification performance was measured at the default threshold of adjusted
p-value ≤ 0.05. The classification was measured by means of both sensitivity
and specificity (Supplemental Fig. 6), or by means of a single indicator, i.e.
the F1 score (Main Fig. 4E), which is their harmonic mean:

F1 =
2 · TP

2 · TP + FN + FP
.

4.4 Impact of time series design on classification per-
formance

In order to elucidate the relevant features of a time series design that are able
to impact INSPEcT classification, we created and analyzed with INSPEcT-
simulated datasets with specific features.

Optimal design for the identification of sigmoidal k1 responses We
created a dataset of 100 simulated genes, including 50 constant genes, and
50 genes transcriptionally regulated through sigmoidal modulations covering
a time lapse of 16 hours (sigmoid dataset). We sampled the sigmoid dataset
with several time series of three points spanning different “time windows”
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between 0 and 16 hours (Supplemental Fig. 7A). We modeled each gene with
INSPEcT- and estimated the classification performance of the synthesis rate
through ROC analysis (AUC score - red line in Supplemental Fig. 7B).
INSPEcT- classification performance increased along with the portion of the
time-course covered by the three time-points “time window”. In particular,
the AUC is linearly related to the fraction of regulated genes whose k1 half
response time (τk1) is included in the “time window” (Supplemental Fig. 7C,
D). The half response time of mature RNA (τM) can be used as a proxy of
τk1 , which is not directly available to the user. In particular, τM is always
greater or equal than τk1 , following the relation:

τM ≈ τk1 +
Log(2)

k2
+
Log(2)

k3
(40)

and can be used to design the experiment (Supplemental Fig. 7E).

Optimal design for the identification of k1 impulsive responses We
created a dataset of 100 simulated genes, including 50 constant genes, and
50 genes transcriptionally regulated through impulsive modulations covering
a time lapse of 16 hours (impulse dataset). Again, we sampled the dataset
with several time series of three points spanning different “time windows”
between 0 and 16 hours (Supplemental Fig. 7A). Differently from the sig-
moid dataset, the classification of the impulse dataset was not affected by
the temporal positioning of the three time points (AUC score - green line in
Supplemental Fig. 7B). Instead, we reasoned that this dataset might benefit
from an increasing number of time points. We considered between 3 and 15
time points linearly distributed in the 0-16 hours time lapse, i.e. having de-
creasing “time steps” between time points (Supplemental Fig. 8A). Indeed,
when we modeled these data with INSPEcT- we found that the AUCs of
the synthesis rates increased along with the number of time points (Supple-
mental Fig. 8B). Impulse functions are characterized by a double response.
We estimated for each variable gene in the dataset a “response interval”
(δk1) defined as the difference between the second and the first half response
times (exemplified in Supplemental Fig. 8E). Then, we computed for each
series the fraction of variable genes with a “response interval” larger than the
“time step” (exemplified in Supplemental Fig. 8A). We found a clear rela-
tion between this quantity and the associated AUC relative to the synthesis
rate (Supplemental Fig. 8C, D). Unfortunately, the “response interval” of M
(δM), which is easier to directly measure, is always larger or equal then δk1
and, for this reason, the prediction based on this datum is an upper limit of
the real classification power. However, it is possible to approximate δk1 from
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δM , k2 and k3 by exploiting the empirical formula:

δM ≈ δk1 +
1

2
·
(
Log(2)

k2
+
Log(2)

k3

)
(41)

This relation is not exact and its error is inversely proportional to the rates of
processing and degradation. However, it could be a reasonable starting point
for the careful design of an RNA profiling time-course experiment (Supple-
mental Fig. 8E). Following this, we reasoned that the time points overlapping
the k1 response should be the most important. To verify this hypothesis, we
retrieved the first half response times of the synthesis rate, which showed
that the largest part of the response of the simulated dataset resides between
0 and 4 hours (histogram in Supplemental Fig. 8E). The ROC analysis
showed in the right side of Supplemental Fig. 8E indicates that the AUC
of the 15 points time series described above (green line, AUC=0.90) is only
marginally reduced when an halved number of time points covers the 0-4h
time span (red line, AUC=0.86). Rather, a similar drop in the number of
time points affects the AUC performance when these cover the less informa-
tive portion of the time-course (gold line, AUC=0.66). An reduction in the
number of time points with homogeneous distribution could be a trade-off
between costs and performance (blue line, AUC=0.74). Finally, an exper-
imental design with logarithmic distributed time points could be an even
better cost-saving strategy (black line, AUC=0.82).

