Cell Reports, Volume 33

Supplemental Information

The Lipid Handling Capacity of Subcutaneous Fat

Is Programmed by mTORC2 during Development

Wen-Yu Hsiao, Su Myung Jung, Yuefeng Tang, John A. Haley, Rui Li, Huawei Li, Camila Martinez Calejman, Joan Sanchez-Gurmaches, Chien-Min Hung, Amelia K. Luciano, Victoria DeMambro, Kathryn E. Wellen, Clifford J. Rosen, Lihua Julie Zhu, and David A. Guertin

Figure S1, related to Figure 1.

A Quantification (quant) of the Oil Red O (ORO) staining of differentiated control (EtOH) and *Rictor-iKO*_{primary} (4-OHT) cells after isopropanol extraction and direct ORO content measurement (data represent mean \pm SEM; **p < 0.01). See also **Figure 1B**.

B Cell number quantification of control *and Rictor-iKO*_{primary} cells at indicated time points during the first 48 hours of differentiation (data represent mean \pm SEM).

C Percentage of Perilipin 1-positive (PLIN1+) cells per image taken from the immunofluorescence staining in Figure 1C (data represent mean \pm SEM).

D ORO staining of differentiated primary *preadipocytes isolated from a UBC-Creert2* mouse. *Right panel*: quantification (quant) of the Oil Red O (ORO) staining. (data represent mean ± SEM; **p < 0.01). Cre-: cells treated with EtOH (without Cre). Cre+: cells treated with 4-OHT (with Cre expression). n.s.: not significant. **E** Western blot of lysates from differentiated (Day 8) *UBC-Creert2* cells with (4-OHT-treated) or without (EtOH-treated) Cre expression.

F Relative mRNA expression by RT-PCR of *Akt* isoforms in control and *Rictor-iKO*_{primary} cells at the indicated differentiation days (data represent mean \pm SEM; ***p < 0.001; c: ***p < 0.001 when compared to D0 cells). **G** ORO staining of differentiated control and *Rictor-iKO*_{immortal} cells. *right panel*: Quantification of the ORO

staining of differentiated control and *Rictor-iKO*_{immortal} cells after isopropanol extraction and direct ORO content measurement (data represent mean \pm SEM; ***p < 0.001).

H Western blot of lysates from differentiated (Day 8) control and Rictor-iKOimmortal cells.

I Relative mRNA expression by RT-PCR of *Akt* isoforms in differentiated control and *Rictor-iKOimmortal* cells (data represent mean \pm SEM; *p < 0.05, ***p < 0.001).

J Western blot of lysates from control and *Rictor-iKO*_{immortal} cells at early differentiation time points (day 0 through day 4). γ 1: PPAR γ 1 isoform; γ 2: PPAR γ 2.

K Relative mRNA expression by RT-PCR of *Akt* isoforms in control and *Rictor-iKOimmortal* cells at indicated differentiation days (data represent mean \pm SEM; **p < 0.01).

Α

В

Figure S2, related to Figure 2.

A Pathway clusters of the *Rictor*-required adipogenic genes modified by KEGG pathway analysis. Genes highlighted in red: down-regulatory genes identified as PPARγ/ChREBP/SREBP1 targets. Also see **Figure 2C**. FAO: fatty acid oxidation, TCA cycle: tricarboxylic acid cycle; Abbreviations of metabolites: F1,6BP: fructose-1,6-bisphosphate, GA3P: glyceraldehyde 3-phosphate, DHAP: dihydroxyacetone phosphate, LPA: lysophosphatidic, PA: phosphatidic acid, DAG: diacylglycerol, TAG: triacylglycerol, FA: fatty acid, PUFA: polyunsaturated fatty acid. Abbreviations of gene names: GLUT4: Glucose transporter type 4, ME1: Malic enzyme 1, GPAT: Glycerol-3-phosphate acyltransferase, AGPAT2: 1-acylglycerol-3-phosphate O-acyltransferase 2, DGAT2: Diacylglycerol O-acyltransferase 1, ACSS2: Acyl-CoA Synthetase Short Chain Family Member 2, ACC: Acetyl-CoA carboxylase, FASN: Fatty acid synthase, SCD1: Stearoyl-CoA desaturase 1, ACSL: Acyl-CoA synthetase long-chain, HSL: Hormone-sensitive lipase. ATGL: Adipose triglyceride lipase, LPL: Lipoprotein lipase, FABP4: Fatty acid binding protein 4, MCAD: Medium-chain acyl-CoA dehydrogenase, EHHADH: Enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase.

