Additional information for

Culicidae evolutionary history focusing on the Culicinae subfamily based on mitochondrial phylogenomics

Alexandre Freitas da Silva¹, Laís Ceschini Machado¹, Marcia Bicudo de Paula², Carla Júlia da Silva Pessoa³ Vieira, Roberta Vieira de Morais Bronzoni³, Maria Alice Varjal de Melo Santos¹, Gabriel Luz Wallau^{1,*}

¹ Programa de Pós-Graduação em Biociências e Biotecnologia em Saúde; Departamento de Entomologia, Fundação Oswaldo Cruz - Instituto Aggeu Magalhães, Recife, 50670-420, Brasil, ² Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, 01246-904, Brasil, ³ Universidade Federal de Mato Grosso, Sinop, 78550-728, Brasil.

*gabriel.wallau@cpqam.fiocruz.br

Supplementary table 1. A	nnotation of	f draft n	nitogeno	mes usin	g MIT	OS.													
Species	nad2	COI	COII	atp8	atp6	COIII	nad3	nad5	nad4	nad4l	nad6	cytb	nad1	rrnL	rrnS	tRNA	PCG	rRNA	Total of genes
Ad. squamipennis	1	1	1	-	-	1	1	1	1	-	-	1	1	1	1	16	9	2	27
Ae. alboannulatus	1	1	1	-	-	1	1	1	1	1	1	1	1	1	1	13	11	2	26
Ae. camptorhynchus	1	1	1	1	-	1	1	1	1	1	1	1	1	1	1	16	12	2	30
Ae. detritus	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	16	13	2	31
Ae. fluviatilis	1	1	1	1	1	1	-	1	1	1	1	1	1	1	-	4	12	1	17
Ae. polynesiensis	1	1	1	1	-	1	1	1	1	1	1	1	1	1	1	20	12	2	34
Ae. riversi	-	1	1	1	1	1	1	1	1	-	-	1	1	1	-	6	10	1	17
Ae. scapularis	1	1	1	1	1	1	-	1	1	-	1	1	1	-	1	13	11	1	25
Ae. taeniorhynchus	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	22	13	2	37
An. albimanus	1	1	1	1	-	1	1	1	1	1	1	1	1	1	1	20	12	2	34
An. aquasalis	1	1	1	1	-	1	-	1	1	-	-	1	1	1	1	3	9	2	14
An. freeborni	1	1	1	1	-	1	1	1	1	1	1	1	1	1	1	19	12	2	33
An. nuneztovari	1	1	1	1	-	1	1	1	1	1	1	1	1	1	1	9	12	2	23
An. quadriannulatus	1	1	1	1	-	1	1	1	1	1	1	1	1	1	1	20	12	2	34
Cq. albicosta	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	21	13	2	36
Cq. chrysonotum	1	1	1	-	1	1	1	1	1	1	1	1	1	1	1	20	12	2	34
Cq. hermanoi	1	1	1	1	1	1	1	1	1	-	-	1	-	1	1	14	10	2	26
Cq. juxtamansonia	1	1	1	-	1	1	-	1	1	-	-	1	-	1	1	8	8	2	18
Cq. venezuelensis	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	19	13	2	34
Cx. amazonensis	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	21	13	2	36
Cx. australicus	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	17	13	2	32
Cx. corniger	1	1	1	1	-	1	-	1	1	1	-	1	-	1	1	9	9	2	20
Cx. globocoxitus	1	1	1	1	-	1	1	1	1	1	1	1	1	1	1	17	12	2	31
Cx. hortensis	1	1	1	-	-	1	1	1	1	1	1	1	1	1	1	12	11	2	25
Cx. pipiens molestus	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	6	13	2	21
Cx. nigripalpus	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	22	13	2	37
Cx. tarsalis	1	1	1	1	-	1	1	1	1	1	1	1	1	1	1	19	12	2	33
Cx. torrentium	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	11	13	2	26
Ma. wilsoni	1	1	1	1	1	1	1	1	1	1	-	1	1	1	1	14	12	2	28
Ma.humeralis	-	1	1	-	1	-	1	1	-	-	-	1	1	1	1	5	7	2	14
Ma.titillans	1	1	1	-	1	1	1	1	1	-	1	1	1	1	1	14	11	2	27
Ps. cingulata	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	21	13	2	36
Ps.albipes	1	1	1	1	-	1	1	1	1	1	1	1	1	1	1	19	12	2	33
Tp. aranoides	1	1	-	-	-	1	-	1	-	1	-	1	1	1	1	-	7	2	9
Tr. digitatum	1	1	1	-	1	1	1	1	1	1	-	1	-	1	1	16	10	2	28
Tx. amboinensis	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	19	13	2	34
Ur. pulcherrima	1	1	1	-	1	1	1	1	1	1	1	1	1	1	1	18	12	2	32
Legend: Bold names represent se	equenced mito	genomes.	Disrupted	d or duplic	ated gen	e are repi	resented	by bold n	umbers.	Unidentif	ied gene	are rep	resented	by					