Optimal design for mixed responses of the kinetic rates So far, we
worked in an ideal situation where only transcriptional regulation occurs.
To validate our findings in the most general case we generated two sets of
100 simulated genes, each independently regulated in synthesis, processing
and degradation with the same probability (Probability of regulation = 0.5).
The first dataset was composed of sigmoidal modulations while the other
one was composed of impulsive regulations only. We sampled these two sys-
tems according to the time series presented in Supplemental Fig. 8A, we
modeled each dataset with INSPEcT-, and we estimated the corresponding
AUCs (Supplemental Fig. 9). As expected, the classification performance of
INSPEcT- on the sigmoid dataset was independent on the number of time
points (Pearson correlation coefficient of 0.08, P=0.61), while the classifica-
tion of all kinetic rates benefits from an increasing number of time points in
the impulse dataset (Pearson correlation coefficient of 0.67, P < 1e− 5).

Summary of the key results of these analyses
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• INSPEcT– classification performance depends on the composition of
the simulated dataset in terms of sigmoidal and impulsive responses;

• To adequately cover simple sigmoidal responses, it is sufficient to build
a time series with a limited number of time points which cover a large
portion of the regulation. The latter can be estimated by the half-
response time of mature RNA;

• To adequately cover complex impulsive responses, it is necessary to
design a sufficiently dense time series. The time step between time
points directly relates to the classification performance, especially for
genes characterized by high processing and degradation rates;

• Not all the data points of a time series are equally relevant. The more
the time points cover the portion of the time course where most of the
modulations occur, the higher is their added value.

4.5 Comparison with independent quantification of k1
and k3

To further validate INSPEcT- models, we compared the synthesis and degra-
dation rates estimated from the MYC activation dataset (3T9 mouse fibrob-
lasts) with independent quantifications.

Regarding the synthesis rate, we decided to compare the values returned
by the modelling procedure against nascent RNA expression levels (RPKM)
estimated merging intronic and exonic reads. Specifically, we performed
ranked correlation analyses on: the untreated condition (Supplemental Fig.
5A), following 4 hours of MYC activation (Supplemental Fig. 5B), and on
the Log2 fold changes between those conditions (Supplemental Fig. 5C).
The comparisons were done on a set of 6’446 genes identified as transcrip-
tionally regulated, the resulting Spearman’s correlations were 0.88, 0.90 and
0.87 respectively.

To benchmark INSPEcT- degradation rates, we focused on the TimeLapse-
seq method [10] that provides, as a Supplemental of the original publication
(Supplemental Table 2), a set of RNA half-lives (Log(2) ·k−13 ) estimated from
the analysis of Mouse Embryonic Fibroblasts (MEF) cells; 2’992 genes in two
replicates. This cell type is biologically close to the 3T9 murine fibroblasts we
used in the MYC activation dataset, although not identical. To quantify this
similarity, we downloaded two samples of wild type MEF cells total RNA-seq
(SRR125393 and SRR125394) and we quantified the counts for 24’528 genes
aligning the reads on the mm10 reference genome quantifying the exonic reads
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through INSPEcT. We checked the Spearman’s correlation between replicates
(0.98) and we estimated gene’s mean values. Then, we did the same for the
counts estimated by INSPEcT on the untreated 3T9 samples (21’677 genes
- replicates Spearman’s correlations around 0.99). Finally, we performed a
ranked correlation analysis between the mean expressions of MEF and 3T9
cells on 21’324 common genes finding a value of 0.89. To perform the compar-
ison between degradation rates, we converted the original MGI symbols pro-
vided in the TimeLapse-seq dataset to Entrez IDs exploiting the biomaRt R
package (dataset GRCm38.p6); we managed to fine a unique correspondence
for 2’869 genes (2’737 part of the INSPEcT- dataset). Finally, we found
a Spearman’s correlation of 0.5 (p-value < 1e − 173) - Supplemental Fig.
5D) between TimeLapse and INSPEcT- degradation rates. Interestingly, it
was higher than the counterpart estimated confronting TimeLapse-seq rates
against the INSPEcT+ models (0.46 - p-value < 1e−148) - Supplemental Fig.
5E). We would like to stress a key point for the interpretation of these results.
While MEF cells are similar to 3T9 cells, they are not exactly the same cell
type. Indeed, the genes considered for the comparison of degradation rates
had a Spearman’s correlation of 0.67 in their expression (Supplemental Fig.
5F).

