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compendia of gene expression experiments from large-scale microbial and human
datasets. We compared simulated compendia before and after introducing varying
numbers of sources of undesired variability.
Results:    We found that the signal from a baseline compendium was obscured when
the number of added sources of variability was small. Perhaps as expected, applying
statistical correction methods rescued the underlying signal in these cases. However,
as the number of sources of variability increased we observed that detecting the
original signal became increasingly easier even without correction. In fact, applying
statistical correction methods reduced our power to detect the underlying signal.
Conclusion:    When combining a modest number of experiments, it is best to correct
for experiment-specific noise. However, when many experiments are combined,
statistical correction reduces our ability to extract underlying patterns.
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Abstract: 

 

Motivation:  In the last two decades, scientists working in different labs have assayed gene 

expression from millions of samples. These experiments can be combined into compendia and 

analyzed collectively to extract novel biological patterns. Technical variability, sometimes 

referred to as batch effects, may result from combining samples collected and processed at 

different times and in different settings. Such variability may distort our ability to interpret and 

extract true underlying biological patterns. As more integrative analysis methods are developed 

and available data collections are increased in size, it is crucial to determine how technical 

variability affect our ability to detect desired patterns when many experiments are combined 

 

Objective: We sought to determine the extent to which an underlying signal was masked by 

technical variability by simulating compendia comprised of data aggregated across multiple 

experiments. 

 

Method:  We developed a generative multi-layer neural network to simulate compendia of gene 

expression experiments from large-scale microbial and human datasets. We compared 

simulated compendia before and after introducing varying numbers of sources of undesired 

variability. 

 

Results:  We found that the signal from a baseline compendium was obscured when the number 

of added sources of variability was small. Perhaps as expected, applying statistical correction 

methods rescued the underlying signal in these cases. However, as the number of sources of 

variability increased we observed that detecting the original signal became increasingly easier 

even without correction. In fact, applying statistical correction methods reduced our power to 

detect the underlying signal. 

 

Conclusion:  When combining a modest number of experiments, it is best to correct for 

experiment-specific noise. However, when many experiments are combined, statistical 

correction reduces our ability to extract underlying patterns. 

 

  



Introduction: 

 

Over the last two decades, unprecedented amounts of transcriptome-wide gene expression 

profiling data have been generated. Most of these datasets are shared in public platforms for 

the research community.1 Researchers are now combining samples across different 

experiments to form compendia, and analyzing these compendia is revealing new biology.2–6 It 

is well-understood that technical sources of variability pervade large-scale data analysis such as 

transcriptome-wide expression profiling studies.7–10 Numerous methods have been designed to 

correct for various types of effects.7,11–13 Despite the prevalence of technical sources of 

variability, researchers have successfully extracted biological patterns from multi-experiment 

compendia without applying correction methods.2–5,14 To determine the basis of these seemingly 

contradictory results, we examined the extent to which underlying statistical structure can be 

extracted from compendium-style datasets in the presence of sources of undesired variability. 

 

A number of methods have been developed to simulate transcriptome-wide expression 

experiments.15–18  However, these existing approaches require defining a statistical model that 

describes the process by which researchers design and carry out experiments, which is often  

very challenging to obtain. Instead, we developed an approach to simulate compendia by 

sampling from the low-dimensional representation produced by multi-layer generative neural 

networks trained on gene expression data from an existing compendium. This allowed us to 

simulate gene expression experiments that mimic real experimental configurations. We 

combined these experiments to create compendia.  

 

Using this simulation approach, we studied how adding varying amounts of experiment-specific 

noise affects our ability to detect underlying patterns in the gene expression compendia. This 

topic is becoming pressing as more large-scale expression compendia are becoming available. 

We found that prior reports of pervasive technical noise and analyses that succeed without 

correcting for it are, in fact, consistent. In settings with relatively few experiment-specific sources 

of undesired variation, the added noise substantially alters the structure of the data. In these 

settings, statistical correction produces a data representation that better captures the original 

variability in the data. On the other hand, when the number of experiment-specific sources of 

undesired variability is large, attempting to correct for these sources does more harm than good. 

 

Results: 



 

We characterized publicly available data compendia using refine.bio19, a meta-repository that 

integrates data from multiple different repositories. We found that, on average, experiments 

contained hundreds to thousands of samples in most widely studied organisms (Table 1). These 

samples were derived from hundreds to thousands of experiments, and the most common 

experimental designs had relatively few samples (medians from 5-12). We compared 

compendia from refine.bio to two readily available compendia, recount2 and one for P. 

aeruginosa, that have been used for compendium-wide analyses.2,3,6 The compendia that have 

been successfully used in prior work2,3,6 have similar median numbers of samples per 

experiment (recount2 = 4, P. aeruginosa = 6) to the current publicly available data. 

 

Table 1:   Public data usually have only a modest number of samples per experiment, though many 

samples are available in aggregate. Statistics for the 10 largest transcriptomic compendia found in 

refine.bio, which is a meta-repository containing publicly available expression data from the Sequence 

Read Archive (SRA)20, Gene Expression Omnibus (GEO)21 and ArrayExpress22.    

