Supplemental Material

A porcine model of phenylketonuria generated by CRISPR/Cas9 genome editing

Erik A. Koppes¹, Bethany K. Redel², Marie A. Johnson¹, Kristen J. Skvorak^{3,#}, Lina Ghaloul-

Gonzalez^{1,4}, Megan E. Yates¹, Dale W. Lewis⁴, Susanne M. Gollin⁴, Yijen L. Wu⁵, Shawn E.

Christ⁶, Martine Yerle⁷, Angela Leshinski¹, Lee D. Spate⁸, Joshua Benne⁸, Stephanie Murphy⁸,

Melissa S. Samuel⁸, Eric M. Walters^{2,8,^}, Sarah A. Hansen⁹, Kevin D. Wells^{2,8}, Uta Lichter-

Konecki¹, Robert A. Wagner¹⁰, Joseph T. Newsome^{3,10}, Steven F. Dobrowolski³, Jerry Vockley^{1,4},

Randall S. Prather^{2,8}, Robert D. Nicholls¹

 ¹ Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.
² Division of Animal Sciences, College of Agriculture and Natural Resources University of Missouri, Columbia, Missouri, USA. ³ Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. ⁴ Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA. ⁵ Department of Developmental Biology, University of Pittsburgh and UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA. ⁶ Department of Psychological Sciences, University of Missouri, 210 McAlester Hall, Columbia, Missouri, USA. ⁷ GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France. ⁸ National Swine Research and Resource Center (NSRRC) University of Missouri, Columbia, Missouri, USA. ¹⁰ Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh Pennsylvania, USA.

Supplemental Material contains:

Supplemental Tables S1 – S10, pages 2-15

Supplemental Figures S1 – S10, pages 16-40

Supplemental References, page 40

Supplemental Tables

Exon	Intron-exon	Exon	Exon-intron	Intron
No.	boundary	size (bp)	boundary	Size (bp)
1	n/a	227 ^b	TGGGGACAG gt gagccggg	5763
2	aatcctac ag GAAACAAGC	108	TTATTTGAG gt gagtgctt	13650
3	tcttttct ag GAGAATGGT	184	AAGACACAG gt aagagaca	13164
4	tgtgttgc ag TGCCCTGGT	89	GATCACCCT gt gagtgcac	13990
5	ttcttcct ag GGTTTTAAA	68	CTATCGACA gt aagtttac	7157
6	tgtatcct ag TGGGCAGCC	197	TTCTGCAGT gt gagtccac	2395
7	ttgcttcc ag CTTGCACCG	136	ACCTGAACC gt gagtactg	1087
8	tgtttttc ag TGACATCTG	70	TTTTCCCAG gt gaggaact	3403
9	ctcattac ag GAAATCGGC	57°	CTTGCAACA gt aagttccc	2433
10	tccatttc ag ATTTACTGG	96	GAATTACAG gt atgaccct	654
11	gggcctgc ag TATTGCTTG	134 ^d	GAAAGTGAG gt gagctggc	3172
12	ttggtttc ag GAACTTTGC	116	CCATCAACG gt aagtaact	6161
13	ttctttgt ag GTGAAGTTG	622 ^e	n/a	n/a

Supplemental Table S1. Exon-intron organization of the PAH gene in Sus scrofa^a.

^a Sscrofa 11.1 (Duroc) is the reference genome assembly. ^b Exon 1 includes 60-nt coding. ^c The Sscrofa11.1 assembly is missing 1-nt at a SNP (C/T), resolved by Duroc BAC sequences [CH242-225D12 (C), CH242-276L23 (T)]. ^d The Sscrofa11.1 assembly is missing 1-nt at a SNP (G/C), resolved by Duroc BAC sequences [CH242-225D12 (G), CH242-276L23 (C)]. ^e Exon 13 includes 44-nt coding (with the stop codon), with a total coding sequence of 1359-nt (including the stop codon). The total exon (mRNA) size is 2104-nt, with the 3'-end defined by BLAST searches of the EST database, for a gene length of 75133-nt in the Duroc breed.

Supplemental Table S2. Plasma amino acid levels in 1-month old Yucatan minipigs

Amino acid	Range in human ^{+,#}	Range in Yucatan^{+,^}
Ser	86-270	154-298
Ala	148-820	477-678
Gln	315-1060	261-374
Cit	10-70	69-136
Phe	30-120	60-123
Tyr	33-180	78-171
Val	80-330	314-633
Ile	20-100	158-308
Leu	40-180	158-349

compared to human infants.

⁺ values in μ M; [#] for age < 1 year; [^] for age 1 month.

Supplemental Table S3A. L-amino acid defined diet for swine without phenylalanine, from Dyets, Inc.

2508 Easton Ave., Bethlehem, Pennsylvania 18017 Within 610 Area Code: 868-7701, FAX -868-5170 Outside 610 Area Code: 800-275-3938

FAX: 800-329-3938 E-Mail Address: Sales@dyets.com

DYET# 590007

L-Amino Acid Defined Diet for Swine without Phenylalanine

	L-Alanine			11.9		
	L-Arginine,	fb		14		
	L-Aspartic A	Acid		22.6		
	L-Cystine			3.5		
	L-Glutamic	Acid		51.6		
	Glycine			12.3		
	L-Histidine,	fb		5.4		
	L-Isoleucine	e		8.2		
	L-Leucine			16		
	L-Lysine-HO	C1		11.4		
	L-Methionir	ne		3.5		
	L-Phenylala	nine		0		
	L-Proline			14.4		
	L-Serine			10.2		
	L-Threonine	2		7.6		
	L-Tryptopha	an		2.2		
	L-Tyrosine			6		
	L-Valine	kcal/g		9.5		kcal/kg
		4	total L-AA*	210.3		841.2
Ingredient					gm/Kg	
Sucrose		4			150	600
Cornstarch		3.6			275	990
Dyetrose		3.8			100	380
Corn Oil		9			150	1350
Cellulose		0			50	0
Salt Mix #290022		0.95			45	42.75
Sodium Bicarbonate		0			7.4	0
Vitamin Mix #39002	20	3.94			10	39.4
Choline Bitartrate		0			2.3	0
			total		1000.00	4243.35

Supplemental Table S3B. Low Phe enrichment foods.

LOW PHE ENRICHMENT FOODS FOR PKU PIGS								
Item	Amounts	PHE (mg)						
Apple Rings	10 rings (~3/4 cup)	17						
Apples	1 apple	11						
Applesauce	1 cup	13						
Blueberries	1/2 cup	18						
Carrot	1/2 cup	18						
Cranberries (Dried or Fresh/Frozen)	1/2 c	18						
Cucumber	1/4 piece	15						
Fruit Juice (Apple, Cranberry, Grape, Pineapple, Orange)	1 cup	2-30						
Grapes	1/2 cup	15						
Honey	2 T. Use sparingly	5						
Ice Cream Cones	1 cone	16						
Jelly	1/4 cup	17						
Marshmallows	30 mini 1x/week	9						
Рарауа	1/2 c	18						
Mushrooms	6	21						
Pears	1 pear	20						
Pumpkin	1/4 c raw OR 1/8 c canned	10						
Radishes	4 small OR 2 lg	6						
Romaine	1/2 cup	15						
Strawberries	10 berries	14						
Watermelon	½ cup	12						

Supplemental Table S3C. Low Phe enrichment foods.

								_	
Item	Vendor	Stipulations?		Ser	rvings (Maximur	n daily)			
			<50 lbs.	50-100 lbs.	100-200 lbs.	200-400 lbs.	>400 lbs.	PHE (mg)	
Routine Use									
							-		
Peas, Dried	Jordan		1/4 cup	1/2 cup	3/4 cup	1 1/2 cups	2 cups	218	
Apple Rings	Jordan		10 rings (~3/4	10 rings (~3/4	10 rings (~3/4	10 rings	10 rings (~3/4		
0	la uda u			cup)	cup)	(~3/4 cup)	Cup)	1/	
Corn	Jordan		1/4 cup	1/2 cup	3/4 cup	1 1/2 cups	2 cups	163	
Broccoli	Jordan		1 stalk-	1 stalk-	1 stalk-	1 stalk-	1 stalk-		
			baseball size	baseball size	baseball size	baseball size	baseball size	177	
Kale	Jordan		1 cup	1 cup	1 cup	1 cup	1 cup	96	
Romaine	Jordan		1 cup	1 cup	1 cup	1 cup	1 cup	31	
				-	-				
		Occa	asional Use (Tra	ining, Etc. Trea	ats)				
								1	
			Fresh Pr	oduce					
Apples	Jordan		1/2 apple	1 apple	1 apple	1 apple	1 apple	11	
Carrots	Jordan		1 carrot	1 carrot	1 carrot	1 carrot	1 carrot	37	
Cucumber	Jordan		1/2 piece	1/2 piece	1/2 piece	1/2 piece	1/2 piece	29	
Grapes	Jordan		1 cup/~30	1 cup/~30	1 cup/~30	1 cup/~30	1 cup/~30	29	
Pears	Jordan		1/2 pear	1 pear	1 pear	1 pear	1 pear	20	
Peppers, Green	Jordan		1 pepper	1 pepper	1 pepper	1 pepper	1 pepper	109	
Potatoes	Jordan		1 small-3"	1 lg-5"	1 lg-5"	1 lg-5"	1 lg-5"	299	
Potatoes, Sweet	Jordan		1 small-3"	1 lg-5"	1 lg-5"	1 lg-5"	1 lg-5"	116	
			1/4 small size	1/2 small size	1/2 small size	1/2 small size	1 small size		
Ритркіп	Jordan		raw, 1/8c	raw, 1/8 c.	raw, 1/4 c.	raw, 1/4 c.	raw, 1/4 c.		
Dedicher	la uda u				canned			21	
Radisnes	Jordan		2 smail/1 ig	4 smail/2 ig	4 small/2 lg	4 smail/2 ig	4 small/2 lg	6	
Zuoobini	Jordan		1/4 cup	1/2 cup	3/4 cup	1/2 cups	2 cups	/1	
Zucchini	Jordan		1/2 piece	1/2 piece	1/2 piece	1/2 piece	1/2 piece	42	
			Dried Frui	its etc				1	
Banana Chins	Jordan		1/2 cup/~20	1 cup/~40	1 cup/~40	1 cup/~40	1 cup/~40	73	
Cranberries.			1/2 040/ 20	1000/ 40	1 cup/ 40			/3	
Dried (Craisins)	Jordan		1/4 cup	1/2 cup	3/4 cup	1 1/2 cups	2 cups	18	
			Groce	ery					
Applesauce	GFS		1 cup	1 cup	1 cup	1 cup	1 cup	13	
Cheerios	GFS		1 cup	1 cup	1 cup	1 cup	1 cup	176	
Crackers (Saltine)	GFS	Use low salt	5	10	10	10	10	135	
Drv pasta	GFS	Versions	1/4 cup	1/2 cup	3/4 cup	1 1/2 cups	2 cups	286	
Fruit Juice	GFS			1 cup	1 cup	1 cup	1 cup	2	
			1-2.5"x5"	2-2.5"x5"	2-2.5"x5"	2-2.5"×5"	2-2.5"×5"	_	
Graham Crackers	GFS		piece	pieces	pieces	pieces	pieces	97	
les Crosm Conso	CE8		1.0000	1.0000	1.0000	1 0000	1.0000		
ice Cream Cones	GFS		T cone	i cone	1 cone	i cone	i cone	16	
			1 Then (ning	2 Tbsp. (ping	2 Thsp. (ning	2 Then (ning	2 Then (ning		
Honey	GFS		pong ball size)	pong ball	pong ball size)	pong ball size)	pong ball size)		
			1 3 /	size)	peng san eize,	1 3 /	1 3 /	5	
Jam/Jelly/Marmal	GFS		1/4 cup	1/2 cup	1/2 cup	1/2 cup	1/2 cup	24	
aue			4/0	4	1 cup		4	- 54	
lell-0	GES		1/2 cup	1 cup	1 cup	1 cup prepared;	1 cup prepared: 1/2		
001-0	010		pack dry	pack dry	nack dry	1/2 pack dry	pack dry	76	
		Small amountor	15 mini:	30 mini:	30 mini	30 mini:	30 mini:	,0	
Marshmallows	GFS	use sparingly	once/week	once/week	once/week	once/week	once/week	٩	
Oatmeal	GES		1/4 cup	1/2 cup	3/4 cup	1 1/2 cups	2 cups	488	
Californ	0,0	Use air popped	., roup	<u> </u>	0, 1 Cup	oupo	_ cupo	0	
Popcorn	GFS	ONLY, no	1 cup	2 cups	2 cups	2 cups	2 cups		
		microwave						94	
Vanilla Wafers	GFS		5	10	10	10	10	105	

Supplemental Table S4. Volumetric analysis of the brain from T_1 -weighted MRI in the affected PKU pig vs. female control pig. Volumes are averages from manual segmentation of two independent observers, with normalized volumes expressed as % of control and calculated by 1) cortical regions normalized to total cerebrum, and 2) cerebellum and ventricles normalized to total brain (normalized values greater than a 10% difference between pigs are in bold).