Node*	HPD 95% ¹	Median dating¹	PP of analysis	PP of analysis	UFboot of analysis 2	PP of analysis ³	PP of analysis 4	PP of analysis 5	UFboot of analysis 5	PP of analysis ⁶	UFboot of analysis ⁷
А	243.79-332.41	273.74	1	1	-	1	1	1	-	1	-
В	145.88-232.95	182.75	1	1	-	1	1	1	-	1	-
F	128.09-204.91	160.86	1	-	-	-	-	-	-	-	-
Ι	124.77-200.69	157.02	0.49	0.81	-	0.49	-	0.96	69	0.99	-
Н	117.92-195.06	151.36	0.5	-	-	-	-	-	-	-	-
С	114.58-187.29	145.83	1	1	100	1	1	1	100	1	100
Ν	101.87-168.21	130.49	1	1	93	1	1	0.99	92	1	79
J	88.78-146.1	113.73	1	1	100	1	1	-	-	0.81	83
D	87.14-141.71	110.73	1	1	100	1	1	1	100	1	100
U	79.07-135.87	103.9	1	1	100	1	1	1	100	1	100
0	81.02-132.17	102.87	1	1	100	1	1	1	100	1	100
Q	74.02-121.02	94.04	1	1	100	1	1	1	100	1	-
К	66.37-115.22	88.32	1	1	100	1	1	1	100	1	100
L	66.31-109.73	85.29	1	1	100	1	1	1	100	1	100
S	53.53-88.54	68.94	1	-	100	1	1	-	-	-	-
Р	45.84-84.94	63.25	1	1	100	1	1	1	100	1	100
Т	43.26-73.19	56.37	0.92	-	65	0.95	-	-	-	-	-
R	24.82-45.09	33.9	1	1	100	1	1	1	100	1	100
v	16.73-28.91	22.09	1	1	100	1	-	-	100	0.85	89
Z	15.05-26.45	20.08	1	1	100	1	0.85	0.86	97	-	98
Y	9.82-17.37	13.15	1	1	-	1	1	-	-	0.96	99
Х	7.78-16.85	11.85	1	1	100	1	1	1	100	1	99
М	3.13-8.92	5.71	1	1	100	1	1	1	100	1	100
Е	2.35-4.42	3.27	1	1	100	1	1	1	100	1	100
G	1.43-2.81	2.04	1	1	100	1	1	1	-	1	-

Supplementary table 2. Predicted TMRCA values from Bayesian inference analysis for studied species clades.

The HPD95% values represent the confidence intervals for each node. PP represents the probability posterior. UFboot represents ultrafast bootstrapping. * Nodes present in Fig. 3 and Fig. 4. ¹ Analysis based on partitioned PCG with codon partition (1st + 2nd and 3rd separately). ² Analysis based on complete mitogenome sequences. ³ Analysis based on partitioned PCG without codon partition. ⁴ Analysis based on Partitioned PCG without 3rd codon positions. ⁵ Analysis based on concatenated predicted amino acid sequences. ⁶ Analysis based on partitioned PCG without 3rd codon position.

Taxon	Genus	Subgenus	Tribe	N° of specimens	Location	N° of reads (Mi)
Ad. squamipennis	Aedeomyia	Aedeomyia	Aedeomyiini	3	Aldeia-PE+REC ²	3.9
Ae. scapularis	Aedes	Ochlerotatus	Aedini	7	Juazeiro-BA	7
Ae. taeniorhynchus	Aedes	Ochlerotatus	Aedini	10	São Luís -MA	11.3
Cq. hermanoi	Coquillettidia	Rhynchotaenia	Mansoniini	1	Aldeia-PE	1.8
Cq. chrysonotum	Coquillettidia	Rhynchotaenia	Mansoniini	14	PDI ¹	6.2
Cq. albicosta	Coquillettidia	Rhynchotaenia	Mansoniini	3	PDI ¹	2.4
Cq. juxtamansonia	Coquillettidia	Rhynchotaenia	Mansoniini	2	REC ²	5.5
Cq. venezuelensis	Coquillettidia	Rhynchotaenia	Mansoniini	4	PDI ¹ +REC ²	4.3
Cx. amazonensis	Culex	Aedinus	Culicini	1	REC ²	2.5
Cx. corniger	Culex	Phenacomyia	Culicini	5	Mato Grosso	3.9
Cx. nigripalpus	Culex	Culex	Culicini	6	PDI ¹	4.8
Ma. titillans	Mansonia	Mansonia	Mansoniini	3	REC ²	6.6
Ma. wilsoni	Mansonia	Mansonia	Mansoniini	2	REC ²	8.2
Ma. humeralis	Mansonia	Mansonia	Mansoniini	1	Aldeia-PE	2.2
Ps. cingulata	Psorophora	Grabhamia	Aedini	3	Mato Grosso	4.9
Tr. digitatum	Trichoprosopon	Trichoprosopon	Sabethini	1	Mato Grosso	7.6
Ur. pulcherrima	Uranotaenia	Uranotaenia	Uranotaeniini	1	REC ²	1.1

Supplementary table 3. Information of sequenced samples.

PE refers to state of Pernambuco, Brazil. MA refers to state of Maranhão, Brazil. BA refers to state of Bahia, Brazil. Mi refers to million of reads. ¹ Parque Estadual Dois Irmãos-PE . ² Reserva Ecológica de Carnijó-PE

Supplementary table 4. NCBI accession number of mitochondrial genomes retrieved from NCBI.