 No. experiments Median no. samples Total no. samples 

Homo sapiens 15,440 12 571,862 

Mus musculus 13,224 10 296,829 

Arabidopsis thaliana 1,627 9 24,855 

Rattus norvegicus 1,368 12 38,530 

Drosophila melanogaster 853 9 17,836 

Saccharomyces cerevisiae 627 12 12,972 

Danio rerio 546 9.5 28,518 

Caenorhabditis elegans 375 10 7,953 

Sus scrofa 280 12 6,063 

Zea mays 274 5 3,458 

 

Constructing a generative model for gene expression samples 

 

We developed an approach to simulate new gene expression compendia using generative 

multi-layer neural networks. Specifically, we trained a variational autoencoder (VAE)23, which 

was comprised of an encoder and decoder neural network. The encoder neural network 

compressed the input data through two layers into a low-dimensional representation and the 

decoder neural network expanded the dimensionality back to the original input size. The VAE 

learned a low-dimensional representation that can reconstruct the original input data.  



Simultaneously, the VAE optimized the lowest dimensional representation to follow a normal 

distribution (Figure 1A).  This normal distribution constraint, which distinguishes VAE’s from 

other types of autoencoders, allowed us to generate variations of the input data by sampling 

from a continuous latent space.23  

 

We trained VAEs for each compendium: recount2 (896 samples with 58,037 genes) and P. 

aeruginosa (989 samples with 5,549 genes). We evaluated the training and validation set losses 

at each epoch, which stabilized after roughly 100 epochs (Figure 1B). We observed a similar 

stabilization after 40 epochs for recount2 (Figure S1A). We simulated new genome-wide gene 

expression data by sampling from the latent space of the VAE using a normal distribution 

(Figure 1C). We used UMAP24 to visualize the structure of the original and simulated data and 

found that the simulated data generally fell near original data for both compendia (Figure 1D; 

Figure S1B). 

 

Simulating gene expression compendia with synthetic samples 

 

We designed a simulation study to assess the extent to which artifactual noise associated with 

individual partitions of a large compendium affects the structure of the overall compendium. Our 

simulation is akin to asking: if different labs performing transcriptome-wide experiments 

randomly sampled from the available set of possible conditions, to what extent would 

experiment-specific biases dominate the signal of the data. First, we simulated new compendia. 

Then we randomly divided the samples within these compendia into partitions and added noise 

to each partition. Finally, we compared the simulated compendia with added noise to the 

unpartitioned one (Figure 2A). Each partition represented groups of samples with shared 

experiment-specific noise. We evaluated the similarity before and after applying an algorithm 

designed to correct for technical noise in each partition – given that the added noise was linear, 

we used limma25 to correct. Singular Vector Canonical Correlation Analysis (SVCCA)26 was 

used to assess similarity. The SVCCA analysis measured the correlation between the 

distribution of gene expression in the compendia without noise compared to the distribution in 

the compendia with multiple sources of technical variance. 

 

We performed a study with this design using the VAE trained from the P. aeruginosa 

compendium. We simulated a P. aeruginosa compendium with 6,000 samples for [1, 2, 5, 10, 

20, 50, 100, 500, 1000, 2000, 3000, 6000] partitions. We found that adding technical variance to 



partitions always reduced the similarity between the simulated data without partitions and the 

partitioned simulated data. However, the nature of the change in similarity differed substantially 

between the partitioned compendia before and after the correction step (Figure 2B). With the 

correction step (dark blue line) similarity dropped throughout the range of the study, eventually 

reaching the same level as the permuted data (dashed grey line). Without the correction step 

(light blue line), similarity dropped immediately to the random level and then recovered 

throughout the rest of the tested range. We visualized the simulated data on the top 2 principle 

components from the original data (Figure 2C, grey points). The corrected (Figure 2C, dark 

blue) and uncorrected (Figure 2C, light blue) data at various numbers of partitions revealed that 

the correction step removes both wanted and unwanted variability, eventually removing all 

variability in the data. Without correction, the data were initially dramatically transformed. 

However, as the number of partitions grows very large the effect on the structure of the data 

was diminished.  

 

To determine whether or not this correction removing signal was a more general property of 

such compendia, we repeated the same simulation study using a VAE trained on a recount2 

compendium. recount2 is a compendium comprised of human RNA-seq samples, so it is 

generated using a different technology and consists of assays of a very different organism. We 

simulated a compendium with 500 samples for [1, 2, 5, 10, 20, 50, 100, 250, 500] partitions. The 

results with recount2 mirrored our findings with the P. aeruginosa compendium. The correction 

step initially retained more similarity, but performance crossed over and by 500 partitions the 

uncorrected data were more similar to the unpartitioned simulated compendium (Figure 2D). 

Visualizing the top principle components, again, revealed that correction restored the structure 

of the original data with few partitions, but with many partitions the structure was better retained 

without correction (Figure 2E).  Additionally, the same trends were observed when we varied the 

magnitude of the noise added (Figure S2) or used a different noise correction method, such as 

COMBAT12 (Figure S3). In general, there exists some minimum number of experiment-specific 

sources of noise that determines the effectiveness of applying noise correction to these multi-

experiment compendia.    

 

A generative model for gene expression experiments 

 

We randomly selected samples from the range of all possible samples in the compendium. This 

next simulation added another level of complexity to the model, by simulating experiments as 



opposed to samples to make the simulated compendia more representative of true expression 

data. This simulation generated synthetic experiments for which the gene expression patterns 

were consistent with those from the types of experiments that are used within the field. The 

technique that we developed uses the same underlying approach of sampling from a VAE. 

However, in this case we randomly selected a template experiment (E-GEOD-51409, which 

compared P. aeruginosa at 22˚C and 37˚C) and a vector that would move that template 

experiment to a new location in the gene expression space (Figure 3A).  The simulation 

preserved the relationship between samples within the template experiment while also shifting 

the activity of the samples in the latent space (Figure 3B). Intuitively, this process maintained 

the relationship between samples but changed the underlying perturbation; this simulation 

maintained the same experimental design but is akin to studying a distinct biological process. 