Durin Denien	Brain Volu	mes (mm ³)	Normalized Volumes (%)
Brain Region	Control	PKU	PKU
Cortical Gray Matter	36614	24568	89
White Matter	33052	25226	101
Subcortical Regions	22555	19912	117
Total Cerebrum	92221	69707	-
Ventricles	3053	4818	209
Cerebellum	12518	7060	77
Total Brain	107792	81585	-

	White	Matter	Cortical G	Cortical Gray Matter		
DII Parameter	Control	PKU	Control	PKU		
Apparent Diffusion Coefficient (ADC, 10 ⁻³ mm ² /s)	0.75	0.76	1.09	1.05		
Fractional Anisotropy (FA)	0.41	0.39	0.16	0.17		
Axial Diffusivity (AD, 10 ⁻³ mm ² /s)	1.08	1.08	1.24	1.21		
Radial Diffusivity (RD, 10 ⁻³ mm ² /s)	0.58	0.60	1.01	0.98		

Supplemental Table S5. Diffusion tensor imaging (DTI) parameters.

Supplemental Table S6. Structural variants (SVs) detected in the targeted *PAH* **exon 6 region.** WGS sequencing and SV analysis confirmed the deletion sizes of the two exon 6 deletions (116-1 deletion allele 1, 1166-nt; 116-2 deletion allele, 1224-nt) and for the extended exon 6-7 deletion (116-1 deletion allele 2, 4063-nt). Note that the 12-nt insertion-duplication in 116-1 allele-1, the TCTC microhomology of 116-1 allele-2, and the shared A at the 116-2 deletion breakpoint are also detected by this analysis.

Sample	Chr	Pos	Ref	Alt	End	SVLen	SVIns	SVInsSeq	HomLen	HomSeq
116-1	5	81439023	G	DEL	81440189	1166	12	CTGGGCTCTGCC		
116-1	5	81438943	С	DEL	81443006	4063			4	TCTC
116-2	5	81439021	Т	DEL	81440245	1224			1	Α

Supplemental Table S7. Single nucleotide variants (SNVs) detected in the targeted *PAH* **exon 6 region associated with genome-editing events.** Pertinent SNVs extracted from Variant Call Format (VCF) files derived from WGS and SNV analysis. At both the proximal sgRNA5-1 and distal sgRNA6-2 site SNVs associated with deletion and scarred alleles were detected and confirm genomic sequencing of deletion breakpoint and sgRNA site PCRs.

Sample	Chr	Pos	Ref	Alt	Qual	Info	Note
116-2	5	81439023	G	GTTTT	89.14	AC=2;AF=1.000;	Scarred Allele 5-1 ins
							Aberrant SNP called where ins/dup starts at position PAM
116-1	5	81439024	Т	С	35.02	AC=2;AF=1.000;	-4
							Induced SNP within retained
							intron 6 region of allele-1
116-1	5	81440223	С	Т	74.08	AC=2;AF=1.000;	ins/dup
							116-1 allele-1 3-nt deletion at 6-
116-1	5	81440242	CAAG	С	77.15	AC=2;AF=1.000;	2 sgRNA
116-2	5	81440242	CAAGAAA	С	50.01	AC=1;AF=0.500;	Scarred Allele 6-2 del
116-2	5	81440249	Α	ATTACC	50	AC=1;AF=0.500;	Scarred Allele 6-2 ins

Supplemental Table S8. Single nucleotide variants (SNV) detected at potential guide RNA

off-target sites. (**A**) For sgRNA5-1, SNVs were identified in 14 of 129 potential off-target sites in 116-1, 116-2, or Yucatan. (**B**) For sgRNA6-2, SNVs were identified in 8 of 63 potential off-target sites in 116-1, 116-2, or Yucatan. Off-targets were predicted by CRISPOR.

Sample	CHROM P	OS ID	REF	ALT	QUAL	FILTER	INFO
116-1	1	52370840.	Т	А	48.8	5 PASS	AC=1;AF=0.500;AN=2;DP=30;FS=3.453;MQ=245.71;MQRankSum=3.837;QD=1.63;R
Yuc:GFP	1	52370840.	Т	А	48.9	7 PASS	AC=1;AF=0.500;AN=2;DP=19;FS=1.820;MQ=250.00;MQRankSum=3.592;QD=2.58;R
116-1	1	52370858 .	Т	С	49.0	3 PASS	AC=1;AF=0.500;AN=2;DP=28;FS=0.000;MQ=250.00;MQRankSum=4.367;QD=1.75;R
Yuc:GFP	1	52370858 .	Т	С	49.3	8 PASS	AC=1;AF=0.500;AN=2;DP=15;FS=0.000;MQ=250.00;MQRankSum=3.034;QD=3.29;R
116-2	1	164175680 .	Т	С	5	0 PASS	AC=1;AF=0.500;AN=2;DP=45;FS=4.246;MQ=244.72;MQRankSum=4.766;QD=1.11;R
Yuc:GFP	1	164175680 .	Т	С	5	0 PASS	AC=1;AF=0.500;AN=2;DP=53;FS=0.000;MQ=246.00;MQRankSum=5.357;QD=0.94;R
Yuc:GFP	1	164175681 .	G	А	5	0 PASS	AC=1;AF=0.500;AN=2;DP=54;FS=0.000;MQ=246.07;MQRankSum=5.423;QD=0.93;R
116-1	2	118033142 .	G	А	49.9	2 PASS	AC=1;AF=0.500;AN=2;DP=27;FS=0.000;MQ=250.00;MQRankSum=4.392;QD=1.85;R
116-2	2	118033142 .	G	А	5	0 PASS	AC=1;AF=0.500;AN=2;DP=29;FS=0.000;MQ=250.00;MQRankSum=4.433;QD=1.72;R
116-1	3	17468660 .	А	AG	127.1	1 PASS	AC=2;AF=1.000;AN=2;DP=31;FS=0.000;MQ=240.04;QD=4.10;SOR=0.765;FractionInf
116-2	3	17468660 .	А	AG	168.7	1 PASS	AC=2;AF=1.000;AN=2;DP=44;FS=0.000;MQ=236.49;QD=3.83;SOR=1.206;FractionInf
Yuc:GFP	3	17468660 .	А	AG	132.2	1 PASS	AC=2;AF=1.000;AN=2;DP=33;FS=0.000;MQ=249.26;QD=4.01;SOR=1.255;FractionInf
116-2	3	22588397 .	С	Т	49.3	3 PASS	AC=1;AF=0.500;AN=2;DP=53;FS=1.035;MQ=250.00;MQRankSum=6.158;QD=0.93;R
Yuc:GFP	3	22588397 .	С	Т	46.	4 PASS	AC=1;AF=0.500;AN=2;DP=48;FS=11.701;MQ=250.00;MQRankSum=5.755;QD=0.97;
116-1	3	123499714 .	А	G	5	0 PASS	AC=1;AF=0.500;AN=2;DP=53;FS=2.500;MQ=247.93;MQRankSum=4.799;QD=0.94;R
116-2	3	123499714 .	А	G	107.0	3 PASS	AC=2;AF=1.000;AN=2;DP=21;FS=0.000;MQ=250.00;QD=5.10;SOR=1.721;FractionInf
Yuc:GFP	3	123499714 .	А	G	124.1	6 PASS	AC=2;AF=1.000;AN=2;DP=26;FS=0.000;MQ=250.00;QD=4.78;SOR=0.846;FractionInf
116-1	3	123926379 .	С	G	157.2	1 PASS	AC=2;AF=1.000;AN=2;DP=38;FS=0.000;MQ=250.00;QD=4.14;SOR=0.859;FractionInf
116-2	3	123926379 .	С	G	150.6	8 PASS	AC=2;AF=1.000;AN=2;DP=38;FS=0.000;MQ=250.00;MQRankSum=1.641;QD=3.97;R
Yuc:GFP	3	123926379 .	С	G	125.0	1 PASS	AC=2;AF=1.000;AN=2;DP=28;FS=0.000;MQ=250.00;QD=4.46;SOR=0.846;FractionInf
116-1	8	129310255 .	G	А	46.7	9 PASS	AC=1;AF=0.500;AN=2;DP=36;FS=1.434;MQ=247.77;MQRankSum=4.771;QD=1.30;R
116-2	8	129310255 .	G	А	49.4	7 PASS	AC=1;AF=0.500;AN=2;DP=17;FS=0.000;MQ=247.20;MQRankSum=3.281;QD=2.91;R
116-1	9	11406822 .	С	CACG	32.5	3 PASS	AC=1;AF=0.500;AN=2;DP=11;FS=3.090;MQ=32.08;MQRankSum=0.678;QD=2.96;Rea
Yuc:GFP	9	11406822 .	С	CACG	51.6	3 PASS	AC=2;AF=1.000;AN=2;DP=5;FS=0.000;MQ=39.90;QD=10.33;SOR=1.981;FractionInfc
116-1	9	11406824 .	AGGGA	AGGIA	30.8	2 PASS	AC=1;AF=0.500;AN=2;DP=11;FS=7.368;MQ=32.08;MQRankSum=0.546;QD=2.80;Rea
Yuc:GFP	9	11406824 .	AGGGA	AGGIA	48.9	3 PASS	AC=2;AF=1.000;AN=2;DP=5;FS=0.000;MQ=39.90;QD=9.79;SOR=3.258;FractionInfor
116-2	9	11759440 .	С	Т	5	0 PASS	AC=1;AF=0.500;AN=2;DP=44;FS=6.930;MQ=196.86;MQRankSum=2.575;QD=1.14;Re
Yuc:GFP	14	20180376 .	Т	С	5	0 PASS	AC=1;AF=0.500;AN=2;DP=24;FS=0.000;MQ=250.00;MQRankSum=4.128;QD=2.08;R
116-1	15	29503986 .	А	G	131.	1 PASS	AC=2;AF=1.000;AN=2;DP=28;FS=0.000;MQ=250.00;QD=4.68;SOR=0.836;FractionInf
116-2	15	29503986 .	А	G	137.	1 PASS	AC=2;AF=1.000;AN=2;DP=30;FS=0.000;MQ=249.51;QD=4.57;SOR=1.329;FractionInf
Yuc:GFP	15	29503986 .	А	G	122.0	5 PASS	AC=2;AF=1.000;AN=2;DP=26;FS=0.000;MQ=250.00;QD=4.69;SOR=0.941;FractionInf
116-1	15	30672405 .	G	А	5	0 PASS	AC=1;AF=0.500;AN=2;DP=43;FS=0.000;MQ=250.00;MQRankSum=5.385;QD=1.16;R
Yuc:GFP	15	30672405 .	G	А	49.4	7 PASS	AC=1;AF=0.500;AN=2;DP=40;FS=1.273;MQ=245.93;MQRankSum=5.166;QD=1.24;R
116-1	15	119050524 .	А	G	37.4	1 PASS	AC=1;AF=0.500;AN=2;DP=44;FS=1.438;MQ=250.00;MQRankSum=4.705;QD=0.85;R
Yuc:GFP	15	119050524 .	А	G	5	0 PASS	AC=1;AF=0.500;AN=2;DP=38;FS=2.798;MQ=250.00;MQRankSum=5.102;QD=1.32;R
116-2	17	2120497 .	С	CA	5	0 PASS	AC=1;AF=0.500;AN=2;DP=27;FS=3.473;MQ=250.00;MQRankSum=4.367;QD=1.85;R
Yuc:GFP	17	2120497 .	С	CA	5	0 PASS	AC=1;AF=0.500;AN=2;DP=40;FS=1.302;MQ=249.01;MQRankSum=4.850;QD=1.25;R
116-1	17	2120498 .	А	AG	173.3	5 PASS	AC=2;AF=1.000;AN=2;DP=43;FS=0.000;MQ=246.00;QD=4.03;SOR=1.005;FractionInf
116-2	17	2120498 .	А	AG	49.0	6 PASS	AC=1;AF=0.500;AN=2;DP=27;FS=3.473;MQ=250.00;MQRankSum=4.367;QD=1.82;R
Yuc:GFP	17	2120498 .	А	AG	40.3	7 PASS	AC=1;AF=0.500;AN=2;DP=40;FS=1.302;MQ=249.01;MQRankSum=4.850;QD=1.01;R