5 Steady-state experimental design (Main Fig-

ure 7)

5.1 Without nascent RNA data (INSPEcT-)

5.1.1 General framework

The knowledge of the steady-state values of P and M is not sufficient to
estimate the k1, k2 and k3 that generated them. In fact, the system of
equations 3 is composed of two Equations and three unknowns, and can
be solved by infinite combinations of rates. INSPEcT- exploits P and M
expression levels to retrieve the maximum information regarding the RNA
life-cycle, calculating the ratio between processing and degradation rates from
steady-state observations (post-transcriptional ratio, or PT-ratio, Equation):

P

M
=
k3
k2
. (42)

The variation of the PT-ratio of a gene among conditions is sufficient,
although not necessary, to identify post-transcriptional regulation. In fact,
while a significant variation of the PT-ratio might only be explained by the
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variation of either k2 or k3, concordant and equal variations of k2 and k3
balance each other leaving the PT-ratio unchanged. Instead, variations in
the k1 do not impact the PT-ratio, as they modulate both P and M to the
same extent.

INSPEcT- goes beyond the pure identification of post-transcriptional reg-
ulations. Several works in the literature showed that the rates of the RNA
metabolism are coupled [11]. As a consequence of this, it is expected that a
certain regulation in k2 and k3 might follow the regulation of transcription.
In order to discriminate between post-transcriptional regulations that are
the consequence of rate coupling and other kind of post-transcriptional reg-
ulations (henceforth atypical), INSPEcT- estimates a linear relation in the
Log2(P ) − Log2(M) space, i.e. a power law, among the conditions medians
of P and M (Main Fig. 7C). The slope (s) indicates whether the PT-ratio
increases (s > 1), decreases (s < 1) or is invariant (s = 1) at increasing
expression levels. While a slope = 1 could be explained by an absence of a
general coupling between k1 and the post-transcriptional rates, in other cases
it is reasonable to suppose that the trend is measuring the coupling between
the rates of the RNA metabolism. In fact, in the P-M graph (Method Fig.
7):

• a modulation in k1 results in an equal displacement of P and M,

• a modulation in k2 results in an opposite displacement in P,

• a modulation in k3 results in an opposite displacement in M,

Obviously, it is not possible to infer the exact relation between k1, k2 and
k3. For instance, the simplest explanation for PT-ratio increasing with the
expression regime is that increases of k1 are generally followed by an increase
in k2 or a decrease in k3 (or a combination of the two), but multiple and more
complex scenarios can fit the same observation. For these reasons, INSPEcT-
does not guess which rate is modulated following a specific perturbation of
P and M, but just identifies atypical regulations.

5.1.2 Inference of the P-M trend

The linear relation in the Log2(P )-Log2(M) space is inferred based on the
the median P and M observations across all the conditions available, individ-
ually for each gene. INSPEcT- defines a set of lines with different slopes (any
integer between -89 and 90 degrees) interpolating the median point of the P
and M distributions. For each line, INSPEcT- counts the number of median
P and M observations included in a portion of the Log2(P )-Log2(M) space
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Method Figure 7: Effects of transcriptional and post-transcriptional
regulations on the steady-state premature and mature RNA ex-
pression levels. Starting from the circle located in the median point of the
cloud, we show with black arrows the effects of a modulation on the rate of
synthesis δk1 , processing δk2 and degradation −δk3 . The black dashed line
represents the linear trend of the cloud, which represent P and M condition
medians distribution.
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defined by the two lines parallel to the one previously defined and distant
±Error from it (user defined parameter, 2 by default). Finally, the model
which maximises the number of observations contained, i.e. that explains
the higher number of data points, is chosen (Main Fig. 7C).
The P-M trend can be affected by different aspects, like technical issues, cell
type or the gene class analyzed. For this reason, INSPEcT- calculates the
P-M trend in a dataset specific manner.