B Relative mRNA expression by RT-PCR of genes in the DNL and lipid handling pathways in differentiated *primary UBC-CreeRt2* cells with (Cre-pos, 4-OHT-treated) or without (Cre-neg, EtOH-treated) Cre expression (data represent mean ± SEM). See also **Figure 1A**.

C Western blot of lysates from control and *Rictor-iKO*_{primary} cells with *Rictor* deleted from D2 (*Adi-Rictor-iKO*_{primary}) at indicated differentiation time points. Arrow: Starting point of 4-OHT exposure.

D Relative mRNA expression by RT-PCR of genes in the dnl and lipid handling pathways in control and *Adi-Rictor-iKO*_{primary} cells. Data represent mean \pm SEM; ***p < 0.001.

E Lipogenic assay measured by 14C-glucose incorporation into 14C-TAG of undifferentiated (D0) and

differentiated (D8) control *and Rictor-iKO*_{primary} cells. Data represent mean \pm SEM; *p < 0.05, ***p < 0.001. c: p < 0.001 relative to its D0 counterpart. RU: relative unit (calculated from CPM per µg of protein).

F 3H-2-deoxyglucose (3H-2-DG) uptake of undifferentiated (D0) and differentiated (D8) control *and Rictor-iKO*primary cells. Data represent mean \pm SEM; **p < 0.01, ***p < 0.001. RU: relative unit (calculated from CPM per minute per µg of protein).

G Glycolytic function determined by extracellular acidification rate (ECAR) of differentiated control *and Rictor-iKO*_{primary} cells. Data represent mean \pm SEM; ***p < 0.001.

H BODIPY FL C16 lipid uptake of undifferentiated (D0) and differentiated (D8) control *and Rictor-iKO*_{primary} cells incubated in either 10 or 30 minutes. Mean intensity was determined by flow cytometry. Data represent mean \pm SEM; *p < 0.05, **p < 0.01. a: p < 0.05 when compared to its counterpart in 10-minute group.

Figure S3, related to Figure 3.

A Luciferase reporter gene assay with PPRE-responsive element (PPRE-Luc) in control and *Rictor-iKO*_{immortal} cells with indicated treatment or transduction at day 2. Rosi: Rosiglitazone (data represent mean \pm SEM; *p < 0.05, **p < 0.01, ***p < 0.001; a: *p < 0.05 when compared to vehicle-treated cells; c: ***p < 0.001 when compared to vehicle-treated cells).

B Western blot of lysates from control and *Rictor-iKO*_{immortal} at day 2. HA- γ 2: cells transduced with HA-PPAR γ 2. **C** ORO staining of differentiated control and *Rictor-iKO*_{immortal} cells overexpressing empty vector (Vec) or HA-PPAR γ 2 plasmid (scale bar = 50 µm).

D Relative mRNA expression of indicated genes from differentiated control and *Rictor-iKO*_{immortal} cells overexpressing empty vector (vec) or HA-PPAR γ 2 (γ 2) plasmid (data represent mean ± SEM; **p < 0.01, ***p < 0.001; a: *p < 0.05 when compared to vector-expressing cells; c: ***p < 0.001 when compared to vector-expressing cells).

E Western blot of lysates from differentiated control and *Rictor-iKO*_{immortal} cells overexpressing empty vector (Vec) or HA-PPAR γ 2 (HA- γ 2) plasmid.