Species	Genus	Subgenus	Tribe	Access	Length (bp)	References *
Aedes aegypti	Aedes	Stegomyia	Aedini	NC_010241.1	16,655	1
Aedes albopictus	Aedes	Stegomyia	Aedini	NC_006817.1	16,665	-
Aedes notoscriptus	Aedes	Finlaya	Aedini	KM676218.1	15,846	2
Aedes vigilax	Aedes	Ochlerotatus	Aedini	KP995260.1	15,877	3
Anopheles albitarsis	Anopheles	Nyssorhynchus	-	HQ335344.1	15,413	4
Anopheles bellator	Anopheles	Kerteszia	-	KU551287.1	15,668	5
Anopheles christyi	Anopheles	Cellia	-	NC_028214.1	14,967	6
Anopheles cruzii	Anopheles	Kerteszia	-	KJ701506.1	15,449	-
Anopheles culicifacies	Anopheles	Cellia	-	NC_027502.1	15,330	7
Anopheles darlingi	Anopheles	Nyssorhynchus	-	NC_014275.1	15,386	8
Anopheles deaneorum	Anopheles	Nyssorhynchus	-	HQ335347.1	15,424	4
Anopheles dirus	Anopheles	Cellia	-	JX219731.1	15,404	9
Anopheles epiroticus	Anopheles	Cellia	-	NC_028217.1	15,379	6
Anopheles farauti	Anopheles	Cellia	-	NC_020770.1	15,412	9
Anopheles funestus	Anopheles	Cellia	-	NC_008070.1	15,354	10
Anopheles gambiae	Anopheles	Cellia	-	NC_002084.1	15,363	11
Anopheles homunculus	Anopheles	Kerteszia	-	KU551283.1	15,739	5
Anopheles janconnae	Anopheles	Nyssorhynchus	-	HQ335348.1	15,425	4
Anopheles koliensis	Anopheles	Cellia	-	JX219743.1	15,412	9
Anopheles melas	Anopheles	Cellia	-	NC_028219.1	15,366	6
Anopheles merus	Anopheles	Cellia	-	NC_028220.1	15,365	6
Anopheles punctulatus	Anopheles	Cellia	-	NC_028222.1	15,322	6
Anopheles						
quadrimaculatus	Anopheles	Anopheles	-	NC_000875.1	15,455	12
Anopheles sinensis	Anopheles	Anopheles	-	NC_028016.1	15,076	-
Anopheles stephensi	Anopheles	Cellia	-	NC_028223.1	15,387	6
Bironella hollandi	Bironella	Brugella	-	NC_037796.1	15,772	13
Chagasia sp.	Chagasia	-	-	MF381717.1	15,717	13
Culex bidens	Culex	Culex	Culicini	NC_037809.1	15,583	13
Culex gelidus	Culex	Culex	Culicini	KX753344.1	15,600	14
Culex bilineatus	Culex	Culex	Culicini	NC_037819.1	15,599	13
Culex brami	Culex	Culex	Culicini	NC_037828.1	15,586	13
Culex camposi	Culex	Culex	Culicini	NC_036008.1	15,570	15

Culex coronator	Culex	Culex	Culicini	NC_036006.1	15,576	15
Culex declarator	Culex	Culex	Culicini	NC_037822.1	15,575	13
Culex dolosus	Culex	Culex	Culicini	MF381620.1	15,851	13
Culex chidesteri	Culex	Culex	Culicini	NC_037826.1	16,052	13
Culex lygrus	Culex	Culex	Culicini	MF381718.1	15,572	13
Culex mollis	Culex	Culex	Culicini	MF381705.1	15,576	13
Culex pipiens pallens	Culex	Culex	Culicini	KT851543.1	15,617	16
Culex pipiens pipiens	Culex	Culex	Culicini	NC_015079.1	14,856	-
Culex quinquefasciatus	Culex	Culex	Culicini	NC_014574.1	15,587	1
Culex surinamensis	Culex	Culex	Culicini	MF381615.1	15,568	13
Culex tritaeniorhynchus	Culex	Culex	Culicini	KT851544.1	14,844	16
Culex usquatissimus	Culex	Culex	Culicini	NC_036007.1	15,574	15
Culex usquatus	Culex	Culex	Culicini	NC_036005.1	15,573	15
Drosophila melanogaster	Drosophila	Drosophilinae	Drosophilini	U37541.1	19,517	17
Haemagogus janthinomys	Haemagogus	Haemagogus	Aedini	NC_028025.1	15,698	18
Sabethes belisarioi	Sabethes	Sabethes	Sabethini	MF957171.1	15,911	19
Sabethes chloropterus	Sabethes	Sabethoides	Sabethini	NC_037499.1	15,609	19
Sabethes glaucodaemon	Sabethes	Sabethoides	Sabethini	NC_037500.1	15,620	19

* References listed at the end of the document.

				SRA	-
Species	Genus	Subgenus	Tribe	number	Original study
Ae. alboannulatus	Aedes	Finlaya	Aedini	SRR5665565	RNA-Seq (Species virome)
Ae. camptorhynchus	Aedes	Ochlerotatus	Aedini	SRR5665568	RNA-Seq (Species virome)
Ae. detritus	Aedes	Ochlerotatus	Aedini	SRR6489869	RNA-Seq (Differential gene expression)
Ae. fluviatilis	Aedes	Ochlerotatus	Aedini	SRR3574348	RNA-Seq (Differential gene expression)
Ae. polynesiensis	Aedes	Stegomyia	Aedini	ERR1706659	RNA-Seq (Comparative transcriptomes)
Ae. riversi	Aedes	Stegomyia	Aedini	ERR1706661	RNA-Seq (Comparative transcriptomes)
An. albimanus	Anopheles	Nyssorhynchus	-	SRR314655	Genome sequencing
An. aquasalis	Anopheles	Nyssorhynchus	-	SRR927456	RNA-Seq (Transcriptome)
An. freeborni	Anopheles	Anopheles	-	SRR908289	RNA-Seq (Saliva transcriptome)
An. nuneztovari	Anopheles	Nyssorhynchus	-	SRR6471062	RNA-Seq (Saliva transcriptome)
An. quadriannulatus	Anopheles	Cellia	-	SRR529986	Genome sequencing
Cx. australicus	Culex	Culex	Culicini	SRR5665566	RNA-Seq (Species virome)
Cx. globocoxitus	Culex	Culex	Culicini	SRR5665567	RNA-Seq (Species virome)
Cx. hortensis	Culex	Maillotia	Culicini	SRR1324883	RNA-Seq (Comparative transcriptomes)
Cx. pipiens molestus	Culex	Culex	Culicini	SRR1462325	RNA-Seq (Comparative transcriptomes)
Cx. tarsalis	Culex	Culex	Culicini	SRR5149179	RNA-Seq (Transcriptome)
Cx. torrentium	Culex	Culex	Culicini	SRR1324895	RNA-Seq