eadPosRankSum=0.197;SOR=1.609;FractionInformativeReads=0.967;R2_5P_bias=7.319 eadPosRankSum=-0.454;SOR=0.330;FractionInformativeReads=1.000;R2 5P bias=9.942 leadPosRankSum=-0.366;SOR=0.951;FractionInformativeReads=0.964;R2_5P_bias=-4.227 leadPosRankSum=-1.097;SOR=0.368;FractionInformativeReads=0.933;R2_5P_bias=6.313 leadPosRankSum=4.926;SOR=0.897;FractionInformativeReads=1.000;R2_5P_bias=17.303 eadPosRankSum=3.185;SOR=0.739;FractionInformativeReads=1.000;R2_5P_bias=13.242 eadPosRankSum=2.886;SOR=0.801;FractionInformativeReads=1.000;R2_5P_bias=14.630 leadPosRankSum=2.548;SOR=0.836;FractionInformativeReads=1.000;R2 5P bias=-0.450 eadPosRankSum=3.969;SOR=0.941;FractionInformativeReads=0.966;R2 5P bias=0.014 formativeReads=0.871 formativeReads=0.932 formativeReads=0.879 leadPosRankSum=1.074;SOR=0.859;FractionInformativeReads=0.981;R2_5P_bias=20.356 ReadPosRankSum=2.309;SOR=2.419;FractionInformativeReads=0.979;R2_5P_bias=12.812 eadPosRankSum=3.219;SOR=0.497;FractionInformativeReads=0.981;R2_5P_bias=15.112 formativeReads=0.952 formativeReads=1.000 formativeReads=0.974 eadPosRankSum=-0.274;SOR=0.293;FractionInformativeReads=1.000;R2_5P_bias=0.000 formativeReads=0.929 eadPosRankSum=-0.461;SOR=1.071;FractionInformativeReads=0.917;R2_5P_bias=15.497 leadPosRankSum=0.000;SOR=0.735;FractionInformativeReads=0.941;R2_5P_bias=8.303 adPosRankSum=-1.246;SOR=0.078;FractionInformativeReads=1.000;R2 5P bias=7.270 ormativeReads=1.000 adPosRankSum=-0.895;SOR=0.847;FractionInformativeReads=0.909;R2_5P_bias=17.501 rmativeReads=0.800 leadPosRankSum=1.609;SOR=0.795;FractionInformativeReads=1.000;R2 5P bias=-3.203 eadPosRankSum=2.742;SOR=0.693;FractionInformativeReads=1.000;R2 5P bias=7.553 formativeReads=1.000 formativeReads=1.000 formativeReads=0.962 leadPosRankSum=1.575;SOR=0.627;FractionInformativeReads=0.953;R2_5P_bias=1.978 leadPosRankSum=-2.210;SOR=0.657;FractionInformativeReads=0.925;R2_5P_bias=17.486 eadPosRankSum=2.335;SOR=1.165;FractionInformativeReads=0.818;R2_5P_bias=17.783 eadPosRankSum=3.707;SOR=0.553;FractionInformativeReads=0.947;R2_5P_bias=-6.745 eadPosRankSum=0.366;SOR=0.957;FractionInformativeReads=1.000;R2_5P_bias=-13.336 eadPosRankSum=0.535;SOR=0.502;FractionInformativeReads=0.925;R2_5P_bias=-9.032 formativeReads=0.977

keadPosRankSum=-0.464;SOR=0.819;FractionInformativeReads=1.000;R2_5P_bias=17.618 keadPosRankSum=-0.503;SOR=0.929;FractionInformativeReads=0.925;R2_5P_bias=18.493

Sample	CHROM POS	ID	REF	ALT	QUAL FILTER	INFO
116-1	2	17821848 .	С	Т	49.03 PASS	AC=1;AF=0.500;AN=2;DP=36;FS=1.341;MQ=242.06;MQRankSum=3.168;QD=1.36;F
116-2	2	17821848 .	С	Т	44.49 PASS	AC=1;AF=0.500;AN=2;DP=59;FS=5.322;MQ=250.00;MQRankSum=6.390;QD=0.75;F
Yuc:GFP	5	30700216 .	С	Т	49.65 PASS	AC=1;AF=0.500;AN=2;DP=21;FS=0.000;MQ=250.00;MQRankSum=3.723;QD=2.36;F
Yuc:GFP	5	30700221 .	Т	С	49.58 PASS	AC=1;AF=0.500;AN=2;DP=21;FS=0.000;MQ=250.00;MQRankSum=3.723;QD=2.36;F
116-1	6	66055371 .	Т	С	50 PASS	AC=1;AF=0.500;AN=2;DP=38;FS=1.273;MQ=247.63;MQRankSum=5.166;QD=1.32;F
116-2	6	66055371 .	Т	С	167.23 PASS	AC=2;AF=1.000;AN=2;DP=41;FS=0.000;MQ=250.00;QD=4.08;SOR=0.793;FractionIn
Yuc:GFP	6	66055371 .	Т	С	212.01 PASS	AC=2;AF=1.000;AN=2;DP=56;FS=0.000;MQ=249.89;QD=3.79;SOR=0.729;FractionIn
116-1	8	115803643 .	А	G	140.17 PASS	AC=2;AF=1.000;AN=2;DP=32;FS=0.000;MQ=250.00;QD=4.38;SOR=0.756;FractionIn
116-2	8	115803643 .	А	G	50 PASS	AC=1;AF=0.500;AN=2;DP=43;FS=0.000;MQ=250.00;MQRankSum=5.509;QD=1.16;F
Yuc:GFP	9	7171091 .	Т	G	50 PASS	AC=1;AF=0.500;AN=2;DP=50;FS=2.509;MQ=249.18;MQRankSum=5.881;QD=1.00;F
116-1	9	7171107 .	А	G	45.89 PASS	AC=1;AF=0.500;AN=2;DP=25;FS=0.000;MQ=250.00;MQRankSum=4.048;QD=1.84;F
116-2	9	7171107 .	А	G	48.52 PASS	AC=1;AF=0.500;AN=2;DP=64;FS=0.000;MQ=250.00;MQRankSum=6.658;QD=0.76;F
Yuc:GFP	9	7171107 .	А	G	193.69 PASS	AC=2;AF=1.000;AN=2;DP=51;FS=0.000;MQ=249.20;QD=3.80;SOR=0.818;FractionIn
116-1	9	16703942 .	Т	А	46.13 PASS	AC=1;AF=0.500;AN=2;DP=38;FS=7.666;MQ=250.00;MQRankSum=4.981;QD=1.21;F
116-2	9	16703942 .	Т	А	49.71 PASS	AC=1;AF=0.500;AN=2;DP=31;FS=3.155;MQ=247.61;MQRankSum=4.635;QD=1.60;F
116-1	14	86614839.	С	А	46.29 PASS	AC=1;AF=0.500;AN=2;DP=31;FS=0.000;MQ=250.00;MQRankSum=4.603;QD=1.49;F
Yuc:GFP	14	86614839.	С	А	50 PASS	AC=1;AF=0.500;AN=2;DP=25;FS=1.623;MQ=250.00;MQRankSum=4.048;QD=2.00;F
116-1	15	41392819 .	G	А	49.94 PASS	AC=1;AF=0.500;AN=2;DP=39;FS=0.000;MQ=250.00;MQRankSum=5.324;QD=1.28;F
Yuc:GFP	15	41392819 .	G	А	38.97 PASS	AC=1;AF=0.500;AN=2;DP=36;FS=3.329;MQ=250.00;MQRankSum=4.485;QD=1.08;F

ReadPosRankSum=1.767;SOR=0.412;FractionInformativeReads=1.000;R2_5P_bias=10.199 ReadPosRankSum=0.731;SOR=1.089;FractionInformativeReads=0.983;R2_5P_bias=-8.189 ReadPosRankSum=1.064;SOR=0.722;FractionInformativeReads=0.952;R2_5P_bias=-2.527 ReadPosRankSum=1.216;SOR=0.446;FractionInformativeReads=0.952;R2_5P_bias=4.477 ReadPosRankSum=3.642;SOR=0.811;FractionInformativeReads=0.974;R2_5P_bias=-5.805 InformativeReads=0.976

nformativeReads=0.982

nformativeReads=0.969

ReadPosRankSum=1.112;SOR=0.648;FractionInformativeReads=0.977;R2_5P_bias=-7.415 ReadPosRankSum=-0.291;SOR=0.745;FractionInformativeReads=0.960;R2_5P_bias=8.256 ReadPosRankSum=0.991;SOR=0.653;FractionInformativeReads=1.000;R2_5P_bias=1.122 ReadPosRankSum=0.893;SOR=0.794;FractionInformativeReads=0.953;R2_5P_bias=5.081 InformativeReads=0.961

ReadPosRankSum=0.373;SOR=1.144;FractionInformativeReads=0.947;R2_5P_bias=16.448 ReadPosRankSum=-1.226;SOR=1.329;FractionInformativeReads=0.968;R2_5P_bias=18.184 ReadPosRankSum=3.832;SOR=0.602;FractionInformativeReads=1.000;R2_5P_bias=18.425 ReadPosRankSum=3.142;SOR=0.814;FractionInformativeReads=1.000;R2_5P_bias=-8.367 ReadPosRankSum=1.840;SOR=0.610;FractionInformativeReads=1.000;R2_5P_bias=-4.389 ReadPosRankSum=2.762;SOR=0.947;FractionInformativeReads=0.917;R2_5P_bias=40.583 **Supplemental Table S9. Single nucleotide variant (SNV) at SNP RS1108162262 distinguishing 116-1 deletion alleles.** This SNP at chromosome 5:81443104 is a T in the reference (REF) genome and precedes an adjacent 10A/11A homopolymer length polymorphism. The latter 11A allele (the ALT SNP is written TA due to the additional A nucleotide adjacent to the T) is homozygous in both Yucatan and 116-2 (as shown by AC=2; AF=1.000 where AF is allele frequency). In contrast this SNP is heterozygous (AC=1; AF=0.500) in 116-1 (affected PKU pig).

Sample	Chr	POS	REF	ALT	QUAL	INFO
116-1	5	81443104	Т	ТА	50	AC=1;AF=0.500
116-2	5	81443104	Т	ТА	126.13	AC=2;AF=1.000
Yuc:GFP	5	81443104	Т	ТА	125.32	AC=2;AF=1.000

Supplemental Table S10. PCR primers and sgRNA oligonucleotides used in this study. (A) Off-target PCR primers [top 10 predictions for sgRNA5-1 (*PAH* intron 5) and sgRNA6-2 (*PAH* intron 6) using the original MIT CRISPR program]. (B) Pig *PAH* genomic and reverse transcription (RT)-PCR primers. (C) Other PCR primers. (D) *Bbs*I site oligonucleotide cloning adapters for sgRNAs.

Supplemental Table S10A. Off-target genomic PCR primers.

On-Target	Sequence
sgRNA5-1 (PAH intron 5)	CCGTAGTTTTGTTCTGCCATAGC
Reverse complement sgRNA5-1	GCTATGGCAGAACAAAACTACGG
sgRNA6-2 (PAH intron 6)	GTCTACCGCCATCCAAGAAAAGG