F ORO staining of differentiated control and *Rictor-iKO*_{immortal} cells (4-OHT-treated) with or without rosiglitazone (Rosi) supplement during differentiation (scale bar = $50 \mu m$).

G Relative mRNA expression of indicated genes from differentiated control and *Rictor-iKO*_{immortal} cells (4-OHT-treated) with or without Rosiglitazone (Rosi) supplement (data represent mean \pm SEM; **p < 0.01, ***p < 0.001; a: *p < 0.05 when compared to its counterpart in non-Rosi group; b: **p < 0.01; c: ***p < 0.001).

H Western blot of lysates from differentiated control and *Rictor-iKOimmortal* cells with or without Rosiglitazone (Rosi) supplement.

Ε

F

Figure S4, related to Figure 3 and Figure 4.

A Graphic showing the primer binding site (arrows) used in the ChIP assays relative to the promoter and enhancer regions of indicated genes.

B Relative mRNA expression of *Pkm2* in differentiated control and *Rictor-iKO*_{primary} cells (data represent mean \pm SEM; n.s: not significant).

C PPAR γ /PPAR-responsive element (PPRE) interaction and H3K9 acetylation (H3K9ac) identified by chromatin IP (ChIP) at *Fabp4* promoter in control and *Rictor-iKOimmortal* cells (data represent mean ± SEM; **p < 0.01; b: **p < 0.01 when compared to D0 cells; c: ***p < 0.001 when compared to D0 cells). ChIP with IgG were used as negative controls.

D Western blot of extracted histones from control and *Rictor-iKOprimary* cells at indicated days during differentiation. Right panel: quantification of H3K9 acetylation signals compared to total H3 (data represent mean \pm SEM). **E** Oil Red O (ORO) staining of differentiated control (EtOH) and *Rictor-iKOimmortal* (4-OHT) cells overexpressing empty vector (Vec), Myc-ACLY, Myc-ACLY-S455D, Myc-ACLY-S455E, or Myc-ACLY-S455A (scale bar = 100 µm).

F Relative mRNA expression by RT-PCR of indicated genes in differentiated control and *Rictor-iKO*_{immortal} cells overexpressing empty vector (Vec), ACLY, ACLY-S455D, ACLY-S455E, or ACLY-S455A (data represent mean \pm SEM; **p < 0.01, ***p < 0.001).

G Western blot of lysates from differentiated control and *Rictor-iKOimmortal* cells overexpressing empty vector (Vec), ACLY or indicated ACLY mutants.

Figure S5, related to Figure 6.

A Food intake of control and *RictorPrx1-Cre* mice at 8 weeks of age (N = 3-6; data represent mean \pm SEM).

B Estimated depot cellularity in SWAT from control and *Rictor*_{*Prx1*-*Cre*} mice at 8 weeks of age (N = 4; data represent mean \pm SEM). *right panel*: linear correlation of tissue weight versus average cell volume. r₂ = square of correlation. n.s.: not significant, M: male, F: female.

C Adipocyte precursor (APC) number isolated from SWAT using cell surface markers staining followed by FACS analysis (N= 4; data represent mean \pm SEM).

D Liver weight relative to body weight of control and *Rictor*_{prx1-Cre} mice at 8 weeks of age (N= 10-11; data represent mean \pm SEM).

E TAG content of livers from 8-week-old female mice. Data represent mean \pm SEM.

F SWAT weight relative to body weight of control and *Rictor*_{Prx1}- C_{re} mice at postpartum day 7 (P7) (N =4; data represent mean \pm SEM; ***p < 0.001).

G H&E stains of adipose tissues from postpartum day 7 (P7) mice.

H Adipocyte size distribution in indicated depot (N = 4; more than 100 adipocytes were calculated from each mouse; data represent mean \pm SEM).

I Femur and Tibia length from 8-week-old male mice (N =6; data represent mean \pm SEM; **p < 0.01, ***p < 0.001).