We used this process to generate compendia of new gene expression experiments. We then 

examined the retention of the original differential expression signature by comparing the set of 

differentially expressed genes (DEGs) found in the simulated experiments (Figure 3D). Applying 

only the VAE compression to the original experiment (E-GEOD-51409), generated an 

experiment that had the same sample grouping as the original. However, only a subset of the 

DEGs found in the VAE compressed experiment were also found in the original experiment. The 

VAE compression step added some noise to the expression signal in the original experiment, as 

expected, since the data was being compressed into a low dimensional space. Overall, the 

correlation between the genes, based on their log2 fold-change values, in the original and VAE 

compressed experiment was high, R2 = 0.822 (Figure 3C). Next, we exampled how the original 

samples in an experiment and a simulated experiment, applying VAE compression and latent 

space translation of the E-GEOD-51409 experiment, had consistent clustering of samples 

(Figure 3D original and experiment-level simulated experiment).27 However the sets of genes 

that were differentially expressed were different between the two experiments. This 

demonstrated that the perturbation intensity and experimental design were relatively consistent 

in gene expression space, even though the nature of the perturbation differed. The correlation 

between genes in the original and the experiment-level experiment was lower, R2 = 0.230, since 

it represented a unique experiment. The residual similarity was likely due to commonly 

differentially expressed genes that have been observed previously28,29.  Finally, as a control, we 

demonstrated that the original experiment structure was not well preserved using the random 

sampling approach (Figure 3D, sample-level simulated experiment). The correlation between 

genes in the original and sample-level experiment was non-existent, R2 = -0.055, since we did 

not account for experiment structure in the sample-level simulation. 



 

In general, the numbers of differentially expressed genes found in the experiment-preserving 

simulated experiments (78 DEGs in VAE compressed, 14 DEGs in experiment-level) were lower 

compared to the original experiment (505 DEGs). This was because the simulated experiments 

had a lower variance compared to the original experiment. This reduced variance was due to 

the normality assumption made by the VAE, which compressed the latent space data 

representation.23 However, the clustering of samples was conserved between the simulated and 

original experiments and this was also observed in the additional template experiments with 

more complex experimental setups (Figure S4). Given the fact that we preserved the 

association between samples and experiments in this new experiment-level simulation, we 

expected that simulated experiments would preserve the correlation in expression of genes that 

are in the same pathway. In our previous example, the simulated experiment generated using 

the original E-GEOD-51409 as a template (i.e. experiment-level, Figure 3A) identified 14 DEGs 

(Figure 3D). In contrast, the simulated experiment generated by random sampling (i.e. sample-

level, Figure 1C) did not identify any DEGs; the median log2 fold-change was 0.08. 

Furthermore, simulating 100 new experiments using E-GEOD-51409 as a template, identified a 

median of 2,588 DEGs compared to simulated experiments generated by random sampling 

which identified a median of 0 DEGs (Figure 3E). Additionally, the median number of enriched 

KEGG pathways was 1 using the template shifting approach compared to 0 using the random 

sampling approach (Figure 3F). Overall, it appeared that this new simulation approach 

generated a compendium of more realistic experiments with underlying biology. (examples of 

the significantly enriched pathways in Table 2). The top over-represented pathway was the 

ribosome pathway, which is likely a commonly altered pathway found in many experiments 

regardless of experiment type, similar to the findings from human array experiments in Crow et. 

al.28,29 The remaining pathways found in the original experiment were related to metabolism, 

which is consistent with the finding from the original publication.27 The simulated experiment 

was particularly enriched in sulfur metabolism and ABC transporters, which is consistent with an  

experiment that found upregulation of transport systems in response to sulfate limitations.30 

Overall, in accordance with real gene expression experiments, the new simulated experiments 

contain related groups of enriched pathways that reflect the specific hypotheses being tested. 

These results demonstrate the use of a VAE as a hypothesis generating tool. We can now 

simulate new experiments in order to study the response of P. aeruginosa in response to 

untested conditions. 



 

Table 2: Enriched pathways found in the original E-GEOD-51409 experiment and the pseudo-experiment generated 

using the experiment-level simulation. 

 

 

Simulating gene expression compendia with synthetic experiments 

 

We used our method to simulate new experiments that followed existing patterns to examine the 

patterns from generic partitions (Figure 4A). We simulated 600 experiments using the P. 

aeruginosa compendium. We divided these experiments into [1, 2, 3, 5, 10, 20, 30, 50, 70, 100, 

200, 300, 400, 500, 600] partitions. These partitions represented groupings of experiments with 

shared noise, such as experiments from the same lab or experiments with the same 

experimental design.  Each partition contained technical sources of variance within and between 

experiments. Results with simulated experiments were similar to those from arbitrarily 

partitioned samples. We observed a monotonic loss of similarity after the correction step as the 

number of partitions increased (Figure 4B). Visualizing the top principal components revealed 

that statistical correction initially better recapitulated the overall structure of the data but that 

similarity decreased with many partitions (Figure 4C, dark blue). Without statistical correction 

there was a larger initial drop in similarity but a later recovery (Figure 4B) and visualizing the top 

principal components recapitulated this finding (Figure 4C, light blue). We performed analogous 

experiments using the recount2 VAE and 50 simulated experiments with [1, 2, 5, 10, 20, 30, 50] 

partitions. We observed consistent results with this dataset using both SVCCA similarity (Figure 

4D) and visual inspection of the top principal components (Figure 4E).  