5.1.3 Identification of atypical regulations

After the estimation of the typical regulatory strategy, the same linear model
is applied to describe the Log2(P )-Log2(M) of individual genes. The general
P-M trend is translated to interpolate the P and M medians of the gene. All
the conditions that are not compatible with the expected behaviour (points
which are outside the portion of plane defined by the parallel lines defined
by the ±Error) are identified as atypically regulated (Method Figure 8).

Method Figure 8: Identification of atypical regulations at the sin-
gle gene level. We spot conditions where a gene is atypically post-
transcriptionally regulated (red dots) exploiting the model fitted on a popu-
lation of genes (dashed lines) forced to interpolate the gene median point of
the gene (green dot).
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5.2 With nascent RNA data (INSPEcT+)

5.2.1 General framework

The post-transcriptional ratio is an aggregated quantity which does not pro-
vide information on the value of each kinetic rate. To uniquely solve the
system introduced in Equation 3 and determine the complete set of kinetic
rates another datum is required, for example the amount of nascent RNA.
The metabolism of this portion of the transcriptome (TL) can be described
with the same ODEs systems introduced in Equations 1 and 2. For a la-
belling time (τ) sufficiently brief, the level of TL closely reflects the action of
RNA synthesis because the contribute of degradation can be disregarded. In
this approximation, and assuming the steady-state condition for the rate of
synthesis, Equation 2b can be rewritten as

ṪL (t) = k1, (43)

which is readily integrable in a time window of length τ , assuming the absence
of endogenous 4sU (TL(0) = 0), as

TL = k1 · τ. (44)

As previously mentioned, the esteem of k1 from nascent RNA allows to quan-
tify processing an degradation rates from pre-existing RNA according to
Equation 3:

k1 =
TL
τ
, (45)

k2 =
TL
τ · P

, (46)

k3 =
TL
τ ·M

. (47)

The estimation of k2 and k3 requires the direct comparison of quantities
derived from different sequencing libraries, i.e. TL from the nascent RNA
fraction, and P , M from the total RNA fraction. The library size normaliza-
tion assumes that the libraries under comparison are derived from a similar
amount of cellular RNA, which is not the case when analysing different frac-
tions of the same RNA. For this reason, INSPEcT implements an internal
normalization procedure between nascent and total RNA libraries based on
the modeling of RNA metabolism, described in the following Section (5.2.2).

5.2.2 Scaling between total and nascent libraries

The goal of the normalization procedure implemented within INSPEcT is the
estimation of an individual scaling factor that normalizes each nascent RNA
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library to its total RNA library of reference. In order to do this, INSPEcT
takes advantage of the ODEs system introduced in Equation 2. In particular,
by solving the Equation 1a between time 0 and τ assuming the absence of
endogenous nascent RNA, it is possible to model the amount of premature
RNA in the nascent RNA fraction as a function of the sole unknown k2, τ
and TL:

PL =
TL
τ · k2

·
(
1− e−k2·τ

)
. (48)

The rate k2 can be estimated by minimizing the error between the mod-
eled PL and the measured one.

k2 = argmin
k2

[
P̂L −

T̂L
τ · k2

·
(
1− e−k2·τ

)]2
. (49)

Additionally, the rate k2 can be obtained also by Equation 46. INSPEcT
exploits this redundancy to estimate a normalization factor α that can be
used to scale the library of nascent RNA:

α = argmin
α

(
k2 − α ·

T̂L

τ · P̂

)2

, (50)

where k2 is calculated as described in Equation 49. An individual α can
be calculated for each gene, nonetheless, the aim of INSPEcT is to esti-
mate a single value that will be used to scale all the observations from the
nascent RNA library. For this reason, INSPEcT uses the α that minimizes
the squared median of the residuals of Equation 50 calculated for all genes.