Supplementary table 5. Information about retrieved raw sequencing datasets from NCBI SRA database.

					(Comparative transcriptomes)
Ps.albipes	Psorophora	Janthinossoma	Aedini	SRR908278	RNA-Seq (Saliva transcriptome)
Tp. aranoides	Tripteroides	Rachionotomyia	Sabethini	SRR6155938	RNA-Seq (Transcriptome)
Tx. amboinensis	Toxorhynchites	Toxorhynchites	Toxorhynchitini	SRR2061845	RNA-Seq (Transcriptome)

Clade	Represented taxa	Minimum bound	Maximum bound	References
Diptera	Culicidae and D. melanogaster	240	241	KRZEMIŃSKI, KRZEMIŃSKA & PAPIER, 1994 ²⁰
Culicidae	Culicinae e Anophelinae	90	99	BORKENT & GRIMALDI, 2004 ²¹
Culicinae	Culicinae	76.5	79	POINAR, ZAVORTINK., PIKE & JOHNSTON, 2000 ²²
Anophelinae	Anophelinae	15	34	ZAVORTINK & POINAR, 2000 ²³

Supplementary table 6. Calibration points used in BEAST 1.8.4

Supplementary table 7. Evolutionary models used in BEAST analysis.

Partition	Best nucleotide model ¹	Best protein model ²
Nucleotide mitogenome alignment	GTR+G+I	-
Concatenated protein alignment	-	mtREV+G+I
Atp6	GTR+G+I	mtREV+G+I
Atp8	GTR+G	JTT+G+I
COIII	GTR+G+I	mtREV+G+I
COII	GTR+G+I	mtREV+G
COI	GTR+G+I	JTT+G+I
CytB	GTR +G+I	mtREV+G+I
Nad1	GTR +G+I	JTT+G+I
Nad2	GTR +G+I	JTT+G
Nad3	GTR +G+I	mtREV+G+I
Nad4L	GTR +G+I	mtREV+G
Nad4	GTR +G+I	JTT+G+I
Nad5	GTR +G+I	JTT+G
Nad6	GTR +G+I	mtREV+G
rrnL	GTR +G+I	-
rrnS	GTR +G+I	-

¹Best model as suggested by SMS.² More likely model suggested by Prottest and present in BEAST 1.8.4.

Supplementary file 1. Test of substitution saturation of mitochondrial PCG.

Analysis performed on all sites.

Testing whether the observed Iss is significantly lower than Iss.c. IssSym is Iss.c assuming a symmetrical topology. IssAsym is Iss.c assuming an asymmetrical topology.

Note: two-tailed tests are used.

COI 1st+2nd codon positions:

NumO	TU	Iss Iss.cSym	ΤC	DF P	Iss.cAsy	m T	DF	Р	
4	0,119	0,821 72,061	1023	0,0000	0,789	68,777	1023	0,0000	
8 16	0,120	0,789 64,934 0,773 64,019	1023	0,0000	0,084 0,576	44,550	1023	0,0000	
32	0,147	0,750 59,214	1023	0,0000	0,445	29,334	1023	0,0000	
COI 3	rd cod	on positions:							

Num(DTU	Iss Iss.c	Sym	Т	DF	P Iss.cAs	ym	T D	F	P
4	0,537	0,796	11,883	510	0,0000	0,762	10,330	510	0,	0000
8	0,580	0,753	7,928	510	0,0000	0,641	2,812	510	0,0	051
16	0,600	0,722	5,837	510	0,000	0,513	4,163	510	0,0	0000
32	0,608	0,703	4,751	510	0,000	0,378	11,490	510	0,	0000

COII 1st+2nd codon positions:

NumO	TU	Iss Iss.cSym	T DF 1	P Iss.cAsym T	DF	Р	
4	0,258	0,793 31,684	456 0,0000	0,759 29,701	456	0,0000	
8	0,224	0,747 30,309	456 0,0000	0,636 23,846	456	0,0000	
16	0,274	0,713 25,787	456 0,0000	0,504 13,505	456	0,0000	
32	0,285	0,697 25,475	456 0,0000	0,371 5,276	456	0,0000	

COII 3rd codon positions:

NumC	DTU	Iss Iss.c	Sym	Т	DF	P Iss.cAsy	/m /	T D	9F	Р	 	
4	0,630	0,777	4,490	227	0,0000	0,762	4,033	227	0,00	01	 	
8	0,673	0,732	1,878	227	0,0617	0,631	1,319	227	0,18	85		
16	0,718	0,654	2,087	227	0,0380	0,459	8,498	227	0,00	000		
32	0,750	0,685	2,250	227	0,0254	4 0,363	13,387	227	0,0	000		