Off Target PCR Primer	Primer Sequence	Off Target Prediction	MIT score	mismatches	Sscrofa 11.1 location	Overlapping gene
PKU pig sgRNA5-1 off-target 1 F	5'-GACAAAATACTCCGAAACGCTG-3'	GCTAT AT CAGAACAAAACTA GAG	2.2	2MMs [6:7]	4: +88805601	ATF6
PKU pig sgRNA5-1 off-target 1 R	5'-GAGGCAGCTCTAACGAATGTG-3'					
PKU pig sgRNA5-1 off-target 2 F	5'-CTGTTGACAAGTATGAGTATGGC-3'	AA TATG C CAGAACAAAACTA T GG	1.7	3MMs [1:2:7]	16: +58034454	intergenic
PKU pig sgRNA5-1 off-target 2 R	5'-GTCAAGTTTCAGTGAGGACAAAC-3'					
PKU pig sgRNA5-1 off-target 3 F	5'-TCAAAATGTACCCAGAAACACAG-3'	TCCTG GGCAGAACAAAACTA AA G	1.3	4MMs [1:3:4:5]	13: +174649733	intergenic
PKU pig sgRNA5-1 off-target3 R	5'-AGAGGTACTGCACAGATGGCA-3'					
PKU pig sgRNA5-1 off-target 4 F	5'-TGACGTAGCTCACTTTCCTGG-3'	AAAG TGGCAGAACAAAACTA GA G	1.3	4MMs [1:2:3:4]	14: +27083917	intergenic
PKU pig sgRNA5-1 off-target4 R	5'-ATTCCTCCAAACGCCTTCCTC-3'					
PKU pig sgRNA5-1 off-target 5 F	5'-GTCATCAACCAAATCCACACCC-3'	G T T T TG CA AGAACAAAACTA AA G	0.9	4MMs [2:4:7:8]	6: -110017647	ZNF521
PKU pig sgRNA5-1 off-target 5 R	5'-GTCTCATTCCAATCCTGACACC-3'					
PKU pig sgRNA5-1 off-target 6 F	5'-ATGCTGATGAACACTGGAAGGA-3'	CGGATGCCAGAACAAAACTACAG	0.9	4MMs [1:2:3:7]	13: -98605057	MFSD1
PKU pig sgRNA5-1 off-target 6 R	5'-GTAGAAGGCTGGAAATTAGAGG-3'					
PKU pig sgRNA5-1 off-target 7 F	5'-AGTTGGTGGGTATTGGTGAGG-3'	GATCTAGAAGAACAAAACTAAGG	0.8	4MMs [2:4:6:8]	6: +105755628	intergenic
PKU pig sgRNA5-1 off-target 7 R	5'-AAACATAGGTATCAGAGGAAGGT-3'					
PKU pig sgRNA5-1 off-target 8 F	5'-TTTGTGTTTCTCCTCTTCCAGC-3'	T C A ATG C CAGAA G AAAACTA AA G	0.4	4MMs [1:3:7:13]	8: +109168408	CAMK2D
PKU pig sgRNA5-1 off-target 8 R	5'-TCTCCTAGCCTCACATTCAGTC-3'					
PKU pig sgRNA6-2 off-target 1 F	5'-CCAAACTAGCCCCATGAACAG-3'	AG CT C CC T CCATCCAAGAAAAGG	1.4	4MMs [1:2:5:8]	1: +200728346	intergenic
PKU pig sgRNA6-2 off-target 1 R	5'-CTTTCTGTGCCAACCTCATTGC-3'					
PKU pig sgRNA6-2 off-target 2 F	5'-CATCCTTCCCTCCTCACTGC-3'	G GAC ACC A CCATCCAAGAAACGG	1.3	4MMs [2:3:4:8]	11: -78854769	GAS6
PKU pig sgRNA6-2 off-target 2 R	5'-GTACCCTCGTCCCACATTCC-3'					
PKU pig sgRNA6-2 off-target 3 F	5'-GAGTTTCTGTGTGTCTCGTGGA-3'	GT A TCCCCCAAGAAAAGG	1.3	4MMs [3:5:8:10]	9: -7171086	PDE2A
PKU pig sgRNA6-2 off-target 3 R	5'-CCAAGTTTCCTTTCCCATTGCC-3'					
PKU pig sgRNA6-2 off-target 4 F	5'-GAACCTAACCCTCGGACGTGA-3'	GTCTGCTGTCATCCAAGAAAAAG	1	3MMs [5:7:9]	7: +3617295	intergenic
PKU pig sgRNA6-2 off-target 4 R	5'-GGCTCCCCTATGAAAAAGTCAC-3'					
PKU pig sgRNA6-2 off-target 5 F	5'-TAACGATTACTGTCATGCCTTGC-3'	TTCATCTGCCATCCAAGAAACAG	0.9	4MMs [1:4:5:7]	9: +28289522	MAML2
PKU pig sgRNA6-2 off-target 5 R	5'-ATCTGTACACTCCCTAGCATCC-3'					
PKU pig sgRNA6-2 off-target 6 F	5'-ACAGGAGAAGAGGGGACCTTC-3'	G G C C AC GC CCATCCAAGAAA TA G	0.9	4MMs [2:4:7:8]	7: -22858953	ENSSSCG0000001229
PKU pig sgRNA6-2 off-target 6 R	5'-TCTGTGTTGGGGGGGGGAGTAACTGT-3'					
PKU pig sgRNA6-2 off-target 7 F	5'-AGGTTTATTAACTTGGGGGGAGTC-3'	GTCTCCCGC A ATCCAAGA G A AA G	0.9	3MMs [5:10:19]	4: +85434777	LMX1A
PKU pig sgRNA6-2 off-target 7 R	5'-GTGGTAACTAGAGGAGGAAAGG-3'					
PKU pig sgRNA6-2 off-target 8 F	5'-GCTGGACATGAATGAGTTTGAC-3'	GGCTTCCTCCAACCAAGAAAGAG	0.7	4MMs [2:5:8:12]	2: +61069006	CHERP
PKU pig sgRNA6-2 off-target 8 R	5'-GATCAAGTAGATGAGGTGCAGC-3'					
PKU pig sgRNA6-2 off-target 9 F	5'-CCCATTTTTCTCTGCTTGAGCC-3'	GCCTCCAGGCATCCAAGAAATGG	0.6	4MMs [2:5:7:9]	14: +86614855	GRID1
PKU pig sgRNA6-2 off-target 9 R	5'-CAATCCACATGCTGATTGCTGG-3'					
PKU pig sgRNA6-2 off-target 10 F	5'-AGTATACATGGACATCTACTGCA-3'	GT T TA AAT CCATCCAAGAAA TA G	0.5	4MMs [3:6:7:8]	1: -47850261	intergenic
PKU pig sgRNA6-2 off-target 10 R	5'-CTGTGGTATAGTCTCATATGGAG-3'					
PKUofftarget6-2_3seq	5'-TGGACCCAGGTCCAGAAC-3'	n/a	n/a	n/a	n/a	
PKUofftarget6-2_10seq	5'-GTAGTTATTTAATTGTGC-3'	n/a	n/a	n/a	n/a	
PKUofftarget6-2_3seq(2)	5'-CCCCAGGAGGCTTAGAGA-3'	n/a	n/a	n/a	n/a	

Supplemental Table S10B. PAH genomic and RT-PCR primers.

PAH PCR Primer	Primer Sequence
pig PAH ex 2 RT-PCR F	5'-TCCAGTCAAGATGGTTCCATA-3'
pig PAH ex 3 RT-PCR R	5'-TCTGACAGAGTAGGCATGCTG-3'
pig PAH ex 3 RT-PCR F	5'-CAGCATGCCTACTCTGTCAGA-3'
pig PAH ex 3 RT-PCR R	5'-CCGGGAGAGCTCGTGCACG-3'
pig PAH intron 5 F	5'-CAAAACATGTAGTTTAACAAGCTG-3'
pig PAH intron 5 R	5'-CACCTCACTCAGAGCACCAG-3'
pig PAH intron 6 F	5'-gaagaaagtaaattgaggccaag-3'
pig PAH intron 6 R	5'-GTACTTTTCAGGATCATGGAAATG-3'
pig PAH exon 5 F	5'-CGAACAAGACGGAAGTACTTTG-3'
pig PAH exon 7 R	5'-GAAATCCCGAGACGAAAGCAG-3'
pig PAH inversion R	5 '-AAGTAAATTGAGGCCAAGGTGC-3 '
pig PAH intron 5 R	5 ' -ccagtatgggaattcacttacc-3 '
pig PAH intron 5 R	5 '-AATGCATGGTAGGTCTAAGATC-3 '
pig PAH intron 5 F	5'-CTCTTAGATGGTTTTCAAAAGG-3'
pig PAH int5 LR-PCR F	5'-GAGTAGTTGCAGCACAGGTGG-3'
pig PAH int6 LR-PCR R	5 '-GTCTCTTGGCACAAACAGCAC-3 '
pig PAH int5 LR-PCR F2	5'-CTATTGAGTCATAGCATCACGG-3'
Pig PAH exon 6 STS F	5'-ACGCCTGCTACGAGTACAATC-3'
Pig PAH exon 6 STS R	5'-AGATGTGGACTCACACTGCAG-3'
Pig PAH exon 7 STS F	5'-TAGCACTGCCTGCCTCAG-3'
Pig PAH exon 10 STS F	5 ' - CAGATTTACTGGTTTACTGTGG-3 '
Pig PAH exon 10 STS R	5'-ATTCACCAAAGGATGACAGGAG-3'
Pig PAH exon 13 STS F	5'-GCAGAACCTCATCTGTCAGC-3'
Pig PAH exon 13 STS R	5'-TACTTGTTGATCCTCCATCTTG-3'
Pig PAH intron 5 STS F	5'-GACACTGTGTACCCTGTTAG-3'
Pig PAH intron 5 STS R	5'-TTTGAAAACCATCGAAAGTTCC-3'
pig PAH intron 5 F	5'-AGTGGTGCATCTCTAGGCAAG-3'
pig PAH exon 13 (3'-UTR) R	5'-CAGTAATTAGAATCACAGTCCC-3'
pig PAH intron 3 R	5'-GGCACCTTTAGACACCCAAATC-3'
pig PAH intron 6 F	5'-CTCGTCTCAAATGCTGCAACG-3'
Pig PAH intron 7 F	5'-TGCACAGAAAGCCTGAGTCTG-3'
Pig PAH exon 8 R	5'-GTACATGTCCCAACAGCTCATG-3'
Pig PAH intron 8 F	5'-CTGTGCCAGTGACTGTCTTTC-3'
Pig PAH exon 9 R	5 ' - TTCTCAATATACTCGTCAGGTGC-3 '
pig PAH intron 5 breakpoint F	5'-GAACACAGCTCCCTCTTAGATG-3'
pig PAH intron 6 breakpoint R	5'-CATGGAAATGGCAAAATCCACAG-3'
pig PAH Intron 5 ddPCR STS F	5 ' - ATGATTCTAAGGTAAACAGCCTC - 3 '
pig PAH Intron 5 ddPCR STS R	5'-CATCTAAGAGGGAGCTGTGTTC-3'
pig PAH intron 5 F-2	5'-TGTTCAGAACACAGCTCCCTC-3'
pig PAH intron 6 R-2	5'-ACCCAGACTTGTTAGTCACTTTG-3'
pig PAH intron 5 del-breakpoint F	5'-CTTGTCTTGCTTTCAGTTCTTC-3'
pig PAH intron 5 del-breakpoint R	5'-CACAGAACACGCCACTTAT-3'

Supplemental Table S10C. Other PCR primers.

Other PCR Primer	Primer Sequence
pig GAPDH qRT-PCR F	5'-ATCCTGGGCTACACTGAGGAC-3'
pig GAPDH qRT-PCR R	5'-CTTGACGAAGTGGTCGTTGAGG-3'
pig GAPDH control F ddPCR	5'-CCGCGATCTAATGTTCTCTTTC-3'
pig GAPDH control R ddPCR	5'-TTCACTCCGACCTTCACCATC-3'
pig IGF1 exon 1a STS F	5'-TTCAGAGCAGATAGAGCCTGC-3'
pig IGF1 exon 1a STS R	5'-AATCCAGGGAGATGGGAGATG-3'
pig IGF1 exon 1b STS F	5'-TGACTCAAATCCCAGCTGTGC-3'
pig IGF1 exon 1b STS R	5'-AGCATCTAGTTACATTGGGAC-3'
pig PAH-IGF1 intergenic CpG1 F STS F	5'-GTTTACTCAACAGAACGCTGTC-3'
pig PAH-IGF1 intergenic CpG1 F STS R	5'-TTCTCAGTTGGCTCTGTACATG-3'
pig PAH-IGF1 intergenic CpG2 F STS F	5'-GAAGATGAAGCTAGGTTGATCG-3'
pig PAH-IGF1 intergenic CpG2 F STS R	5'-TCAGTAGGATTTCTGAGTTAGTC-3'
pig PAH-IGF1 intergenic 1 (R8-9 enhancer) STS F	5'-GTTGTATGGCGTGAGCTACAG-3'
pig PAH-IGF1 intergenic 1 (R8-9 enhancer) STS R	5'-GGCAGCCTGTTATTTTACGAG-3'
pig PAH-IGF1 intergenic 2 (R13 enhancer) STS F	5'-TACAGATCCAATGGTAGCTCC-3'
pig PAH-IGF1 intergenic 2 (R13 enhancer) STS R	5'-TTCACAAGGCGACAGAGCAG-3'

Supplemental Table S10D. *Bbs*I site oligonucleotide cloning adapters for sgRNAs.

sgRNA Oligo	OligoSequence
sgRNA pig PAH intron 5-1 sense	5'-CACCgGCTATGGCAGAACAAACTA-3'
sgRNA pig PAH intron 5-1 complementary	5'-AAACTAGTTTTGTTCTGCCATAGCc-3'
sgRNA pig PAH intron 5-2 sense	5'-CACCgGGTAAGTGAATTCCCATACT-3'
sgRNA pig PAH intron 5-2 complementary	5'-AAACAGTATGGGAATTCACTTACCc-3'
sgRNA pig PAH intron 6-1 sense	5'-CACCgGAGTGCGTTTGTGCTGATGC-3'
sgRNA pig PAH intron 6-1 complementary	5'-AAACGCATCAGCACAAACGCACTCc-3'
sgRNA pig PAH intron 6-2 sense	5'-CACCgGTCTACCGCCATCCAAGAAA-3'
sgRNA pig PAH intron 6-2 complementary	5'-AAACTTTCTTGGATGGCGGTAGACc-3'

Supplemental Figures

Supplemental Figure S1. Characterization of the PAH gene in Sus scrofa.

Supplemental Figure S1. Characterization of the *PAH* **gene in** *Sus scrofa***.** (A) Gene structure of porcine *PAH* drawn to scale with its 13 exons in cyan numbered below. This gene structure is

conserved in other mammalian species including human. (**B**) The pig phenylalanine-4-hydroxylase (PAH) polypeptide sequence is highly conserved with other vertebrate species. Variants in pig breeds are highlighted in blue shade (V385 or L385 and S393 or N393). (**C**) Expression of *PAH* in Göttingen minipig tissues. (left) RT-PCR expression profile of *PAH* exon 2-3 across multiple tissues shows highest levels in liver, heart and kidney; (right) RT-PCR detection of *PAH* exon 2-7 and exon 3-7 confirms high expression in liver and moderate expression in kidney. (**D**) Genomic PCR in a subpanel of five pig-hamster somatic cell hybrid (SCH) lines indicates the mapping (blue arrow) of *PAH* to the long arm of *Sus scrofa* chromosome 5 (SSC5q). Black vertical bars indicate the SSC5 segment present in each SCH line, with dashed lines indicating the absence of SSC5 in those SCH lines. CHO-K1 is a Chinese hamster ovary control cell line.