6 INSPEcT- analysis of a large dataset of

publicly available RNA-seq samples (Main

Figure 7)

6.1 Description of the RNA-seq dataset

Overall, with this procedure we obtained premature and mature expression
quantifications (RPKMs) for 35’125 ensemble genes in 669 conditions, that
were classified in 41 cell lines and 29 diseases.
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SRAdb query to retrieve RNA-seq samples We selected 3’856 human
RNA-seq samples, non poly(A)-selected, using SRAdb (version 1.40.0), by
querying for the following not case sensitive values in the corresponding fields:

• library strategy = ’RNA-Seq’,

• taxon id = 9606,

• library construction protocol, design description and sample attribute
containing at least one among the following values: “ribozero”, “ribo0”,
“ribominus” and “ribo-”; and not containing: “cytoplasm”, “nascent
rna”, “poly-a”, “polya”, “mrna”, “ffpe” (i.e. paraffin conserved sam-
ples).

Samples annotation via Onassis package We used the R/Bioconductor
package Onassis (version 3.8), which leverages natural language processing
and biological ontologies, to associate relevant annotation terms to the se-
lected samples based on their description in the SRA database. Onassis
annotated 3’724 experiments using either “disease” [12] or “cell line” [13]
ontologies, after removing some uninformative terms (“cell line” ontology:
’cell’, ’tissue’, ’homo sapiens’, ’molecule’, ’female organism’, ’male organism’,
’protein’, ’cell line cell’, ’chromatin’, ’signaling’, ’cultured cell’, ’multicellu-
lar organism’, ’compound organ’, ’organ’, ’nucleus’, ’primary cultured cell’,
’diploid’, ’Bos taurus’, ’process’, ’chromatin’, ’protein’, ’size’, ’ribosome’ ,
’organ part’, ’time’, ’body proper’, ’multicellular organism’), and assigning
the term “healthy” to all samples containing the following strings within
the fields “sample attribute” or “experiment attribute”: ’healthy’, ’disease:
none’, ’disease: normal’, ’disease: presumed normal’, ’disease: no ad present’,
’disease: no ad evident’, ’disease state: normal’, ’tissuetype: normal’, ’no ad
present’, ’disease: healthy’, ’disease: normal’, ’disease: presumed normal’,
’disease: none’, ’disease: null’, ’disease: na’, ’disease status: normal’, ’tu-
mor: none’.

Quantification of exonic and intronic features via recount package
Among the annotated samples, 1’140 experiments from 103 projects were
found to be part of the recount2 database, which comprehends SRA sam-
ples uploaded before February 3, 2016. We selected 1’004 experiments from
100 projects annotated in SRAdb with at least 7.5 milion aligned reads.
Finally, we successfully downloaded from recount2 (version 1.4.5) the ex-
pression data for 669 experiments from 75 projects. Exonic and intronic
quantifications were obtained using the normalized coverage computed by
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the R/Bioconductor package recount, using the function “coverage matrix”.
For experiments with multiple runs associated, the mean intronic and exonic
quantification were obtained.

6.2 Gene class specific P-M trend

We subdivided the 35’125 genes quantified from recount2 in three classes ac-
cording to their “gene type” tag in Gencode annotation (version 25), obtain-
ing 18’729 protein coding genes (corresponding to the term “protein coding”),
3’945 pseudogenes (corresponding to the term “pseudogene”) and 12’451 non-
coding (corresponding to all the other terms). The P-M trend was calculated
independently for each gene class, as described in Section 5.1.2 and used as a
prototypical combined modulation of transcriptional and post-transcriptional
rates.

6.3 Classification matrix

A Boolean matrix of atypical regulation of genes across samples was obtained
as described in Section 5.1.3. Not expressed genes in individual samples are
reported as missing observations.

Genes and samples filtering for data visualization For the sake of
heatmap visualization (Main Fig. 7), we filtered both samples and genes from
the RNA-seq dataset described in the previous section (6.1). In particular, we
selected 620 (out of the 669) samples representative of the 26 most abundant
cell lines. Additionally, we selected genes with both non-zero premature and
mature quantification in at least half of the samples. This filter selected
18’621 protein coding, 3’910 pseudogenes, and 12’420 non-coding genes.

Hierarchical clustering Rows and columns were clustered using hierar-
chical clustering with euclidean distance, by assigning a value of 0 to not-
expressed genes (corresponding to NAs in the classification matrix), 1 to
expressed genes (corresponding to FALSE in the classification matrix), and
2 to expressed and atypically regulated genes (corresponding to TRUE in the
classification matrix).