COIII 1st+2nd codon positions:

NumC	DTU	Iss Iss.cSym	Т	DF I	P Iss.cAsym	Γ DF	7 P	
4	0,230	0,797 34,999	525	5 0,0000	0,764 32,946	525	0,0000	
8	0,236	0,754 32,263	525	5 0,0000	0,643 25,328	525	0,0000	
16	0,261	0,725 29,985	52	5 0,0000	0,515 16,431	525	0,0000	
32	0,281	0,705 29,101	52	5 0,0000	0,378 6,659	525	0,0000	

COIII 3rd codon positions:

NumC	DTU	Iss Iss.	cSym	Т	DF	P Iss.cAs	ym	T D	DF P)
4	0,651	0,778	4,004	262	0,0001	0,758	3,356	262	0,0009	

8	0,716	0,732	0,487	262	0,6265	0,627	2,761	262	0,0062
16	0,748	0,666	2,525	262	0,0121	0,465	8,773	262	0,0000
32	0,796	0,682	3,501	262	0,0005	0,356	13,527	262	0,0000

ND1 1st+2nd codon positions:

Num	OTU	Iss Iss.cSym	T DF	P Iss.cAsym	DF	Р	
4	0,232	0,803 41,973	627 0,000	0 0,772 39,681	627	0,0000	
8	0,270	0,763 31,688	627 0,000	0 0,653 24,621	627	0,0000	
16	0,257	0,741 33,136	627 0,000	0 0,530 18,739	627	0,0000	
32	0,307	0,715 27,312	627 0,000	0 0,388 5,436	627	0,0000	

ND1 3rd codon positions:

NumC	DTU	Iss Iss.c	Sym	Τ	DF	P Iss.cAsym	T D)F	P	
4	0,616	0,782	5,860	313	0,0000	0,756 4,93	8 313	0,000	00	
8	0,773	0,735	1,302	313	0,1939	0,626 5,01	7 313	0,000	00	
16	0,787	0,682	3,693	313	0,000	3 0,475 10,9	27 313	0,00	000	
32	0,776	0,683	3,322	313	0,0010	0 0,354 15,1	65 313	0,00	000	

ND2 1st+2nd codon positions:

NumC	DTU	Iss Iss.cSym	Т	DF	P Iss.cAs	ym 🗌	Γ DI	F P	
4	0,462	0,806 19,700	683	B 0,0000	0,775	17,927	683	0,0000	
8	0,505	0,768 14,386	683	0,0000	0,658	8,401	683	0,0000	
16	0,505	0,747 13,360	68	3 0,000	0 0,538	1,812	683	0,0704	
32	0,598	0,721 6,691	683	3 0,0000	0,396	10,982	683	0,0000	

ND2 3rd codon positions:

4 0,778 0,784 0,226 341 0,8212 0,756 0,810 341 0, 8 0,828 0,737 3,275 341 0,0012 0,627 7,222 341 0, 16 1,031 0,689 12,631 341 0,0000 0,481 20,299 341	SS	ls		1	Iss Iss.c	Sym	Т	DF	P Iss.cAs	ym	T I	DF		P	 	 	 	
8 0,828 0,737 3,275 341 0,0012 0,627 7,222 341 0, 16 1,031 0,689 12,631 341 0,0000 0,481 20,299 341	0	78	78		0,784	0,226	341	0,8212	0,756	0,810	341	0,	418	5	 	 	 	
16 1,031 0,689 12,631 341 0,0000 0,481 20,299 341 22 1,037 0,685 12,235 241 0,0000 0,256 25,822 241	0	328	28		0,737	3,275	341	0,0012	0,627	7,222	341	0,	000)				
22 1 027 0 695 12 225 241 0 0000 0 256 25 922 241	(031)31	l	0,689	12,631	34	1 0,000	0 0,481	20,29	9 34	41 (0,00	00				
32 1,057 0,085 13,325 341 0,0000 0,356 25,823 341	(037)37	7	0,685	13,325	34	1 0,000	0 0,356	25,82	3 34	11	0,00	00				

ND3 1st+2nd codon positions:

Num	OTU	Iss Iss.cSym	T DF	P Iss.cAsym T	DF	P	
4	0,367	0,777 16,360	233 0,000	0 0,761 15,719	233 (),0000	
8	0,332	0,732 15,880	233 0,000	0 0,630 11,819	233 (0,0000	
16	0,379	0,656 10,371	233 0,000	00 0,460 3,005 2	233 (0,0029	
32	0,415	0,684 10,433	233 0,000	00 0,362 2,066 2	233 (0,0400	

ND3 3rd codon positions:

NumC	DTU	Iss Iss.c	Sym	Т	DF	P Iss.cAs	ym ′	T D	F	Р	
4	0,669	0,793	2,773	116	0,0065	0,821	3,396	116	0,000	9	
8	0,770	0,773	0,069	116	0,9452	0,707	1,383	116	0,169	94	
16	0,826	0,599	4,990	116	0,0000	0,469	7,845	116	0,00	00	
32	0,950	0,763	4,278	116	0,0000	0,512	10,022	116	0,00	00	

ND4L 1st+2nd codon positions:

NumC	DTU	Iss Iss.cSym T DF P Iss.cAsym T DF P	
4	0.330	0.780 17.564 157 0.0000 0.784 17.747 157 0.0000	
8	0,334	0,745 14,305 157 0,0000 0,658 11,299 157 0,0000	
16	0,349	0,623 10,092 157 0,0000 0,454 3,879 157 0,0002	
32	0,432	0,712 10,365 157 0,0000 0,417 0,545 157 0,5863	
ND4L	. 3rd co	don positions:	
Num(DTU	Iss Iss.cSym T DF P Iss.cAsym T DF P	
4	0,659	0,833 3,248 78 0,0017 0,903 4,560 78 0,0000	
8	0,707	0,848 2,665 78 0,0093 0,823 2,189 78 0,0316	
16	0,793	0,573 4,465 78 0,0000 0,524 5,454 78 0,0000	
32	0,839	0,891 1,139 78 0,2580 0,739 2,217 78 0,0296	
ND4 1	lst+2nd	codon positions:	
NumC	DTU	Iss Iss.cSym T DF P Iss.cAsym T DF P	
4	0,344	0,816 31,298 895 0,0000 0,785 29,198 895 0,0000	
8	0,357	0,782 24,785 895 0,0000 0,675 18,555 895 0,0000	
16	0,402	0,765 18,447 895 0,0000 0,563 8,178 895 0,0000	
32	0,407	0,740 15,626 895 0,0000 0,428 0,971 895 0,3318	
ND4 3	Brd cod	on positions:	
NumC)TU	Iss Iss.cSym T DF P Iss.cAsym T DF P	
4	0,682	0,792 4,404 447 0,0000 0,759 3,068 447 0,0023	
8	0,750	0,747 0,111 447 0,9118 0,635 4,355 447 0,0000	
16	0,811	0,711 3,659 447 0,0003 0,502 11,350 447 0,0000	
32	0,834	0,696 4,726 447 0,0000 0,369 15,958 447 0,0000	
ND5 1	lst+2nd	codon positions:	
NumC	DTU	Iss Iss.cSym T DF P Iss.cAsym T DF P	
4	0,390	0,826 28,458 1161 0,0000 0,794 26,372 1161 0.0000	
8	0,375	0,796 23,303 1161 0,0000 0,692 17,559 1161 0,0000	
16	0,413	0,780 17,244 1161 0,0000 0,587 8,194 1161 0,0000	
32	0,473	0,758 11,503 1161 0,0000 0,461 0,452 1161 0,6514	

ND5 3rd codon positions:

nOTU	Iss Is	s.cSy	ym	Т	DF	P Iss.cAs	ym	ΤI	DF	P
0,723	0,80	1 3	,337	580	0,0009	0,769	1,964	580	0,0	0501
0,823	0,75	9 2	,356	580	0,0188	0,648	6,451	580	0,0	0000
5 0,88	5 0,73	34 4	4,978	580	0,0000	0,524	11,951	580	0 0	,0000,
2 0,97	3 0,7	10 7	7,593	580	0,0000	0,382	17,075	580	0 0	,0000,
	0,723 0,823 0,883 0,883 0,973	nOTU Iss Iss 0,723 0,80 0,823 0,75 0,885 0,73 0,973 0,77	OTU Iss Iss.cS 0,723 0,801 3 0,823 0,759 2 5 0,885 0,734 2 0,973 0,710	OTU Iss Iss.cSym 0,723 0,801 3,337 0,823 0,759 2,356 0,885 0,734 4,978 2 0,973 0,710 7,593	OTU Iss Iss.cSym T 0,723 0,801 3,337 580 0,823 0,759 2,356 580 5 0,885 0,734 4,978 580 2 0,973 0,710 7,593 580	OTU Iss Iss.cSym T DF 0,723 0,801 3,337 580 0,0009 0,823 0,759 2,356 580 0,0188 5 0,885 0,734 4,978 580 0,0000 2 0,973 0,710 7,593 580 0,0000	OTU Iss Iss.cSym T DF P Iss.cAs 0,723 0,801 3,337 580 0,0009 0,769 0,823 0,759 2,356 580 0,0188 0,648 0 0,885 0,734 4,978 580 0,0000 0,524 2 0,973 0,710 7,593 580 0,0000 0,382	OTU Iss Iss.cSym T DF P Iss.cAsym 0,723 0,801 3,337 580 0,0009 0,769 1,964 0,823 0,759 2,356 580 0,0188 0,648 6,451 5 0,885 0,734 4,978 580 0,0000 0,524 11,951 2 0,973 0,710 7,593 580 0,0000 0,382 17,075	OTU Iss Iss.cSym T DF P Iss.cAsym T I 0,723 0,801 3,337 580 0,0009 0,769 1,964 580 0,823 0,759 2,356 580 0,0188 0,648 6,451 580 5 0,885 0,734 4,978 580 0,0000 0,524 11,951 580 2 0,973 0,710 7,593 580 0,0000 0,382 17,075 580	nOTU Iss.cSym T DF P Iss.cAsym T DF 0,723 0,801 3,337 580 0,0009 0,769 1,964 580 0,0 0,823 0,759 2,356 580 0,0188 0,648 6,451 580 0,0 5 0,885 0,734 4,978 580 0,0000 0,524 11,951 580 0 2 0,973 0,710 7,593 580 0,0000 0,382 17,075 580 0

ND6 1st+2nd codon positions:

NumOTU Iss Iss.cSym T DF P Iss.cAsym T DF P

4	0,463	0,781 12,219	0 307 0,0000	0,756 11,237	307 0,0000
8	0,528	0,734 7,426	307 111,3362	0,626 3,521	307 0,0005
16	0,564	0,680 4,02	307728760384	0,474 3,11	8 307 0,0020
32	0,632	0,683 1,713	307 0,0877	0,354 9,373	307 0,0002

ND6 3rd codon positions:

NumOTU		Iss Iss.cSym		ΤI	DF P	Iss.cAsy	ym 7	ΓD	- -	Р			
4	0,847	0,781	1,620	152	0,1073	0,788	1,454	152	0,147	79	 	 	
8	0,986	0,747	5,532	1521	3484792,	0,662	7,495	152	510,	3412			
16	1,049	0,620	10,045	152	0,0002	0,455	13,912	152	0,0	000			
32	1,118	0,716	9,303	152	0,0014	0,425	16,021	152	0,00	000			
Interpretation of results:													

Significant Difference

Yes No

-----Iss < Iss.c Little Substantial saturation _____

Complete nucleotide mitogenome alignment sequences

Partitioned PCG with codon partition

Supplementary figure 1. Comparative dendrogram topologies of trees obtained from different approaches using complete nucleotide mitogenomes and PCG with codon partition in the BEAST analysis. Dashed red lines show the branches that were different between the approaches used.

Concatenated predicted amino acid sequences

Partitioned predicted amino acid sequences

Supplementary figure 2. Comparative dendrogram topologies of trees obtained from different approaches using concatenated predicted amino acid sequences and partitioned predicted amino acid sequences in the BEAST analysis. Dashed red lines show the branches that were different between the approaches used.

Supplementary figure 3. Evolutionary timescale of the Culicidae family based on BEAST analysis using complete mitogenome sequences. Blue bars represent the HPD95%. The numbers above and below the bars show the posterior probability and the predicted median dating respectively for each node. Light blue tip names represent mitogenomes characterized from SRA data. Orange tip names represent sequenced mitogenomes from this study.

Supplementary figure 4. Maximum likelihood phylogenetic tree reconstructed with IQ-TREE version 1.6.12 based on complete mitogenome sequences using the GTR+F+I+G4 evolutionary model and the ultrafast bootstrapping with 1000 replicates. Light blue tip names represent mitogenomes characterized from SRA data. Orange tip names represent sequenced mitogenomes from this study.

Supplementary figure 5. Evolutionary timescale of Culicidae family based on BEAST analysis using a partitioned scheme of PCG without codon partition. Blue bars represent the HPD95%. The numbers above and below the bars show the posterior probability and the predicted median dating respectively for each node. Light blue tip names represent mitogenomes characterized from SRA data. Orange tip names represent sequenced mitogenomes from this study.

Supplementary figure 6. Evolutionary timescale of Culicidae family based on BEAST analysis using a partitioned scheme of PCG without 3rd codon positions. Blue bars represent the HPD95%. The numbers above and below the bars show the posterior probability and the predicted median dating respectively for each node. Light blue tip names represent mitogenomes characterized from SRA data. Orange tip names represent sequenced mitogenomes from this study.

Supplementary figure 7. Maximum likelihood phylogenetic tree reconstructed with IQ-TREE version 1.6.12 based on concatenated PCG without 3rd codon positions using the GTR+F+I+G4 evolutionary model and the ultrafast bootstrapping with 1000 replicates. Light blue tip names represent mitogenomes characterized from SRA data. Orange tip names represent sequenced mitogenomes from this study.

Supplementary figure 8. Evolutionary timescale of Culicidae family based on BEAST analysis using a concatenated predicted amino acid sequence. Blue bars represent the HPD95%. The numbers above and below the bars show the posterior probability and the predicted median dating respectively for each node. Light blue tip names represent mitogenomes characterized from SRA data. Orange tip names represent sequenced mitogenomes from this study.

Supplementary figure 9. Phylogenetic tree of Maximum likelihood reconstructed with IQ-TREE version 1.6.12 based on concatenated predicted amino acid sequences using the mtInv+I+G4 evolutionary model and the ultrafast bootstrapping with 1000 replicates. Light blue tip names represent mitogenomes characterized from SRA data. Orange tip names represent sequenced mitogenomes from this study.

Supplementary figure 10. Evolutionary timescale of Culicidae family based on BEAST analysis using a partitioned scheme of predicted amino acid sequences. Blue bars represent the HPD95%. The numbers above and below the bars show the posterior probability and the predicted median dating respectively for each node. Light blue tip names represent mitogenomes characterized from SRA data. Orange tip names represent sequenced mitogenomes from this study.

Supplementary figure 11. Density plot showing the 95% posterior distribution of ancestors time estimate based on the alignment of partitioned mitochondrial PCG with codon partition.

Supplementary figure 12. Quality of raw reads generated from mosquito samples. Figure generated from FasqQC results and summarized by MultiQC tool. The yellow line represents results from *Cq. albicosta* reads and green lines represent the remaining species.

Supplementary figure 13. Schematic tree representing fossil dating used as calibration points priors in the molecular clock bayesian analyses. Circles with numbers inside represent each calibration point used based on the literature shown in Supplementary table 6.