One caveat in the design of the previous analysis, is that the effect of the number of partitions 

was confounded by the number of experiments per partition. For example, more partitions 

equated to each partition having a smaller effect size since each partition had fewer 

experiments. To study the contribution of individual experiments in our signal detection, we 

Original Adjusted  

p-value 

Experiment level simulation Adjusted  

p-value 

Pae03010: Ribosome 2.966E-11 Pae03010: Ribosome 7.96E-07 

Pae00500: Starch and sucrose 

metabolism 

1.512E-03 Pae02010: ABC transporters 4.009E-03 

Pae01200: Carbon metabolism 4.466E-03 Pae00920: Sulfur metabolism 1.576E-02 

Pae00640: Propanoate 

metabolism 

1.954E-03   



performed an analysis where we held the number of experiments per partition fixed and varied 

the number of total experiments within a compendia (Figure S5A). With few experiments in a 

compendia, the main signal was the difference between experiments so adding noise to each 

experiment drove signal detection down (Figure S5B). Additionally, applying noise correction 

removed the main experiment-specific signal, as it was designed to do. With more experiments 

in a compendia, we gained a more global gene expression representation, where the main 

signal was no longer focused on the difference between experiments. Thus, adding noise to 

each experiment did not affect our signal detection and our similarity remained constant. 

However, applying noise correction will consistently remove more of our signal of interest. The 

results of this analysis exemplify how existing experiments can be combined and used without 

need for correction. 

 

In summary, as the number of partitions or experiments increase the experiment-specific 

technical sources contribute less to the overall signal and the underlying patterns dominate the 

overall signal. When many partitions or experiments are present, even ideal statistical 

approaches to correct for noise over-corrects and removes the underlying signal. 

 

Discussion: 

 

Our findings reveal that compendia-wide analyses do not always require correction for 

experiment-specific technical variance and that correcting for such variance may remove signal. 

This simulation study provides an explanation for the observation that past studies2–6 have 

successfully extracted biological signatures from gene expression compendia despite the 

presence of uncorrected experiment-specific sources of technical variability. In general, there 

exists compendia that contain some small number of experiment-specific sources where 

traditional correction methods can be effective at recovering the biological structure of interest. 

However, there also exist large-scale gene expression compendia where these methods may 

be harmful instead of helpful. The number of experiment-specific sources that determine 

whether to apply correction will vary depending on the size of the compendia and the magnitude 

and structure of the signals. Using the associated repository 

(https://github.com/greenelab/simulate-expression-compendia) users can customize the scripts 

to run the simulation experiments on their own expression data in order to examine the effect of 

a linear noise model with linear noise correction on their dataset. Though our analysis uses 

simplifying assumptions that preclude us from defining a specific threshold for noise correction, 

https://github.com/greenelab/simulate-expression-compendia


these simulations define a set of general properties that will guide compendia analyses moving 

forward. This study suggests that new large-scale datasets can be created by distributing 

different experiments across many different labs and centers as opposed to being consolidated 

within a single lab. 

 

We introduce a new method to simulate genome-wide gene expression experiments, using 

existing gene expression data as starting material, which goes beyond simulating individual 

samples. This allows us to examine the extent to which our findings hold with realistic 

experimental designs. The ability to simulate gene expression experiments with a realistic 

structure has many potential legitimate uses: pre-training for machine learning models, 

providing synthetic test data for software, and other such applications. Additionally, this 

simulation technique can be used to explore hypothetical experiments that have not been 

previously performed and generate hypotheses. However, such approaches could also be used 

by nefarious actors to generate synthetic data for publications. Forensic tools that detect 

synthetic genome-wide data may be needed to combat potential fraudulent uses. 

 

Our study has several limitations. We assume a certain noise model that differs between 

experiments. However, the sources of real noise are multifaceted and any such assumption will 

necessarily be an oversimplification, though such assumptions are not uncommon.10,12,31 By 

selecting a specific noise model and using an ideal noise-removal step, we provide a best case  

scenario for artifact removal. While any simulation study will necessarily make simplifying 

assumptions, this work is the first to use deep generative models as part of a simulation study to 

probe the long-standing assumption that correcting for technical variability is necessary for 

analyses that span multiple experiments. Our findings reveal that in settings with hundreds or 

thousands of experiments, correcting for experiment-specific effects can harm performance and 

that it can be best to forgo statistical correction. Adjusting the choices of normalization, noise 

magnitude, and noise patterns will result in different selections of the precise cross-over point 

where it becomes beneficial to perform correction. With this design, we do not expect to 

estimate exactly where this precise cross-over point is. Such an estimation would require a 

compendium where investigators systematically performed the same combination of different 

experiments in multiple labs at different times. We were unable to identify such a compendium 

on the scale of thousands of samples from tens to hundreds of labs.  Thus, though our analysis 

necessarily includes simplifying assumptions that limit our ability to precisely define the 



thresholds for correction for arbitrary datasets and noise sources, it remains suitable for 

examining the overriding principles that govern compendium-wide analyses. 

 

Our study has broad implications for efforts to standardize scientific processes. Centralization of 

large-scale data generation has the potential to reduce experiment-specific technical noise, 

though it comes at a cost of flexibility. Our results suggest that a highly distributed process 

where experiments are carried out in many different locations, with their own specific sources of 

technical noise, can also lead to valuable data collections. 