Supplemental Figure S2. *PAH* open reading frame and translated protein products in (A) wild-type, (B) exon 6 deletion, (C) and exon 6-7 deletion mutants.

A. <u>Wild-Type:</u>

1	AT	GTC	AGC	GG	CGGT	CCT	GGA	GAA	CGG	AGGC	GG	GGG	CCG	CA	AACT	CAG	CGA	CTG	GGGZ	ACAG
	М	s	Α	Α	v	L	Е	N	G	G	G	G	R	к	L	s	D	W	G	Q
61	GA	AAC	AAG	СТ	ATAT	TGA	AGA	CAG	CTC	CAGT	CA	AGA	TGG	ТΤ	CCAT	ATC	ACT	GAT	CTTC	CTCA
	Е	т	s	Y	I	Е	D	S	s	s	Q	D	G	s	I	s	L	I	F	S
121	СТ	CAA	AGA	AG	AAGT	TGG	TGC	GCT	GGC	CAAA	GT	CTT	GCG	ТΤ	TATT	TGA	GGA	GAA'	rgg:	FATA
	L	к	Е	Е	v	G	А	L	А	к	v	L	R	L	F	Е	Е	N	G	I
181	AA	CCT	GAC	TC	ACAT	TGA	ATC	CCG	ACC	TTCG	CG	TTT.	AAA	GA	AAGA	TGA	GTA	TGA	GTT:	TTTC
	N	L	т	н	I	Е	s	R	Ρ	S	R	L	к	к	D	Е	Y	Е	F	F
241	AC	CCA	CCT	GG	ATAA	AGG	CAG	CAT	GCC!	TACT	СТ	GTC	AGA	CA	TCAT	CAA	GAT	CTT	GAG	ACAT
	т	н	L	D	к	G	S	М	Ρ	т	L	s	D	Ι	I	к	I	L	R	н
301	GA	CAT	TGG	CG	CCAC	CGT	GCA	CGA	GCT	CTCC	CG	GGA	CAA	GA	AGAA	AGA	CAC	AGT	GCC	CTGG
	D	I	G	А	т	v	н	Е	L	s	R	D	к	к	к	D	т	v	Ρ	W
361	ΤT	CCC	CAA	AA	CCAT	TCA	AGA	GCT	GGA	CAGA	\mathbf{TT}	TGC	CAA'	тс	AGAT	TCT	CAG	CTA	CGGI	AGCG
	F	Ρ	к	т	I	Q	Е	L	D	R	F	А	N	Q	I	L	s	Y	G	А
421	GA	ACT	GGA	TG	CAGA	TCA	CCC	TGG!	TTT	TAAA	GA	TCC	TGT	GΤ	ACCG	AAC	AAG	ACG	GAA	JTAC
	Е	L	D	А	D	н	Ρ	G	F	к	D	Ρ	v	Y	R	т	R	R	к	Y
481	ТΤ	TGC	TGA	CA	TTGC	CTA	CAA	CTA:	TCG	ACAT	GG	GCA	GCC	CA	TCCC	CCG	AGT	GGA	GTA	CACA
	F	А	D	Ι	A	Y	N	Y	R	н	G	Q	Р	I	P	R	v	Е	Y	т
541	GA	GGA	AGA	GA	AGAA	AAC	GTG	GGG	GAC	GGTG	тт	CAA	GAA	сс	TGAA	GTC	СТТ	GTA:	TCAZ	AACC
	Е	Е	Е	к	к	т	W	G	т	v	F	к	N	L	к	s	L	Y	Q	т
601	CA	CGC	CTG	СТ	ACGA	GTA	CAA	TCA	CAT	TTTC	CC	ACT	TCT	GG	AAAA	GTA	CTG	TGG!	TTTC	CTGC
	н	А	С	Y	Е	Y	N	н	I	F	Р	L	L	Е	к	Y	С	G	F	С
661	GA	AGA	TAA	TA	TTCC	CCA	GCT	GGA	AGA	AGTT	тс	TCA	GTT	тс	TGCA	GTC	TTG	CAC	CGG	TTTC
	Е	D	N	Ι	P	Q	L	Е	Е	v	s	Q	F	L	Q	s	С	т	G	F
721	CG	CCT	CCG	AC	CTGT	GGC	CGG	CCT	GCT'	TTCG	тс	TCG	GGA'	тт	TCCT	GGG	TGG	CCT	GGC	TTTC
	R	L	R	Р	v	А	G	L	L	s	s	R	D	F	L	G	G	L	А	F
781	CG	AGT	CTT	CC	ACTG	CAC	TCA	GTA	CAT	CAGA	CA	CGC	GTC	CA	AGCC	CAT	GTA	TAC	ACC	FGAA
	R	v	F	н	с	т	о	Y	I	R	н	А	s	к	Р	м	Y	т	Р	Е
							~													
841	CC	TGA	CAT	СТ	GCCA	TGA	GCT	GTT	GGG	ACAT	GT.	ACC	CTT	GT	TTTC	AGA	TCG	CAG	CTT	rgcc
	Р	D	I	С	н	Е	L	L	G	н	v	P	L	F	S	D	R	s	F	А
901	CA	GTT	TTC	cc	AGGA	AAT	CGG	CCT	CGC	стст	GT	GGG	GGC	AC	CTGA	CGA	GTA	TAT:	TGA	GAAA
	0	F	s	о	Е	I	G	L	А	s	v	G	А	Ρ	D	Е	Y	I	Е	к
	~			~																
961	СТ	TGC	AAC	AA	TTTA	CTG	GTT	TAC	TGT	GGAG	тт	TGG	GCT	СТ	GCAA	GCA	AGA	AGA	CTC	CATA
	т.	A	т	т	Y	W	ਜ	т	v	Е	ਜ	G	т.	C	к	0	E	D	s	т
			-	-	-		-	-	•	_	-	•	-	Ũ		×	_	-	-	-
1021	AA	GGC	АТА	тG	GTGC	TGG	GCT	CCT	GTC	ATCC	ጥጥ	TGG	TGA	AТ	таса	GTA	ттG	СТТ	GTC	AGGT
1011	ĸ	Δ	v	2	Δ100	- CO.	т.	т.	s.	5	ਸ ਸ	6	F	т.		v	- TC	т.	s	G
		n	-	0	A	0			0	5	-	0	-	-	×	-	C		5	9
1081	C۵	CCC	222	CC	TCCT	רארי	тст	CCA	ልሮሞሰ	CCAC	22	CAC	محص	тc	TCCA	CCA	CTTA	CAC	۵۵۳۵	DD47
1001	F	D000	R IIII	.сс т.	1001 T	с <u>н</u> с.	T	F	T.	50110 F	R I	TTC:	AGC.	v	0	F	v	m	v	m T
	E	F	к	ц	ц	Ŧ	ц	Б	ц	E	к	T	A	v	Ŷ	Б	T	1	v	1
1141	C 7	Cum	007	cc	CCCm	2777	רידיי	CCTT	ccc	CG2 C	20	ապատ	~~~	πC	አምድድ	~~~	CC7	C7 7 7	ACTT	2800
1141	GA F	E E	CCA	ישר ה		GTA(V V	77	3000 7	E GAG	AG C	- T-T(UNA:	- G	ATCC		E B B B B B B B B B B B B B B B B B B B	GAA	1010	DOAG
	E	F.	Q	Р	v	X	x	v	А	E	S	F.	N	ט	А	ĸ	E	ĸ	v	к
1007			maa	-	007.0			maa		0000	m ~		.		3000-	~~~		07.0		1200
1201	AA >-	CTT	-rGC	TG-	CCAC	AA'I''.	rcc	TCG	GCC(CTTC	TC	AGT	TCG	TT 	ATGA		A'I'A	CAC	CAL	AGG
	N	F	А	А	т	Ţ	Р	R	Р	F.	S	v	R	Y	D	Р	Y	т	Q	R
10.55				-		 -	~ -		~~-			~					~- -	 -	~~-	
1261	AT	TGA	GGT	СТ	TGGA	CAA	CAC	CCA	GCA	GCTT	AA	GAT	TCT	GG	CTGA	CTC	CAT	CAA	GG.	I'GAA
	Ι	Е	v	L	D	N	т	Q	Q	L	к	Ι	L	Α	D	s	Ι	N	G	E
1 2 0 1	~-			~~		~ • • •		00-					-	-						

1321 GTTGGAATCC TTTGCAATGC CCTCCAGAAA TTAAAGTGA V G I L C N A L Q K L K $\overleftarrow{}$

Supplemental Figure S2 (cont.)

B. Exon 6 Deletion:

1	AT	GTCI	AGCO	GG	CGGT	ССТ	GGA	GAA	CGG	AGGC	GG	GGG	CCG	CA	AACT	CAG	CGA	CTG	GGG	ACAG
	М	s	Α	A	v	L	Е	N	G	G	G	G	R	ĸ	L	S	D	W	G	Q
61	GA	AACZ	AAG	СТ	ATAT	TGA	AGA	CAG	CTC	CAGT	CA	AGA	TGG	тт	CCAT	ATC	ACT	GAT	СТТ	CTCA
	Е	т	s	Y	I	Е	D	S	S	S	Q	D	G	s	I	s	L	I	F	S
121	СТС	CAAZ	AGAZ	AG	AAGT	TGG	TGC	GCT	GGC	сааа	GT	стт	GCG	тт	TATT	TGA	GGA	GAA	TGG	TATA
	L	к	Е	Е	v	G	A	L	A	К	v	L	R	L	F	Е	Е	N	G	I
181	AA	ссто	GAC	гc	ACAT	TGA	ATC	CCG	ACC	TTCG	CG	TTT	AAA	GA	AAGA	TGA	GTA	TGA	GTT	TTTC
	N	L	т	H	I	Е	S	R	P	S	R	L	ĸ	к	D	Е	Y	Е	F	F
241	AC	CCAC	ссто	GG	ATAA	AGG	CAG	CAT	GCC	TACT	СТ	GTC	AGA	CA	TCAT	CAA	GAT	CTT	GAG.	ACAT
	т	н	L	D	ĸ	G	s	м	P	т	L	s	D	I	I	к	I	L	R	H
301	GA	CAT	rggo	CG	CCAC	CGT	GCA	CGA	GCT	CTCC	CG	GGA	CAA	GA	AGAA	AGA	CAC	AGT	GCC	CTGG
	D	Ι	G	A	т	v	н	Е	L	s	R	D	ĸ	к	к	D	т	v	P	W
361	TT	ccc	CAAZ	AA	CCAT	TCA	AGA	GCT	GGA	CAGA	тт	TGC	CAA	тс	AGAT	TCT	CAG	CTA	CGG	AGCG
	F	Ρ	к	т	I	Q	Е	L	D	R	F	A	N	Q	I	L	S	Y	G	A
421	GA	ACTO	GA:	ГG	CAGA	TCA	ccc	TGG	TTT	TAAA	GA	TCC	TGT	GT	ACCG	AAC	AAG	ACG	GAA	GTAC
	Е	L	D	A	D	н	P	G	F	к	D	P	v	Y	R	т	R	R	к	Y
481	TT:	rgc:	rgad	CA	TTGC	СТА	CAA	CTA	TCG	ACAC	тт	GCA	CCG	GT	TTCC	GCC	TCC	GAC	CTG	TGGC
	F	A	D	I	A	Y	N	Y	R	н	L	H	R	F	P	Ρ	P	т	С	G
541	CG	GCC	rgc:	гт	TCGT	стс	GGG	ATT	TCC	TGGG	ΤG	GCC	TGG	СТ	TTCC	GAG	TCT	TCC	ACT	GCAC
	R	Ρ	A	F	v	S	G	F	P	G	W	Ρ	G	F	P	S	L	Ρ	L	H
601	тс	AGTZ	ACA	гc	AGAC	ACG	CGT	CCA	AGC	CCAT	GT.	ATA	CAC	СТ	GA					
	S	v	н	Q	т	R	v	Q	Α	н	V	Y	т	*						