Impact of atypical regulations on samples clustering In order to
quantify the impact of the atypically regulated genes on samples classifica-
tion, we repeated the clustering only based on the expression information,
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i.e. by setting all entries whose value was 2 to 1. The two dendrograms had
a cophenetic correlation coefficient of 0.68 calculated with R package ’den-
dextend’ version 1.63 (Supplemental Fig. 14), meaning that about 30% of
clustering information derived from the atypical regulations.
In order to discriminate whether the classification provided by atypical regu-
lations could be generated by chance, we randomly selected 1’824’559 atypical
regulations among the expressed entries (the same number of atypical reg-
ulations identified by INSPEcT-), clustered the columns and estimated the
cophenetic correlation coefficient against the clustering based on the sole ex-
pression matrix. After repeating this procedure 100 times, we estimated that
the mean correlation coefficients was close to 0.68. Therefore, we concluded
that the impact of INSPEcT-’s classification on the samples clustering was
compatible with the random null model (Supplemental Fig. 14B).
However, this does not mean that the classification matrix produced by
INSPEcT- belongs to the random set. To check this hypothesis, we started
performing a correlation analysis between the classification matrix of INSPEcT-
and all the random counterparts. Then, we repeated the correlation anal-
ysis for each random classification matrix against all the others and we
observed a difference between the INSPEcT- correlations distribution and
the random ones. We quantified these differences through the Wilcoxon
test (W - R stat package) finding significant p-values for the comparison of
INSPEcT- both against each random distribution and against the cumulative
one (p − value = 1.2e − 47). The latter test was repeated for each random
distribution and we found values much less significant that the one observed
for INSPEcT- (Supplemental Fig. 14C).
Finally, we exploited the samples annotations to compare the clustering on
INSPEcT- against the 100 random matrix and the expression matrix too.
Specifically, we assigned to each leaf of the dendrogram the corresponding
tissue label and we counted the fraction of leafs with N equal neighbours
(homogeneity score). The boxplots in Supplemental Fig. 14D show the dis-
tributions of the 100 random matrices at four different orders. We see that the
distributions are always centred around the score obtained from the analysis
of the expression matrix which means that this property of the clustering is
mainly driven by the not-expressed vs expressed entries. On the other hand,
INSPEcT- provides a clustering always more fragmented than the random
one due to the peculiar distribution of atypically regulated conditions.
From this analysis, it is reasonable to conclude that the probability to gener-
ate a classification matrix similar to the one provided by INSPEcT- through
random sampling is very low.
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6.4 Functional enrichment analyses

We performed a functional enrichment analysis on the 1’000 genes with the
highest number of atypically regulated samples and on the 1’000 genes with
the highest number of expressed and non-atypically regulated samples.
Additionally, we investigated functional enrichment of genes with the high-
est extent of atypical regulations in specific cell lines selected due to their
proximity in the clustered matrix (50 Brain samples, 29 Heart samples and
10 T cell samples). The enrichment was evaluated in 86 and 417 genes with
at least 80% of regulated samples in Heart and T cell cell lines, respectively,
and in 861 genes with at least 90% of regulated samples in Brain cell lines.
The enrichment was evaluated using the R-package rGREAT (version 1.11.1)
using all the available ontologies. Terms were considered significant when
both the hypergeometric and binomial tests returned p-values below 1e− 2.
Genes, annotations and their functional enrichment are available as Supple-
mental file.

6.5 Characterization of regulated genes in brain

The 5’ and 3’ UTR sequences of regulated genes were obtained from the
UCSC Genome Browser (hg38 assembly) [14], along with their predicted sec-
ondary structure folding. Differences in length, GC content and free energy
between 17’786 background and 861 regulated genes in Brain were computed
by means of a Wilcoxon test, and plotted with R. De novo sequence motifs
were searched by means of DREME [15], using the sequence of UTRs of the
same type from non-regulated genes of the same tissue as the background
set, an E-value threshold of 0.05 and considering only motifs on the forward
strand. Eventually, to identify known binding sites of regulatory factors
in those UTRs, we applied the Regulatory Enrichment tool of the AURA2
database [16] on the regulated genes set of each tissue separately, using an
enrichment significance threshold of 0.05 (BH-adjusted p-value).
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