J Muscle (quadriceps) weight relative to body weight of control and *Rictor*_{prx1-Cre} mice at 8 weeks of age (N=10-11; data represent mean \pm SEM; ***p < 0.001).

K H&E stains of muscles from 8-week-old mice (scale bar = $100 \ \mu m$).

L Western blot of lysates from muscles of control and *RictorPrx1-Cre* mice.

M Relative mRNA expression by RT-PCR of *Rictor* and *Pparg2* in bone marrow adipose tissues isolated from control and *Rictor*_{Prx1-Cre} mice (N= 4-5; data represent mean \pm SEM; *p < 0.05).

Figure S6, related to Figure 6.

A-B Insulin tolerance test (left) with area under curve (AUC, right) from 8-week-old male (**A**) and female (**B**) mice $(n = 9-11; \text{ data represent mean } \pm \text{SEM}; *p < 0.05)$

C-D Glucose tolerance test (left) with area under curve (AUC, right) from 8-week-old male (**C**) and female (**D**) mice (n = 9-11; data represent mean \pm SEM; *p < 0.05)

E Plasma insulin, adiponectin, leptin, and non-esterified fatty acids (NEFA) levels ad libitum fed 8-week-old male mice (n = 7-9; bars represent mean \pm SEM).

Figure S7, related to Figure 7.

A Relative mRNA expression by RT-PCR of *Akt* isoforms in SWAT from 8-week-old control and *RictorPrx1-Cre* mice (N= 6-7; data represent mean \pm SEM; **p < 0.01).

B Western blot of total and phospho-S6K1 in lysates from controls and *Rictor-iKO*_{primary} cells at indicated time points during adipogenesis.

C Oil Red O (ORO) staining of differentiated primary preadipocytes isolated from control and *RictorPrx1-Cre* mice. **D** Western blot of lysates from differentiated primary preadipocytes isolated from control and *RictorPrx1-Cre* mice. Each sample is from an individual mouse with the indicated genotype.

E Relative mRNA expression by RT-PCR of indicated genes from differentiated primary preadipocytes isolated from control and *RictorPrx1-Cre* mice (N= 8; data represent mean \pm SEM; *p < 0.05, **p < 0.01, ***p < 0.001). **F** 3H-2-Deoxyglucose uptake (3H-2-DG) of SWAT and VWAT with or without insulin (ins) stimulation from control and *RictorPrx1-Cre* mice. Data represent mean \pm SEM; *p < 0.01. b: p < 0.01 while its fasted counterpart is compared; c: p < 0.001.

G Lipolytic function measured by glycerol release from SWAT and VWAT with or without isoproterenol (iso) stimulation from control and *RictorPrx1-Cre* mice. Data represent mean \pm SEM; **p < 0.01. a: p < 0.05 while its counterpart under basal condition is compared; b: p < 0.01.

Table S1: Gene ontology biological processes and KEGG pathway enrichment analysis of *Rictor*-dependent genes, related to Figure 2.

GO term Biology Processes			
Rictor-required (Down-regulatory) genes			
GO term	GO #	Gene count	FDR
D2			
Cell adhesion	0007155	8	3.20E-02
D8			
Lipid metabolic process	0006629	22	9.80E-09
Metabolic process	0008152	19	4.90E-06
Oxidation-reduction process	0055114	21	6.10E-05
Fatty acid metabolic process	0006631	10	2.10E-03
Triglyceride metabolic process	0006641	6	1.10E-02
Inflammatory response	0006954	12	4.20E-02
Rictor-suppressed (Up-regulatory) genes			
GO term	GO #	Gene count	FDR
D2			
Complement activation	0006956	6	7.70E-06
Immune system process	0002376	11	1.50E-02
KEGG pathways			
Rictor-required (Down-regulatory) genes			
Pathway		Gene count	FDR
DO			
ECM*-receptor interaction		6	2.90E-03
D2			
ECM-receptor interaction		6	9.40E-04
D8			
PPAR signaling pathway		12	1.10E-07
Fatty acid metabolism		8	8.40E-05
Metabolic pathways		30	2.00E-03
Propanoate metabolism		5	7.10E-03
Glycerolipid metabolism		6	1.20E-02
Fat digestion and absorption		5	9.40E-04
Rictor-suppressed (Up-regulatory) genes			
Pathway		Gene count	FDR
D2			
Staphylococcus aureus infection		7	1.70-E04
Complement and coagulation cascades		6	4.00E-02