C. Exon 6-7 Deletion:

1	AT	GTC	AGC	GG	CGGT	CCT	GGA	GAA	CGG	AGGC	GG	GGG	CCG	CA	AACT	CAG	CGA	CTG	GGG	ACAG
	м	s	Α	A	v	L	Е	N	G	G	G	G	R	к	L	s	D	W	G	Q
61	GA	AAC	AAG	СТ	ATAT	TGA	AGA	CAG	стс	CAGT	CA	AGA	TGG	тт	CCAT	ATC	ACT	GAT	СТТ	CTCA
	Е	т	S	Y	I	Е	D	S	S	S	Q	D	G	s	I	S	L	I	F	S
121	СТС	CAA	AGA	AG	AAGT	TGG	TGC	GCT	GGC	CAAA	GT	СТТ	GCG	тт	TATT	TGA	GGA	GAA	TGG	TATA
	L	к	Е	Е	v	G	A	L	Α	ĸ	v	L	R	L	F	Е	Е	N	G	I
181	AA	ССТО	GAC	гс	ACAT	TGA	ATC	CCG	ACC	TTCG	CG	TTT	AAA	GA	AAGA	TGA	GTA	TGA	GTT	TTTC
	N	L	т	H	I	Е	s	R	Ρ	s	R	L	к	к	D	Е	Y	Е	F	F
241	AC	CCAG	ссто	GG	ATAA	AGG	CAG	CAT	GCC	таст	ст	GTC	AGA	CA	TCAT	САА	GAT	СТТ	GAG	ACAT
	т	H	L	D	к	G	s	м	Ρ	т	L	s	D	I	I	к	I	L	R	н
301	GA	CAT	IGG	CG	CCAC	CGT	GCA	CGA	GCT	стсс	CG	GGA	CAA	GA	AGAA	AGA	CAC	AGT	GCC	CTGG
	D	Ι	G	A	т	v	H	Е	L	S	R	D	к	к	к	D	т	v	Ρ	W
361	тт	ccc	CAA	AA	CCAT	тса	AGA	GCT	GGA	CAGA	тт	TGC	CAA	тс	AGAT	тст	CAG	CTA	CGG	AGCG
	F	Ρ	к	т	I	Q	Е	L	D	R	F	Α	N	Q	I	L	S	Y	G	A
421	GA	ACTO	GGA	ГG	CAGA	TCA	ccc	TGG	TTT	ТААА	GA	тсс	TGT	GT	ACCG	AAC	AAG	ACG	GAA	GTAC
	Е	L	D	A	D	н	P	G	F	к	D	Ρ	v	Y	R	т	R	R	к	Y
401				~~		~~~~	~~ ~	СШ 2	.		~7	~~ "	~~~	~~	2002	~~~	~~~~	~~~	202	m.cm.a
401	TT:		TGA	T	TIGC	V		V	TCG.	u u	GA			טט ש	AIGA	GC I	T	GGG	ACA U	TGIA
	Ľ	А	D	-	~	T	IN	T	r	п	D	-	C	п	Б	ц	ц	G	п	v
541	CC	CTTC	GTT	гт	CAGA	TCG	CAG	CTT	TGC	CCAG	тт	TTC	CCA	GG	AAAT	CGG	CCT	CGC	стс	TGTG
	P	L	F	s	D	R	s	F	Α	Q	F	S	Q	Е	I	G	L	Α	S	v
601	GG	GCZ	ACC	ГG	ACGA	GTA	TAT	TGA	GAA	ACTT	GC	AAC	ААТ	тт	ACTG	GTT	TAC	TGT	GGA	GTTT
	G	A	P	D	Е	Y	I	Е	к	L	А	т	I	Y	W	F	т	v	Е	F

Supplemental Figure S2 (cont.)

660	GG	GCT	CTG	CA	AGCA	AGA	AGA	CTC	CAT	AAAG	GC.	ATA	TGG	ΤG	CTGG	GCT	CCT	GTC	ATC	CTTT
	G	L	С	к	Q	Е	D	S	I	ĸ	Α	Y	G	A	G	L	L	s	S	F
720	GG	TGA	ATT	AC	AGTA	TTG	СТТ	GTC.	AGG	TGAG	CC.	AAA	GCT	сс	TCAC	TCT	GGA	ACT	GGA	GAAG
	G	Е	L	Q	Y	С	L	S	G	Е	Р	к	L	L	т	L	Е	L	Е	к
781	AC.	AGC	TGT	сс	AGGA	GTA	CAC	AGT	CAC	GGAG	тт	CCA	GCC	CG	TGTA	CTA	CGT	GGC	CGA	GAGT
	т	A	v	Q	E	Y	т	v	т	Е	F	Q	Ρ	v	Y	Y	v	A	Е	S
841	TT	CAA	TGA	TG	CCAA	GGA	GAA	AGT	GAG	GAAC	тт	TGC	TGC	CA	CAAT	TCC	TCG	GCC	CTT	CTCA
	F	N	D	A	K	Е	к	v	R	N	F	Α	A	т	I	P	R	P	F	S
901	GT	TCG	TTA	ΤG	ACCC	ATA	CAC	CCA	AAG	GATT	GA	GGT	СТТ	GG	ACAA	CAC	CCA	GCA	GCT	TAAG
	v	R	Y	D	P	Y	т	Q	R	I	Е	v	L	D	N	т	Q	Q	L	К
961	AT	тст	GGC	ΤG	ACTC	CAT	CAA	CGG	TGA	AGTT	GG.	AAT	сст	тт	GCAA	TGC	ССТО	CA	GAA	ATTA
	I	L	Α	D	S	I	N	G	Е	v	G	Ι	L	С	N	Α	L	Q	к	L
1021	AA	GTG	A																	
	к	*	_																	

Supplemental Figure S2. *PAH* open reading frame and translated protein products in (A) wild-type, (B) exon 6 deletion, (C) and exon 6-7 deletion mutants. Translation initiation and termination codons are underlined. With the exon 6 deletion there would be early termination codon usage due to a frameshift whereas the exon 6-7 deletion is in-frame and translation would lead to a shortened polypeptide sequence utilizing the same terminator as for the wild-type *PAH* transcripts. The open reading frame (ORF) nucleotide position is given on the left and the amino acid single letter code is written below with an asterisk (*) for stop codons. A red arrowhead indicates deletion of exon 6 and resulting out-of-frame translation and early termination (red amino acid sequence), while a green arrowhead indicates the site of exon 6-7 deletion that results in ablation of 111 amino acid residues in the PAH catalytic domain.

Supplemental Figure S3. Characterization of *PAH* gene-edited recombinant deletion and inversion breakpoints induced in SCH lines.

	Α			
	Intron 5	5	-1 6-	1 Intron 6
Del5	CAAGATCTGGGGGCAGGTCCAACACATGTACTTT	AACAAGCTGCCCGT	AG	GAAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
Del7	CAAGATCTGGGGGCAGGTCCAACACATGTACTTT	AACAAGCTGC <mark>CCG</mark> T	' <mark>AG</mark>	GAAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
Del2	CAAGATCTGGGGGCAGGTCCAACACATGTACTTT	AACAAGCTGCCCG <mark>T</mark>	'AG <mark>ATO</mark>	CAGGAAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
Dell	CAAGATCTGGGGGCAGGTCCAACACATGTACTTT	AACAAGCTGCCCG <mark>T</mark>	AG-TO	CAGGAAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
Del9	CAAGATCTGGGGGCAGGTCCAACACATGTACTTT	AACAAGCTGCCCG <mark>T</mark>	AG-TO	CAGGAAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
Del4	CAAGATCTGGGGGCAGGTCCAACACATGTACTTT	AACAAGCTGCCCG <mark>T</mark>	AG-TO	CAGGAAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
Del3	CAAGATCTGGGGGGCAGGTCCAACACATGTACTTT	AACAAGCTGCCCG	AG-TO	CCGGGAAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
Duroc	CAAGATCTGGGGGCAGGTCCAACACATGTACTTT	AACAAGCTGC <mark>CCG</mark> I	IAG / TO	CAGGAAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
	В		_	
	Intron 5	5-2	6-	Intron 6
Dell7	CTACTTGACATATTTATGTTACAGGCCCTTGAAG	GTAAGTGAATT		AAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
Dell	CTACTTGACATATTTATGTTACAGGCCCTTGAAG	GTAAGTGAATTCCC	A-T-C	CAGGAAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
Del3	CTACTTGACATATTTATGTTACAGGCCCTTGAAG	GTAAGTGAATTCCC	A-T-C	CAGGAAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
Del4	CTACTTGACATATTTATGTTACAGGCCCTTGAAG	GTAAGTGAATTCCC	A-T-C	CAGGAAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
Del18	CTACTTGACATATTTATGTTACAGGCCCTTGAA <mark>G</mark>	GTAG	<mark>T</mark> C	CCAGGAAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
Del6	CTACTTGACATATTTATGT			TCACTGTTTCACTG
Del7	CTACTTGACATATTTATGT			TCACTGTTTCACTG
Del8	CTACTTGACATATTTATGT			TCACTGTTTCACTG
Del14	CTACTTGACATATTTATGTTACAGGCCCTTGGAG	GT		AAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
Del9	CTACTTGACATATTTATGTTACAGGCCCTTGAA <mark>G</mark>	GTAAGTGAATTCCC	AT-TO	CAGGAAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
Dell1	CTACTTGACATATTTATGTTACAGGCCCTTGAAG	GTAAGTGAATTCCC	AT-TO	CAGGAAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
Del12	CTACTTGACATATTTATGTTACAGGCCCTTGAAG	GTAAGTGAATTCCC	CAT-TO	CAGGAAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
Del13	CTACTTGACATATTTATGTTACAGGCCCTTGAAG	GTAAGTGAATTCCC	AT-TC	CAGGAAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
Del2	CTACTTGACATATTTATGTTACAGGCCCTTGAAG	GTAAGTGAATTCCC	AT-TC	CAGGAAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
Del5	CTACTTGACATATTTATGTTACAGGCCCTTGAAG	GTAAGTGAATTCCC	CAT-TO	CAGGAAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
Duroc	CTACTTGACATATTTATGTTACAGGCCCTTGAAG	GTAAGTGAATTCCC	AT/TO	CAGGAAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
	С			
	Intron 5		5 <mark>-1</mark> 6·	-2 Intron 6
Del5	CAAGATCTGGGGGCAGGTCCAACACATGTACTTT	AACAAGCTGC <mark>CCG</mark> T	'AGG <mark>A</mark> F	AAAGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTACT
Del4	CAAGATCTGGGGGCAGGTCCAACACATGTACTT	AACAAGCTGC <mark>CCG</mark> T	'AG- <mark>A</mark>	AAAGGCATTAGCTGTGGATTTTGCCACTTCCATGATCCTGAAAAGTACT
Dell	CAAGATCTGGGGGCAGGTCCAACACATGTACTT	AACAAGCTGC <mark>CCG</mark> T	'AG- <mark>A</mark>	AAAGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTACT
Del2	CAAGATCTGGGGGCAGGTCCAACACATGTACTT	AACAAGCTGC <mark>CCG</mark> T	'AG- <mark>A</mark>	AAAGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTACT
Del3	CAAGATCTGGGGGCAGGTCCAACACATGTACTTT	AACAAGCTGC <mark>CCG</mark> I	'AG <mark>-</mark> AA	AAAGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTACT
Duroc	CAAGATCTGGGGGCAGGTCCAACACATGTACTTT	AACAAGCTGC <mark>CCG</mark> I	'AG/AF	AAAGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTACT
	D			
	D Introp 5	5 - 2		F-2 Introp 6
Del6				
Dell6		GGIAAGIGAAIICC		
Dello Dello		GIAAGIGGAIII		
Delli		GGTAAGTG		
Del3	GCTACTTGACATATTTATGTTACAGGCCCTTGAA	GGTAAGTGAATTCC	CAT-C	5AAAAGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTAC
Del8	GCTACTTGACATATTTATGTTACAGGCCCTTGAA	GGTAAGTGAATTCC		SAAAAGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTAC
Del7	GCTACTTGACATATTTATGTTACAGGCCCTTGAA	GGTAAGTGAATTCC	CATA-	- <mark>AAA</mark> AGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTAC
Del10	GCTACTTGACATATTTATGTTACAGGCCCTTGAA	GGTAAGTGAATTCC	CAT-	<mark>GAAA</mark> AGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTA C
Del13	GCTACTTGACATATTTATGTTACAGGCCCTTGAA	GGTAT		AAAAGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTAC
Del9	GCTACTTGACATATTTATGTTACAGGCCCTTGAA	GGTAAGTGAATTCC	CAT	AAAAGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTAC
Del5	GCTACTTGACATATTTATGTTACAGGCCCTTGAA	GGTAAGTGAATTCC	CAT	AAAAGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTAC
Dell2	GCTACTTGACATATTTATGTTACAGGCCCTTGAA	GGTAAGTGAATTCC	CAT	AAAAGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTAC
Del15	GCTACTTGACATATTTATGTTACAGGCCCTTGAA	GGTAAGTGAATTCC	CAT	- <mark>AAA</mark> AGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTAC
Del2	GCTACTTGACATATTTATGTTACAGGCCCTTGAA	GGTAAGTGAATTCC	CAT	TAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTAC
Dell4	GCTACTTGACATATTTATGTTACAGGCCCTTGAA	<mark>GGTAAGTG</mark>	· – – – – <mark>(</mark>	<mark>GAAA</mark> AGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTAC
Dell	GCTACTTGACATATTTATGTTACAGGCCCTTGAA	GGTAAGTGAATTCC	CATG	<mark>SAAA</mark> AGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTAC
Del4	GCTACTTGACATATTTATGTTACAGGCCCTTGAA	GGTAAGTGAATTCC	CATG	<mark>GAAA</mark> AGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTAC
Duroc	GCTACTTGACATATTTATGTTACAGGCCCTTGAA	GGTAAGTGAATTCC	CAT//	AAAAGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTAC

Supplemental Figure S3 (cont.)