 

Methods: 

 

Pseudomonas aeruginosa gene expression compendium 

 

We downloaded a compendium of P. aeruginosa data that was previously used for 

compendium-wide analyses.2 Previous studies identified biologically-relevant processes such as 

oxygen deprivation2 and phosphate starvation3 by applying denoising autoencoders. We 

obtained the processed and normalized gene expression matrices from the ADAGE GitHub 

repository (https://github.com/greenelab/adage/tree/master/Data_collection_processing). The P. 

aeruginosa dataset was previously processed by Tan et. al. During processing, raw microarray 

data were downloaded as .cel files, rma was used to convert probe intensity values from the .cel 

files to log2 base gene expression measurements, and these gene expression values were then 

normalized to 0-1 range per genes. 

 

This compendium includes measurements from 107 experiments that contain 989 samples for 

5,549 genes.2 It contains experiments that accrued between the release of the GeneChip P. 

aeruginosa genome array and the time of data freeze in 2014.  Approximately 70% of the 

samples were from cultures of strain PAO1 and derivatives, 13% were in strain PA14 

background, 0.6% were from PAK strains and the remaining were largely clinical isolates.  Of 

the strains, 73% were wild-type (WT) genotypes and the rest were mutants that had undergone 

genetic modification. Approximately 60% of the samples were grown in lysogeny broth (LB) 

medium while the rest were grown in Pseudomonas Isolation Agar (PIA), glucose, pyruvate or 

amino acid-based media.3 Roughly 80% were grown planktonically, 15% were grown in biofilms 

and the remaining samples were in vivo or not annotated. Overall, this P. aeruginosa 

compendium covered a wide range of gene expression patterns including: characterization of 

https://github.com/greenelab/adage/tree/master/Data_collection_processing


clinical isolates from cystic fibrosis infections, differences between mutant versus WT, response 

to antibiotic treatment, microbial interactions, adaptation from water to GI tract infection. Despite 

having 989 samples, this compendium represents the heterogeneity of P. aeruginosa gene 

expression.  

 

recount2 gene expression compendium 

 

We downloaded human RNA-seq data from recount2.32  The dataset includes over 70,000 

samples collected from Sequencing Read Archive (SRA).  It is comprised of more than 50,000 

samples from different types of experiments, roughly 10,000 samples from Genotype-Tissue 

Expression project (GTEx v6) covering 44 types of normal tissue, and more than 10,000 

samples from The Cancer Genome Atlas (TCGA) measuring 33 cancer types.20,33,34  The 

recount2 authors uniformly processed and quantified these data. We downloaded data using the 

recount library in Bioconductor (version 1.14.0).32  The entire recount2 dataset is 8TB. Based on 

the P. aeruginosa compendium we expected that a subset of the compendium would be 

sufficient for this simulation, so we selected a random subset of 50 NCBI studies, which resulted 

in 896 samples with 58,037 genes for our simulation. Each project (imported from NCBI 

bioproject) is akin to an experiment in the P.  aeruginosa compendium, and we used the term 

experiment to describe different projects in order to maintain consistency in this paper. The 

downloaded recount2 dataset was in the form of raw read counts, which was normalized to 

produce RPKMs used in our analysis.  The normalized gene expression data was then scaled to 

a 0-1 range per gene. 

 

Strategy to construct VAE: structure and hyperparameters 

We designed an approach to simulate gene expression compendia with a multi-layer variational 

autoencoder (VAE). We built this model in Keras (version 2.1.6) with a TensorFlow backend 

(version 1.10.0), modifying the previously published Tybalt method.35–37  Our architecture used 

each input gene as a feature. These genes were compressed to 2,500 intermediate features 

using a rectified linear unit (ReLU) activation function to combine weighted nodes from the 

previous layer. These features were encoded into 30 latent space features, also using a ReLU 

activation function, which were optimized via the addition of a Kullbach-Leibler (KL) divergence 

term into the loss function (binary cross entropy) to follow a standard normal distribution. These 

features were then reconstructed back to the input feature dimensions using decoding layers 

that mirror the structure of the encoder network. We trained the VAE using 90% of the input 



dataset, leaving 10% as a validation set.  We determined training hyperparameters by manually 

adjusting parameters and selecting the parameters that optimized the validation loss based on 

visual inspection. These were a learning rate of 0.001, a batch size of 100, warmups set to 0.01, 

100 epochs for the P. aeruginosa compendium and 20 epochs for the recount2 compendium. A 

similar assessment was performed to determine the neural network architecture. We manually 

inspected the validation loss using multiple different 2-layer designs (300-10, 2500-10, 2500-20, 

2500-30, 2500-100, 2500-300) and found a 2,500 layer to a 30 hidden layer VAE to be most 

optimal. 

 

Sample-based simulation 

 

We used the VAE trained from each compendium to generate new compendia by randomly 

sampling from the latent space. We generated a simulated compendium containing 6,000 P. 

aeruginosa samples or 500 recount2 samples. For our first simulation, we sampled randomly - 

ignoring the relationship between samples within a specific experiment. We simulated 

experiment-specific sources of undesired variability within compendia by dividing the data into 

partitions and adding noise to each partition. 

 

We divided the P. aeruginosa simulated compendium into [1, 2, 5, 10, 20, 50, 100, 500, 1000, 

2000, 3000, 6000] partitions and divided the recount2 simulated compendium into [1, 2, 5, 10, 

20, 50, 100, 250, 500] partitions.  Each partition of data represented a group of samples from 

the same experiment or lab. We randomly added linear noise to each partition by generating a 

vector of length equal to the number of genes (5,549 P. aeruginosa genes and 58,037 human 

genes) where each value in the vector was drawn from a normal distribution with a mean of 0 

and a variance of 0.2. With the 0-1 scaling, a value of 0.2 produces a relatively large difference 

in gene expression space (Figure S1). Though linear noise is an over-simplification of the types 

of noise that affect gene expression data, it allowed us to design an approach to optimally 

remove noise.  