*ECM: extracellular matrix

	Male			Female		
	Control	RictorPrx1-Cre	P-Value	Control	RictorPrx1-Cre	P-Value
Tb thickness (mm)	0.0513±0.00584	0.04334±0.00496	0.0396*	0.0407±0.00819	0.0397±0.00328	0.782
Tb spacing (mm)	0.246±0.0218	0.289±0.147	0.500	0.362±0.0919	0.376±0.0603	0.785
Tb number (1/mm)	4.132±0.321	4.006±1.459	0.840	2.975±0.829	2.721±0.364	0.529
BV/TV	0.101±0.225	0.0986±0.0702	0.938	0.037±0.0259	0.0275±0.0091	0.421
Cort thickness (mm)	0.185±0.00850	0.1426±0.0178	0.00127**	0.171±0.00985	0.1315±0.00706	0.00073***
Cort/Total Area	0.529±0.00371	0.500±0.0335	0.223	0.540±0.0517	0.501±0.0233	0.134
Marrow Area (mm ₂)	0.610±0.00985	0.505±0.0461	0.0578	0.4133±0.0271	0.387±0.0399	0.272

Table S2: Bone structure analysis, related to Figure 6.

*P <0.05; **P<0.01; P<0.001 Tb: trabecular; BV: bone volume; TV: total volume; Cort: cortical.

Table 55. Done marrow analysis and osman stant quantification, related to right 5.							
		Male			Female		
		Control	RictorPrx1-Cre	P-Value	Control	RictorPrx1-Cre	P-Value
Prox.	MV (mm₃)	6.659±0.723	4.564±0.678	0.00287**	3.895±0.437	3.59±0.409	0.316
	MAT (mm₃)	0.03465±0.04	0.0788±0.088	0.405	0.0693±0.0673	0.0077±0.00816	0.039*
Dist.	MV (mm ₃)	1.429±0.0856	1.218±0.281	0.196	1.184±0.222	1.104±0.110	0.462
	MAT (mm3)	0.82±0.289	0.771±0.687	0.876	0.789±0.377	0.579±0.239	0.306

Table S3: Bone marrow analysis and osmium stain quantification, related to Figure 5.

*P <0.05; **P<0.01.

Prox.: proximal; Dis.: distal; MV: marrow volume; MAT: marrow adipose tissue.

Table S4: Primer sequences	, related to the STAR Methods section.
----------------------------	--