E

	Intron 5	5-1 6-1 Intron 6 RevComp
pInv3 pInv2 pInv5	ACAGGTTCAAGATCTGGGGGCAGGTCCAACACATGTACTTTAACAAGCTGCC ACAGGTTCAAGATCTGGGGGCAGGTCCAACACATGTACTTTAACAAGCTGCC ACAGGTTCAAGATCTGGGGGCAGGTCCAACACATGTACTTTAACAAGCTGCC	CG <mark>TAG - TCAGCACAAACGCACTC</mark> ACGCGCACCTTGGCCTCAATTTACTT CG <mark>TAG - TCAGCACAAACGCACTC</mark> ACGCGCACCTTGGCCTCAATTTACTT CG <mark>TAG - TCAGCACAAACGCACTC</mark> ACGCGCACCTTGGCCTCAATTTACTT
plnv4 Duroc	ACAGGTTCAAGATCTGGGGGCAGGTCCAACACATGTACTTTAACAAGCTGCC ACAGGTTCAAGATCTGGGGGCAGGTCCAACACATGTACTTTAACAAGCTGC	cg <mark>tag/ tcagcacaaacgcacto</mark> acgcgcaccttggcctcaatttactt cg <mark>tag/ tcagcacaaacgcactc</mark> acgcgcaccttggcctcaatttactt
	F	
pInv4 pInv3 pInv1 pInv5 pInv2 Duroc	Intron 5 52 ATACCTGCTACTTGACATATTTATGTTACAGGCCCTTGAAGGTAAGTGAATT ATACCTGCTACTTGACATATTTATGTTACAGGCCCTTGAAGGTAAGTGAATT ATACCTGCTACTTGACATATTTATGTTACAGGCCCTTGAAGGTAAGTGAATT ATACCTGCTACTTGACATATTTATGTTACAGGCCCTTGAAGGTAAGTGAATT ATACCTGCTACTTGACATATTTATGTTACAGGCCCTTGAAGGTAAGTGAATT ATACCTGCTACTTGACATATTTATGTTACAGGCCCTTGAAGGTAAGTGAATT	6-1 Intron 6 RevComp TCAGCACNAACGCNCTC CCCAC - TCAGCACNAACGCACTCACGCGCACCTTGGCCTCNAATTTACT CCCAC - TCAGCACAAACGCACTCACGCGCCACCTTGGCCTCAATTTACTT CCCAC - TCAGCACAAACGCACTCACGCGCCACCTTGGCCTCAATTTACTT CCCAC - TCAGCACAAACGCACTCACGCGCCACCTTGGCCTCAATTTACTT CCCAC - TCAGCACAAACGCACTCACGCGCCACCTTGGCCTCAATTTACTT CCCAC - TCAGCACAAACGCACTCACGCCCCTCGGCCTCCAATTTACTT CCCAC - TCAGCACAAACGCACTC
	G	
	Intron 5 5-	1 6-2 Intron 6 RevComp
pInv1 pInv3 pInv4 pInv2 Duroc	CAAGATCTGGGGGCAGGTCCAACACATGTACTTTAACAAGCTGCCCGT CAAGATCTGGGGGCAGGTCCAACACATGTACTTTAACAAGCTGCCCGT CAAGATCTGGGGGCAGGTCCAACACATGTACTTTAACAAGCTGCCCGT CAAGATCTGGGGGCAGGTCCAACACATGTACTTTAACAAGCTGCCCGT CAAGATCTGGGGGCAGGTCCAACACATGTACTTTAACAAGCTGCCCGT	C - CTTGGATGGCGGTAGAC TAACCGTGGGGGCCTGAGGGGAGGCAGAGCCCA C - CTTGGATGGCGGTAGAC TAACCGTGGGGGCCTGAGGGGAGGCAGAGCCCA C - CTTGGATGGCGGTAGAC TAACCGTGGGGGCCTGAGGGGAGGCAGAGCCCA C - CTTGGATGGCGGTAGAC TAACCGTGGGGGGCCTGAGGGGGAGGCAGAGCCCA C / CTTGGATGGCGGTAGAC TAACCGTGGGGGGCCTGAGGGGGAGGCAGAGCCCA
	п	
	II Introp 5	6-9 Introp 6 PowComp
pInv1	CTACTTGACATATTTATGTTACAGGCCCTTGAA <mark>GGTAAGTGAATTCCCAT</mark> -C	TTGGATGGCGGTAGAC
pInv2	CTACTTGACATATTTATGTTACAGGCCCTTGAA <mark>GGTAAGTGAATTCCCAT</mark> -C	TTGGATGGCGGTAGACTAACCGTGGGGGCCTGAGGGGAGGCAGAGCCCA
pInv4	CTACTTGACATATTTATGTTACAGGCCCTTGAAGGTAAGTGAATTCCCAT	
Duroc	CTACTIGACATATITATGTTACAGGCCCTIGAAGGTAAGTGAATTCCCAT	TTGGATGGCGGTAGACTAACCGTGGGGGGCCTGAGGGGAGGCAGAGCCCA TTGGATGGCGGTAGAC
	T	
	Intron 5 RevComp 5-1	6-1 Intron 6
dInv2	CTAAGATCCAGATCCATTTACCTGGCATCTCCG <mark>GCTATGGCAGAA</mark>	GACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
dInv3	CTAAGATCCAGATCCATTTACCTGGCATCTCCG <mark>GCTATGGCAGAACAGAA</mark>	
dInv5 dInv4		TGCAGGAAGAUGGATTUTUUUAGGAAAAUUAGAATTTUAUTGTTTUAUTG TGCAGGAAGAUGGATTUTUUUAGGAAAAUUAGAATTTUAUTGTTTUAUTG
dInv1	CTAAGATCCAGATCCATTTACCTGGCATCTCCG <mark>GCTATGGCAGAACAAAA</mark> T <mark>A</mark>	TGCAGGAAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
Duroc	CTAAGATCCAGATCCATTTACCTGGCATCTCCG <mark>GCTATGGCAGAACAAAA</mark> //	<mark>TGC</mark> AGGAAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
	Л	
	Intron 5 RevComp 5-2 6	-1 Intron 6
dInv4	AACTCCTCACTTGGCTTTTCTGCTCTCCTATTTCCTATTCTTTACCCAGT	GCAGGAAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
dInv3	AACTCCTCACTTGGCTTTTCTGCTCTCCTATTTCCTATTCTTTACCCAGT-T	GCAGGAAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
dInv9 dInv5	ACTCCTCACTTGGCTTTTCTGCTCTCCTATTTCCTATTCCTATTCCCAGT-T	GCAGGAAGACGGATTCTCCCCAGGAAAACCCAGAATTTCACTGTTTCACTG
dInv1	AACTCCTCACTTGGCTTTTCTGCTCTCCTATTTCCTATTCTTTACCCAGT-T	GCAGGAAGACGGATTCTCCCCAGGAAGACCAGAATTTCACTGTTTCACTG
dInv2	AACTCCTCACTTGGCTTTTCTGCTCTCCTATTTCCTATTCTTTACCCAGT-T	GCAGGAAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
dInv7	- AACTCCTCACTTGGCTTTTCTGCTCTCCTATTTCCTATTCTTTACCC <mark>AGT-T</mark>	GCAGGAAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
dInv8	AACTCCTCACTTGGCTTTTCTGCTCTCCTATTTCCTATTCTTTACCCAGT-T	
Duroc	AACTCCTCACTTGGCTTTTCTGCTCTCCTATTTCCTATTCTTTACCCAGT-T AACTCCTCACTTGGCTTTTCTGCTCTCCTATTTCCTATTCTTTACCCAGT/T	GCAGGAAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTCACTG GCAGGAAGACGGATTCTCCCAGGAAAACCAGAATTTCACTGTTTCACTG
	K	
	Intron 5 Rev(Comp 5-1	h=/ Intron 6

		р <mark>0-т</mark>	0-2	
dInv3	TCTAANATCCANATNCATTTACCTGGCATCTCCG	GCTATGGCANAACAAAA	<mark>1</mark> <mark>AA</mark>	AGGCATTANCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTAC
dInv1	TCTAAGATCCAGATCCATTTACCTGGCATCTCCG	GCTATGGCAGAACA <mark></mark>	GAAA	AGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTAC
dInv2	TCTAAGATCCAGATCCATTTACCTGGCATCTCCG	GCTATGGCAGAACAAAA	GAAA	AGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTAC
Duroc	TCTAAGATCCAGATCCATTTACCTGGCATCTCCG	GCTATGGCAGAACAAAA	/AAA	AGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTAC

Supplemental Figure S3 (cont.)

	L	
	Intron 5 RevComp	5-2 <mark>6-2</mark> Intron 6
dInv10	AACTCCTCGCTTGGCTTTTCTGCTCTCCTATTTCCTATTCTTTACCCA	<mark>NGT</mark> <mark>GAAA</mark> AGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTAC
dInv3	AACTCCTCACTTGGCTTTTCTGCTCTCCTATTTCCTATTCTTTACCCA	<mark>\GT</mark> - <mark>AGAAA</mark> AGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTAC
dInv9	AACTCCTCACTTGGCTTTTCTGCTCTCCTATTTCCTATTCTTTACCCA	NGTAATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTAC
dInv7	AACTCCTCACTTGGCTTTTCTGCTCTCCTATTTCCTATTCTTTACCCA	<mark>\GT</mark> <mark>A</mark> AGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTAC
dInv11	AACTCCTCACTTGGCTTTTCTGCTCTCCTATTTCCTATTCTTCACCCA	<mark>igtat – <mark>Aaa</mark>aggcattagctgtggattttgccatttccatgatcctgaaaagtac</mark>
dInv8	AACTCCTCACTTGGCTTTTCTGCTCTCCTATTTCCTATTCTTTACCCA	<mark>\GT</mark> TT <mark>-AAA</mark> AGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTAC
dInv6	AACTCCTCACTTGGCTTTTCTGCTCTCCTATTTCCTATTCTTTACCCA	<mark>\GT</mark> - <mark>AGAAA</mark> AGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTAC
dInv2	AACTCCTCACTTGGCTTTTCTGCTCTCCTATTTCCTATTCTTTACCCA	<mark>\GT</mark> - <mark>AGAAA</mark> AGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTAC
dInv1	AACTCCTCACTTGGCTTTTCTGCTCTCCTATTTCCTATTCTTTACCCA	<mark>\GT</mark> - <mark>AGAAA</mark> AGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTAC
dInv5	AACTCCTCACTTGGCTTTTCTGCTCTCCTATTTCCTATTCTTTACCCA	<mark>\GT</mark> - <mark>AGAAA</mark> AGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTAC
dInv4	AACTCCTCACTTGGCTTTTCTGCTCTCCTATTTCCTATTCTTTACCCA	<mark>IGTA</mark> -GG <mark>AA</mark> AGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTAC
Duroc	AACTCCTCACTTGGCTTTTCTGCTCTCCTATTTCCTATTCTTTACCCA	NGT/// <mark>AAA</mark> AGGCATTAGCTGTGGATTTTGCCATTTCCATGATCCTGAAAAGTAC

Supplemental Figure S3. Characterization of PAH gene-edited recombinant deletion and inversion breakpoints induced in the SCH cell lines. Multiple sequence alignments of recombinant breakpoints derived from transfected SCH18 and SCH19 lines sequenced after PCR amplification and topo-TA cloning compared to reference Duroc genomic sequence, with expected breakpoints based on canonical DSB at each PAM -3 position. (A-D) Intron 5-6 deletion-breakpoints (see Fig. 1C, top panel) generated by CRISPR/Cas9 sgRNA pairs: (A) sgRNA5-1 + sgRNA6-1, (B) sgRNA5-2 + sgRNA6-1, (C) sgRNA5-1 + sgRNA6-2, and (D) sgRNA5-2 + sgRNA6-2. (E-H) Intron 5-6 proximal inversion-breakpoints (see Fig. 1C, middle panel) generated by CRISPR/Cas9 sgRNA pairs: (E) sgRNA5-1 + sgRNA6-1, (F) sgRNA5-2 + sgRNA6-1, (G) sgRNA5-1 + sgRNA6-2, and (H) sgRNA5-2 + sgRNA6-2. (I-L) Intron 5-6 proximal inversion-breakpoints (see Fig. 1C, lower panel) generated by CRISPR/ Cas9 sgRNA pairs: (I) sgRNA5-1 + sgRNA6-1, (J) sgRNA5-2 + sgRNA6-1, (K) sgRNA5-1 + sgRNA6-2, and (L) sgRNA5-2 + sgRNA6-2. Key: Blue text, intron 5 sequence (or reverse complement); purple text, intron 6 sequence (or reverse complement); red text, ambiguous (either intron 5 or intron 6) or inserted sequence at breakpoint; yellow shade, proximal sgRNA 5-1 or 5-2 sequence; blue shade, distal sgRNA 6-1 or 6-2 sequence; gray shade, PAM sequences for each sgRNA target; Backslash ("/") character, expected breakpoint in reference sequence.