 

Experiment-based simulation 

 

For the experiment-level simulation, we developed an approach that could simulate realistic 

experimental structure.  There was no consistent set of annotated experimental designs, so we 

developed a simulation method that did not depend on a priori knowledge of experimental 



design. For each synthetic experiment, we randomly sampled a “template experiment” from the 

set of P. aeruginosa or recount2 experiments. We then simulated new data that matched the 

template experiment by selecting a random location from the low dimensional representation of 

the simulated compendia (i.e. selecting a location according to the low dimensional distribution) 

and calculating the vector that connected this random location and the encoded template 

experiment. We then linearly shifted the template experiment in the low-dimensional latent 

space by adding this vector to each sample in the experiment. This process preserved the 

relationship between samples within the experiment but shifted the samples to a new location in 

the latent space. Repeating this process for each experiment allowed us to generate new 

simulated compendia comprised of realistic experimental designs.   

 

We divided the P. aeruginosa simulated compendium into [1, 2, 3, 5, 10, 20, 30, 50, 70, 100, 

200, 300, 400, 500, 600] partitions and divided the recount2 simulated compendium into [1, 2, 5, 

10, 20, 30, 50] partitions, where experiments are divided equally amongst the partitions. For 

each partition we added simulated noise as described in the previous section. Experiments 

within the same partition had the same noise added.  Each partition represented a group of 

experiments generated from the same lab or with the same experimental design.  

 

Experiment-effect analysis 

 

For this analysis we wanted to examine the effect of individual experiments in our ability to 

detect underlying gene expression structure. First, we used the experiment-based simulation 

approached to simulate P. aeruginosa compendia with [2, 3, 5, 10, 20, 30, 50, 70, 100, 200, 

300, 400, 500, 600] experiments. Next, we divided the simulated compendium into the same 

number of partitions so that there was one experiment per partition. For each partition we added 

simulated noise as described in the previous section. Finally we used SVCCA to compare the 

noisy compendia with X number experiments with the unpartitioned compendia with X number 

of experiments. We also used SVCCA to compare the noise-corrected compendia with X 

experiments with the unpartitioned compendia with X experiments. 

 

Removing technical variability from noisy compendia 

 

Our model of undesired variability was a linear signature applied separately to each partition of 

the data, which we considered akin to experiments or groups of experiments in a compendium 



of gene expression data. We used the removeBatchEffect function in the R library, limma 

(RRID:SCR_010943, version 3.44.0), to correct for the technical variation that was artificially 

added to the simulated compendia.25  Limma removes the technical noise by first fitting a linear 

model to describe the relationship between the input gene expression data and the experiment 

labels.  The input expression data contains both a biological signal and technical noise 

component.  By fitting a linear model, limma will extract the noise contribution and then subtract 

this from the total input expression data. This method presents a best-case scenario for 

removing the undesired variability in the simulated compendia because the model matches the 

noise pattern we used in the simulation.   

 

Measuring the similarity of matched compendia 

 

We used Singular Vector Canonical Correlation Analysis (SVCCA)26 to estimate similarities 

between different compendia. SVCCA is a method designed to compare two data 

representations26. Given two multivariate datasets, X1 and X2, the goal of SVCCA is to find the 

basis vectors, w and s, to maximize the correlation between wTX1 and sTX2. In other words, 

SVCCA attempts to find the space, defined by a set of basis vectors, such that the projection of 

the data onto that space is most correlated.  Two datasets are considered similar if their linearly 

invariant correlation is high (i.e., if X1 is a shift or rotation of X2 then X1 and X2 are considered 

similar).  

 

We compared the statistical structure of the gene expression, projected onto the first 10 

principle components, in the baseline simulated compendia (those with only one experiment or 

partition, X1) versus those with multiple experiments or partitions (X2). Our SVCCA analysis was 

designed to measure the extent to which the gene expression structure of the compendia 

without noise was similar to the gene expression structure of the compendia with multiple 

sources of technical variance added as well as those where correction has been applied. Here 

we use 10 principle components for computational simplicity. Selecting a different value would 

affect the crossover point but not the general trends that we describe 

 

A case study of differential expression in a template experiment 

 

We compared the E-GEOD-51409 experiment38 with two different simulated representations to 

provide a case study for experiment-based simulation. E-GEOD-51409 included P. aeruginosa 



in two different growth conditions. For one simulation, we generated random samples and 

randomly assigned them to conditions, which we termed the sample-simulated experiment. For 

the second we used the latent space transformation process described above, which we termed 

the experiment-simulated experiment. We used the eBayes module in the limma library to 

calculate differential gene expression values for each gene between the two different growth 

conditions in the real and simulated data. We built heatmaps for the 14 most differentially 

expressed genes, where differentially expressed genes where those with FDR adjusted cutoff 

(using Benjamini-Hochberg correction) < 0.05 and log2 fold-change >1, which are thresholds 

frequently used in practice. We selected 14 genes because there were 505, 14 and 0 

differentially expressed genes found in the original experiment, experiment-simulated 

experiment and sample-simulated experiment, respectively. Since there were 0 differentially 

expressed genes found in the sample-simulated experiment, we displayed the top 14 genes 

sorted by adjusted p-value to provide a visual summary of the simulation process. 