RT-PCR (mo	ouse)	
Site		Sequence (5'-3')
TBP	Forward	ACGGACAACTGCGTTGATTTT
	Reverse	ACTTAGCTGGGAAGCCCAAC
Pparg2	Forward	TGGCATCTCTGTGTCAACCATG
	Reverse	GCATGGTGCCTTCGCTGA
Cebpa	Forward	CAAGAACAGCAACGAGTACCG
	Reverse	GTCACTGGTCAACTCCAGCAC
Cebpb	Forward	TCGGGACTTGATGCAATCC
-	Reverse	AAACATCAACAACCCCGC
Cebpd	Forward	GCTTTGTGGTTGCTGTTGAA
-	Reverse	ATCGACTTCAGCGCCTACA
Akt1	Forward	CACGCTACTTCCTCCTCAAG
	Reverse	CTCTGTCTTCATCAGCTGGC
Akt2	Forward	CCTTCCATGTAGACTCTCCAG
	Reverse	CCTCCATCATCTCAGATGTGG
Acly	Forward	CTCACACGGAAGCTCATCAA
-	Reverse	ACGCCCTCATAGACACCATC
Acaca	Forward	GGAGATGTACGCTGACCGAGAA
	Reverse	ACCCGACGCATGGTTTTCA
Fasn	Forward	GCTGCGGAAACTTCAGGAAAT
	Reverse	AGAGACGTGTCACTCCTGGACTT
Cd36	Forward	TGGCCTTACTTGGGATTGG
	Reverse	CCAGTGTATATGGCTCATCCA
Fabp4	Forward	GATGCCTTTGTGGGAACCT
	Reverse	CTGTCGTCTGCGGTGATTT
Lpl	Forward	GGCCAGATTCATCAACTGGAT
-	Reverse	GCTCCAAGGCTGTACCCTAAG
Glut4	Forward	GTGACTGGAACACTGGTCCTA
	Reverse	CCAGCCAGTTGCATTGTAG
Scd1	Forward	CCCTGCGGATCTTCCTTATC
	Reverse	TGTGTTTCTGAGAACTTGTGGTG
Dgat1	Forward	GAGGCCTCTCTGCCCCTATG
	Reverse	GCCCCTGGACAACACAGACT
Dgat2	Forward	CCGCAAAGGCTTTGTGAAG
-	Reverse	GGAATAAGTGGGAACCAGATCA
Hsl	Forward	CAGTGTGACCGCCAGTTC
	Reverse	ACCTCAATCTCAGTGATGTTCC
Mcad	Forward	GCCAAGATCTATCAGATTTATGAAGG
	Reverse	AGCTATGATCAGCCTCTGAATTTGT
Perilipin1	Forward	CTGTGTGCAATGCCTATGAGA
•	Reverse	CTGGAGGGTATTGAAGAGCCG
Adipoq	Forward	TGTTCCTCTTAATCCTGCCCA
	Reverse	CCAACCTGCACAAGTTCCCTT

Chrebpa	Forward			
-	Reverse	TTGTTCAGCCGGATCTTGTC		
Chrebpb	Forward	TCTGCAGATCGCGTGGAG		
	Reverse	CTTGTCCCGGCATAGCAAC		
Pkm2	Forward	TCGCATGCAGCACCTGATT		
	Reverse	CCTCGAATAGCTGCAAGTGGTA		
Rictor	Forward	TCGATCTGACCCGAGAACCTT		
	Reverse GTTATTCAGATGGCCCAGCTTTT			
ChIP-qPCR pr	rimers			
Site		Sequence (5'-> 3')	Reference	
Cd36-PPRE	Forward	CCAACGGAACTGATTTGAGC	(Lefterova et al.,	
	Reverse	TTGCTGCTACACTCCAGCAT	2010)	
Fabp4-PPRE	Forward	AATGTCAGGCATCTGGGAAC	(Lefterova et al.,	
	Reverse	GACAAAGGCAGAAATGCACA	2010)	
H3K9ac-	Forward	GAGCCGCCCCTTCTATACTT	(Lefterova et al.,	
Cd36-PPRE	Reverse	TGTTGGGACAGACCAATCAG	2010)	
H3K9ac-	Forward	TTCTGACTCCTGGCCTGAAC	(Lefterova et al.,	
Fabp4-PPRE	Reverse	TGCCCTCTCAGGTTTCATTT	2010)	
Pkm2-PPRE	Forward	GCAGCCAGCCTGTAAGGGCA	(Panasyuk et al.,	
	Reverse	GCGAAGACAGGAAAACAGTGGGT	2012a)	
Insulin	Forward	CTTCAGCCCAGTTGACCAAT	N/A	
	Reverse	AGGGAGGAGGAAAGCAGAAC		
Chr. 15	Forward	AGCGTGGCCTTGGCAGCAAA	(Zhang et al.,	
	Reverse	TGCGATTGGCTTCCTCTCCCC	2012)	