References:

- Behura, S. K. et al. Complete sequences of mitochondria genomes of *Aedes aegypti* and *Culex quinquefasciatus* and comparative analysis of mitochondrial DNA fragments inserted in the nuclear genomes. *Insect Biochem Mol Biol.* 41, 770-777 (2011).
- Hardy, C., Court, L., Morgan, M. & Webb, C. The complete mitochondrial DNA genomes for two lineages of *Aedes notoscriptus* (Diptera: Culicidae). *Mitochondrial DNA Part A.* 27, 2024–2025 (2016).
- Hardy, C., Court, L. & Morgan, M. The complete mitochondrial DNA genome of *Aedes vigilax* (Diptera: Culicidae). *Mitochondrial DNA Part A.* 27, 2552–2553 (2016).
- Krzywinski, J. et al. Analysis of the evolutionary forces shaping mitochondrial genomes of a Neotropical malaria vector complex. *Mol. Phylogenet. Evol.* 58, 469–477 (2011).
- Oliveira, T. et al. Mitochondrial Genomes of Anopheles (Kerteszia) (Diptera: Culicidae) From the Atlantic Forest, Brazil. *J. Med. Entomol.* 53, 790–797 (2016).
- Peng, X.-Y., Zhou, P., Duan, X.-Y. & Qian, Z.-Q. The mitochondrial genomes of twelve Anopheles mosquitoes (Diptera: Culicidae) and their phylogenetic implications. *Conserv. Genet. Resour.* 8, 387–390 (2016).
- Hua, Y.-Q. et al. Sequencing and analysis of the complete mitochondrial genome in Anopheles culicifacies species B (Diptera: Culicidae). Mitochondrial DNA Part A. 27, 2909–2910 (2016).
- Moreno, M. et al. Complete mtDNA genomes of *Anopheles darlingi* and an approach to anopheline divergence time. *Malaria Journal.* 9, 127 (2010). doi.org/10.1186/1475-2875-9-127

- Logue, K. et al. Mitochondrial genome sequences reveal deep divergences among *Anopheles punctulatus* sibling species in Papua New Guinea. *Malaria Journal*. 12, 64 (2013). doi.org/10.1186/1475-2875-12-64
- Krzywinski, J., Grushko, O. G. & Besansky, N. J. Analysis of the complete mitochondrial DNA from *Anopheles funestus*: An improved dipteran mitochondrial genome annotation and a temporal dimension of mosquito evolution. *Mol. Phylogenet. Evol.* 39, 417–423 (2006).
- Beard, C. B., Hamm, D. M. & Collins, F. H. The mitochondrial genome of the mosquito *Anopheles gambiae*: DNA sequence, genome organization, and comparisons with mitochondrial sequences of other insects. *Insect Mol. Biol.* 2, 103–124 (1993).
- Mitchell, S. E., Cockburn, A. F. & Seawright, J. A. The mitochondrial genome of *Anopheles quadrimaculatus* species A: complete nucleotide sequence and gene organization. *Genome.* 36, 1058–1073 (1993).
- Foster, P. G. et al. Phylogeny of anophelinae using mitochondrial protein coding genes.
 R. Soc. Open Sci. 4, 170758 (2017).
- Sun, L. et al. Sequencing and analysis of the complete mitochondrial genome of *Culex gelidus* (Diptera: Culicidae). *Mitochondrial DNA Part B.* 2, 477–479 (2017).
- Demari-Silva, B. et al. Mitochondrial genomes and comparative analyses of *Culex camposi, Culex coronator, Culex usquatus* and *Culex usquatissimus* (Diptera: Culicidae), members of the coronator group. *BMC Genomics.* 16, 831 (2015).
- Luo, Q.-C. et al. The mitochondrial genomes of *Culex tritaeniorhynchus* and *Culex pipiens pallens* (Diptera: Culicidae) and comparison analysis with two other Culex species. *Parasites & Vectors*. 9, 406 (2016). doi.org/10.1186/s13071-016-1694-z

- Lewis, O., Farr, C. & Kaguni, L. *Drosophila melanogaster* mitochondrial DNA: completion of the nucleotide sequence and evolutionary comparisons. *Insect Mol. Biol.* 4, 263–278 (1995).
- Lemos, P. et al. Characterization of mitochondrial genome of *Haemagogus janthinomys* (Diptera: Culicidae). *Mitochondrial DNA Part A.* 28, 50–51 (2017).
- Aragão, A. de O. et al. Description and phylogeny of the mitochondrial genome of Sabethes chloropterus, Sabethes glaucodaemon and Sabethes belisarioi (Diptera: Culicidae). Genomics. 111, 607-611 (2019). doi:10.1016/j.ygeno.2018.03.016
- Krzemiński, W., Krzemińska, E. & Papier, F. *Grauvogelia arzvilleriana* sp. n. the oldest Diptera species (Lower/Middle Triassic of France). *Acta Zool. Cracov.* 37, 95–99 (1994).
- Borkent, A. & Grimaldi, D. A. The Earliest Fossil Mosquito (Diptera: Culicidae), in Mid-Cretaceous Burmese Amber. *Ann. Entomol. Soc. Am.* 97, 882–888 (2004).
- Poinar, G. O., Zavortink, T. J., Pike, T. & Johnston, P. a. *Paleoculicis minutus* (Diptera: Culicidae) n. gen., n. sp., from Cretaceous Canadian amber, with a summary of described fossil mosquitoes. *Acta Geol. Hisp.* 35, 119–128 (2000).
- 23. Zavortink, T. J. & Poinar, G. O. Anopheles (Nyssorhynchus) dominicanus sp. n.
 (Diptera: Culicidae) from Dominican Amber. Ann. Entomol. Soc. Am. 93, 1230–1235 (2000).