Supplemental Figure S4. Fluorescence *in situ* hybridization (FISH) mapping of the pig *PAH-IGF1* locus.

в

116-1 (PKU affected; PAH compound heterozygote)

CH242-225D12

CH242-131N2

С

116-2 (PKU carrier; PAH heterozygote)

CH242-225D12

CH242-131N2

Supplemental Figure S4. Fluorescence in situ hybridization (FISH) mapping of the pig PAH-

IGF1 locus. (A) BAC contig and gene map of the *PAH-IGF1* interval. Sequence tagged sites (STS) in the intergenic region used for PCR amplicons are indicated by black rectangles: CpG1 and CpG2 are CpG-rich sequence elements, while R8-9 and R13 are within a subset of *IGF1*-enhancer elements (*1*). The two BACs used for FISH are color coded. (**B-C**) Representative interphase (left) and metaphase (right) FISH images for CH242-225D12 and CH242-131N2 using fibroblasts from

(**B**) 116-1 (PKU affected) and (**C**) 116-2 (PKU heterozygote), demonstrating that both alleles of each BAC clone are intact in cell lines from each of the founder PKU pigs. 1000x total magnification.

Supplemental Figure S5. Representative 7-month old pig brain MRI images from control and PKU affected animal 116-1.

Supplemental Figure S5. Representative 7-month old pig brain MRI images from control and PKU affected animal 116-1. (A,B) T1 weighted sagittal view of (A) control and (B) affected PKU pigs. (C,D) T2 weighted axial view of (C) control and (D) PKU affected pig. Key: dashed lines show segmentation for cortex (white), diencephalon (green), hippocampus (blue), cerebellum (red) and brainstem (yellow).

Supplemental Figure S6. Mapping of *PAH* deletion extents by genomic DNA droplet-digital PCR (ddPCR) in the pig PKU founder animals.

Supplemental Figure S6. Mapping of *PAH* **deletion extents by genomic DNA droplet-digital PCR (ddPCR) in the pig PKU founder animals.** (A) Schematic of the *PAH* locus showing location of ddPCR amplicons with respect to exons (ex) and introns (in). The genome-editing target sites and extent of deletions determined by molecular approaches are also illustrated. Key: Blue box, *PAH* exons with intervening introns; Pink box, CRISPR sgRNA sites; Yellow box,

ddPCR amplicons; black bars, region deleted; green bar, insertion/duplication. (**B-I**) Representative 1-D amplitude plots for *GAPDH* as a control, and for six *PAH* genomic amplicons in 116-1, 116-2, Yucatan (Yuc) control, and no template control (NTC). Experiments were performed using 5 ng (**B-G**) or 25 ng (**H,I**) of input genomic DNA. Blue dots represent positive droplets whereas black dots represent negative droplets. Below each 1-D amplitude plot measuring absorbance of Evagreen as a proxy for genomic amplification the numbers of positive (Pos.) and accepted (Total) droplets and the concentration (Conc.) in copies/ μ l of each PCR amplicon per sample are shown.

Supplemental Figure S7. Sanger sequencing chromatograms spanning deletion breakpoints and scarred alleles in the founding PKU pigs.

A gatctgggggca	20 I Iggtccaacacatgtac:	40 I TTTAACAAGCTGCCCGTAGTTTT	60 I 1 <u>TTTT</u> GTTCTGCCATAGCC	80 I GGAGATGCCAGGTAAATGGAS	100 Ictggatctta
Amana	MMMMM	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	mahanahanan	mmmmm	MMMM
B	20 I CTCCCCTCAGGCCCCC2	40 I ACGGTTAGTCTACCGCCATCCAT	60 I TACCEGCATTAGCTGTG6	80 I SATTTTGCCATTTCCATGATC	100 стдаааадтас
AMAAMA	MMM MMM		Mananaman	MMMMMMMMMM	
C gttcaagatctg	20 ggggcaggtccaacaca	40 Atgtactttaacaagctgc ccg t	60 I I AAAAGGCATTAGCTGTGG	80 sattttgccatttccatgatc(100 Ctgaaaagtac
hmm	MMMMMM	MMMMMMMM	Manhamadh	MMMMMM	MMMM
D TTAACAAGCTGC	20 I CCGTA <u>GCTGGGCTCTGG</u>	40 I CCCACT <u>GCTGGGCTCTGCC</u> TCCC	60 CCTCAGGCCCCCATGGTT₽	80 I AgtctaccgccatccaaaAgg	100 cattagctgtg
MmmM		mMMMM	white which w	MMMMMM	MMM
E GATTATAGCGTO	20 I STCACCTGAGAGCTTAT	40 I RAGGATCTAGATGCTTCGGCTC	60 I fcttcttagccagacagc2	80 I Acttaagcaacttctagaaaa;	100 agtcagcagga
Amm	www.www	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	MMMMMM	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	MMMM

Supplemental Figure S7. Sanger sequencing chromatograms spanning deletion breakpoints and scarred alleles in the founding PKU pigs. (A) 116-2 sgRNA5-1 scarred allele within *PAH* intron 5. (B) 116-2 sgRNA6-2 scarred allele within *PAH* intron 6. (C) 116-2 deletion allele (exon 6). (D) 116-1 deletion allele-1 (exon 6). (E) 116-1 deletion allele-2 (exon 6-7).

Supplemental Figure S8 (cont.)

Supplemental Figure S8. DNA sequence analyses for the top predicted off-target sites for sgRNA5-1. A-H: For each panel, at top is shown the off-target rank, chromosome location, and DNA sequence of the 23-nt sequence matching the 20-nt guide and 3-nt PAM. Underneath are the DNA sequence traces produced by genomic PCR and direct sequencing, for Yucatan control (top), 116-1 compound heterozygous pig (middle) and 116-2 heterozygous carrier pig (bottom) with the off-target site highlighted in yellow. SNPs distinguishing alleles are noticeable by dual peaks and are marked by red arrows. The following SNPs were identified: Two SNPs (C/T and G/A) bordering sgRNA5-1 off-target #3 (Fig. S7C) were heterozygous in 116-1; a heterozygous SNP (C/A) upstream of sgRNA5-1 off-target #5 (Fig. S7E) shared by both affected and carrier PKU pigs while being a unambiguous C in Yucatan; and a heterozygous polymorphism (G/A) in 116-1, 116-2 and Yucatan that was present 8-nt distal of sgRNA5-1 off-target #7 (Fig. S7G). Notably there were no indel mutations at any of the eight potential off-targets which would be expected from NHEJ repair of CRISPR/Cas9 nucleolytic cleavage. Off-target sites were predicted using the original MIT CRISPR sgRNA design program based on S. scrofa genome build 10.2, however, two predicted top ranking off-target sites were derived from mis-assembly of genome sequence and were excluded from the analysis. One of these resulted from a duplicated on-target PAH locus sequence assembly error, and the second at a sequence contig assembled on chromosome 13 and incorrectly on chromosome X.

Supplemental Figure S9 (cont.)

Supplemental Figure S9 (cont.)

H. 6-2 Off-target #8 Chr2 GGCTTCCTCCAACCAAGAAGAG Yucatan (Control) tccctctggagcacttccc²⁰ 116-1 (PKU affected) 116-2 (PKU carrier) 116-2 (PKU carrier) Ccctctggagcacttccc²⁰ tccctctggagcacttccc²⁰ tccctcttggagcacttccc²⁰ tccctctggagcacttccc²⁰ tccctctggagcacttcccc²⁰ tccctctggagcacttccc²⁰ tccctctggagcacttcccc²⁰ tccctctggagcacttcccc²⁰ tccctctggagcacttccc²⁰ tccctctggagcacttccc²⁰ tccctctggagcacttcccc²⁰ tccctctggagcacttccc²⁰ tccctctggagcacttccc²⁰ tccctctgg

Supplemental Figure S9 (cont.)

J. 6-2 Off-target #10 Chr1 GTTTAAATCCATCCAAGAAATAG							
<u>Yucatan (Control)</u>	20 L	40 L	60				
	CAAAATCTCTTCATTTTCAGT <mark>GTTTAAATCCATCC/</mark> Л	<u> </u>	ТАТАССА				
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MMMMMMM	MMM				
<u>116-1 (PKU affected)</u>	20 I CAAAATCTCTTCATTTTCAGT <mark>GTTTAAATCCATCC/</mark>	40 I A A G A A A T A G	60 I I T A T A C C A				
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MMMMMM	MMM				
<u>116-2 (PKU carrier)</u>	20 I CAAAATCTCTTCATTTTCAGT <mark>GTTTAAATCCATCC/</mark>	40 A A G A A A T A G T C T C C A T A T G A G A C	60 I I T A T A C C A				
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MMMMMM	MMM				

Supplemental Figure S9. DNA sequence analyses for the top predicted off-target sites for sgRNA6-2. A-J: For each panel, the off-targets, SNPs and DNA sequence traces from genomic PCR and direct DNA sequencing for Yucatan control (top), 116-1 compound heterozygous pig (middle) and 116-2 heterozygous pig (bottom) are presented as for Fig. S7 with the addition of magenta arrows indicating homozygous polymorphisms at proximal sgRNA6-2 off-target #3. Polymorphisms were detected in the following potential sgRNA6-2 off-targets sites: For 6-2 offtarget #3 (Fig. S8C) there are a total of four polymorphisms, including a heterozygous SNP (G/A) upstream of the off-target in 116-1 and 116-2 which was an unambiguous G in Yucatan; then there are adjacent homozygous polymorphisms at the off-target positions 1 (G or C) and 2 (C or T) with GT for the reference genome (Duroc), GC for Yucatan, and CT at positions 1-2 for the two PKU founder pigs; and a heterozygous SNP (C/A) in Yucatan at the off-target position 18 that is an unambiguous A in both PKU founder pigs. Additionally there was a heterozygous SNP (A/T) present distal to 6-2 off-target #4 present in Yucatan and the two founding PKU pigs (Fig. S8D); a heterozygous SNP (C/T) in the Yucatan and 116-2 1-nt upstream of sgRNA6-2 off-target #6 which was an unambiguous C in 116-1, as well as a heterozygous SNP (T/G) in Yucatan and 116-1 distal of sgRNA6-2 off-target #6 which was an unambiguous T in 116-2 (Fig. S8F); and a heterozygous SNP (C/A) in Yucatan and 116-1 at sgRNA6-2 off-target #9 position 7 which was an unambiguous C in 116-2 (Fig. 8I). Given that the polymorphisms detected mostly occur outside the off-target sites and/or also in the Yucatan control, they are likely natural variations and not induced by CRISPR/Cas9. Furthermore, there were no indel mutations at the canonical sgRNA position 17 Cas9 preferred nuclease site that might be predicted to occur during off-target genomeediting; the only SNP at this position occurred in the Yucatan control.

## Supplemental Figure S10. Alignment of paired-end reads from 116-1 overlapping RS1108162262 in the homopolymer 10A/11A SNP.

A.

#### B.

>GWNJ-0965:486:GW1909262516th:4:1209:21359:12332 GCCGGAGTAGAGGAGGACTGGGCA<u>GGTGCTTCTTACCTTTGCACTTAGA</u>TCTTAGCCAGACAGCACTTAAGC AACTTCTAGAAAAAGTCAGCAGGACATCCCAAATGATCTTTCCCTGCCCGCAAAGTTCATTCCAATAAAT<mark>AAAAAAA</mark> AAA<mark></mark>GGCCTGTTCTTCATAAC

**Supplemental Figure S10. Alignment of paired-end reads from 116-1 overlapping RS1108162262 in the homopolymer 10A/11A SNP. (A)** Two independent paired-end reads cover the microhomology mediated intron5-intron7 breakpoint in 116-1 allele 2 (exon 6-7 deletion) and RS1108162262 11A reference alternate variant sequence. (B) Three unique pairedend reads that overlap the 10A RS1108162262 variant and contiguous sequence surrounding the intron 7 TCTC microhomology region without a breakpoint. Key: Joined paired-end fastq read sequence as text with intron 5 in blue and intron 7 in purple, overlapping portions of paired-end sequences underlined, TCTC microhomology highlighted in magenta, and 10A/11A polymorphism highlighted in yellow and red, respectively.

#### **Supplemental References**

 D. J. Chia, B. Varco-Merth, P. Rotwein, Dispersed chromosomal Stat5b-binding elements mediate growth hormone-activated insulin-like growth factor-I gene transcription. *J Biol Chem* 285, 17636-17647 (2010).