 

Comparing sample-level and experiment-level simulated datasets 

 

We simulated 100 experiments using the template E-GEOD-51409 experiment38. We sought to 

compare the sample-level and experiment-level simulation processes. We set a threshold for 

differentially expressed genes at a Bonferroni-corrected p-value cutoff of 0.05/5549. We used 

the enrichKEGG module in the clusterProfiler library (clusterProfiler, RRID:SCR_016884) to 

conduct an over-representation analysis39. We used the Fisher’s exact test to calculate a p-

value for over-representation of pathways in the set of differentially expressed genes. We 

considered pathways to be over-represented if the q-value was less than 0.02. 

 

Implementation and Software Availability 

 

All scripts to reproduce this analysis are available the GitHub repository 

(https://github.com/greenelab/simulate-expression-compendia) under an open source license. 

The repository contains 98% python jupyter notebooks, 2% python and 0.1% R scripts.  The 

repository’s structure is separated by input dataset. Pseudomonas/ and Human/ directories 

each contain the input data in the data/input/ directory. Scripts for the sample level simulation 

can be found in Pseudomonas /Pseudomonas_sample_lvl_sim.ipynb for the P. aeruginosa 

compendium and Human/Human_sample_lvl_sim.ipynb for the recount2 compendium. Scripts 

for the experiment level simulation can be found in 

https://github.com/greenelab/simulate-expression-compendia


Pseudomonas/Pseudomonas_experiment_lvl_sim.ipynb and 

Human/Human_experiment_lvl_sim.ipynb respectively. The virtual environment was managed 

using conda (version 4.6.12), and the required libraries and packages are defined in the 

environment.yml file. Additionally, scripts to simulate gene expression compendia using the 

sample-level and experiment-level approaches are available as a separate module, called 

ponyo, and can be installed from PyPi (https://github.com/greenelab/ponyo). We describe in the 

Readme file how users can analyze different compendia or use different noise patterns. All 

simulations were run on a CPU. 

 

Availability of supporting source code and requirements 

 Project name: Simulate Expression Compendia 

 Project home page: https://github.com/greenelab/simulate-expression-compendia 

 Operating systems: Mac OS, Linux 

 Programming language: Python, R 

 Other requirements: Git LFS 

 License: BSD v3 

Availability of supporting data 

An archival copy of the GitHub repository (including scripts and result files) is available in the 

GigaScience GigaDB repository[40]. 

 

https://github.com/greenelab/ponyo


Figure Legends: 

 

Figure 1. Simulating gene expression data using VAE. A) Architecture of the VAE, where the 

input data gets compressed into intermediate layer of 2500 features and then into a hidden layer 

of 30 latent features.  Each latent feature follows a normal distribution with mean µ and variance 

σ. The input dimensions of the P. aeruginosa dataset are shown here as an example (989 

samples, 5549 genes). The same architecture is used to train the recount2 dataset except the 

input has 896 samples and 58,037 genes. B) Validation loss plotted per epoch during training 

using the P. aeruginosa compendium. C) Workflow to simulate gene expression samples from a 

compendium model, where new samples are generated by sampling from the latent space 

distribution. D) UMAP projection of P. aeruginosa gene expression data from the real dataset 

(pink) and the simulated compendium using the workflow in C (grey).   

 

Figure 2. Results of simulating compendia. A) workflow describing how experiment-specific 

noise was added to the simulated compendia and how the noisy simulated compendia were 

evaluated for similarity compared to the unpartitioned simulated compendia. B,D) SVCCA curve 

measuring the similarity between a compendia without noise versus a compendium with noise 

(light blue), compendium with noise corrected for (dark blue). As a negative control, we used the 

similarity between the gene expression pattern of the simulated data with a single partition 

compared with the simulated data that has been permuted to destroy any meaningful structure 

in the data. C,E) Subsampled gene expression data (500 samples per compendia) projected 

onto the first two principal components showing the overlap in structure between the compendia 

without noise (gray) versus the compendia with noise (light blue), compendia with noise 

corrected for (dark blue).  

 

Figure 3. Simulating gene expression compendia by experiment. A) Workflow to simulate gene 

expression per experiment. B) UMAP projection of P. aeruginosa gene expression data 

highlighting a single experiment, E-GEOD-51409, (red) in the original dataset (left) and the 

simulated dataset (right), which was subsampled to 1000 samples. C) Differential expression 

analysis of experiment E-GEOD-51409 (left), random simulated samples (middle), simulated 

samples using the same experiment as a template (right). D) Number of differentially expressed 

genes identified across 100 simulated experiments generated using experiment-level simulation 

and sample-level simulation. E) Number of enriched pathways identified across 100 simulated 

experiments generated using experiment-level simulation and sample-level simulation.  



Figure 4. Results of simulating compendia comprised of gene expression experiments. A) 

workflow describing how experiment-specific noise was added to the simulated compendia and 

how the noisy simulated compendia were evaluated for similarity compared to the unpartitioned 

simulated compendia. B,D) SVCCA curve measuring the similarity between a compendia 

without noise versus a compendium with noise (light blue), compendium with noise corrected for 

(dark blue). As a negative control, we used the similarity between the gene expression pattern 

of the simulated data with a single partition compared with the simulated data permuted to 

destroy any meaningful structure in the data. C,E) Subsampled gene expression data (500 

samples per compendia) projected onto the first two principal components showing the overlap 

in structure between the compendia without noise (gray) versus the compendia with noise (light 

blue), compendia with noise corrected for (dark blue).   

 

Figure S1. Simulating recount2 gene expression data using VAE. A) Validation loss plotted per 

epoch during training. B) UMAP projection of gene expression data from the real dataset (pink) 

and the simulated compendium using the workflow in Figure 1C (grey).  

 

Figure S2. Results of varying the magnitude of the experiment-specific noise added to each 

partition. SVCCA curve measuring the similarity between a compendia without noise versus a 

compendium with noise (light blue), compendium with noise corrected for (dark blue).  As a 

negative control, we used the similarity between the gene expression pattern of the simulated 

data with a single partition compared with the simulated data permuted to destroy any 

meaningful structure in the data.  Using noise model with A) 0.2 variance, B) 0.05 variance with 

a zoomed in view on the left, C) 0.025 variance with a zoomed in view on the left. 

 

Figure S3. Results of simulating P. aeruginosa compendia using A) sample-level simulation or 

B) experiment-level simulation with COMBAT noise correction. 

 

Figure S4. Clustering of 100 random gene expression profiles in original versus simulated 

experiments using A) E-GEOD-21704 and B) E-GEOD-10030 as templated. 

 

Figure S5. Results of simulating compendia with fixed number of experiments. A) workflow 

describing how each compendia is designed to have a fixed number of experiments, 

experiment-specific noise was added to the simulated compendia and how the noisy simulated 



compendia were evaluated for similarity compared to the unpartitioned simulated compendia. B) 

SVCCA curve measuring the similarity between a compendia without noise versus a 

compendium with noise (light blue), compendium with noise corrected for (dark blue). As a 

negative control, we used the similarity between the gene expression pattern of the simulated 

data with a single partition compared with the simulated data that has been permuted to destroy 

any meaningful structure in the data. C) Subsampled gene expression data (fewer than 500 

samples per compendia) projected onto the first two principal components showing the overlap 

in structure between the compendia without noise (gray) versus the compendia with noise (light 

blue), compendia with noise corrected for (dark blue).  
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Dear Dr. Edmunds, 
 
We want to thank the reviewers for taking the time to read and give feedback on this 
manuscript. All the comments and suggestions were very helpful. We think they greatly improve 
the quality of the manuscript. We tracked revisions in the manuscript document that we 
uploaded. We addressed every comment in the point-by-point responses that follow. Before we 
get to that, there were two major changes suggested by the reviewers that led us to perform 
new analyses. The first was suggested by both reviewers. They observed that while the main 
claim of the paper was that increasing the number of partitions (noise) allows us to recover our 
original signal without correction. In this setting the size of partitions is not constant (partitions 
shrink as the number goes up). In order to test the effect of fixed size partitions (individual 
experiments), we performed a new analysis where we generate experiments without holding the 
total compendium size constant. 
 
We found that ​with few experiments in a compendium, the main signal was the difference 
between experiments. adding noise to each experiment drives signal detection down. 
Additionally, applying noise correction removed the main experiment-specific signal, as it was 
designed to do, but in this case the technical noise is perfectly confounded with 
experiment-to-experiment differences, so applying noise correction will consistently remove 
more of the signal of interest. The results of this analysis exemplifies how existing experiments 
can be combined and used without need for correction - consistent with our previous findings. 
We found this analysis interesting, but we expect that our findings are most relevant in the case 
of fixed-size compendia (i.e., what one would download from public repositories). We have 
added this result to the paper and supplement. 
 

 
 
The second major change was brought up by Reviewer 2. I​n the original manuscript, we 
presented differential expression (DE) analysis using the original experiment, VAE compression 
and latent space transformed experiment (experiment-level), and VAE with random sampled 
experiment (sample-level). We now realize that combining two processes into one (adding both 
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the VAE and latent space transformation) was particularly confusing. We realized that adding an 
additional panel to Figure 3 would help to make the experiment much clearer. We revised 
Figure 3 and the associated text to present the DE analysis using the original experiment, VAE 
compressed only experiment, VAE compressed and latent space translated experiment 
(experiment-level), VAE compressed and random sampled experiment (sample-level). We then 
examined the retention of the original differential expression signature by comparing the set of 
differentially expressed genes (DEGs) found in the original experiments versus the other 
simulated experiments. Applying only the VAE compression to the original experiment, 
generated an experiment that had the same sample grouping as the original. However, only a 
subset of the differentially expressed genes found in the VAE compressed were also found in 
the original experiment. We found that the correlation between genes, based on log fold change 
values, is high (R​2​ = 0.822) between the original and the VAE compressed only experiment as 
expected. The VAE compression step slightly alters the set of differentially expressed genes 
since the data is being compressed into a low dimensional space. Next, the original samples in 
an experiment and the VAE compressed and latent space translated simulated experiment have 
consistent clustering of samples (experiment-level simulated experiment). However the genes 
that were differentially expressed were different between the two experiments. The correlation 
between genes in the original and the experiment-level experiment are lower, R​2​ = 0.230, since 
they ideally represent unique experiments with an identical design. The residual similarity is 
likely due to commonly differentially expressed genes that have been observed previously 
(​Powers et. al. 2018​, ​Crow et. al. 2019​).  Finally, the original experiment structure is not well 
preserved using the VAE compressed and random sampling approach (sample-level simulated 
experiment). The correlation between genes in the original and sample-level experiment is 
non-existent, R​2​ = -0.055, since this simulation does not account for any experiment structure. 
 

 
Sincerely, 
Casey 

https://academic.oup.com/bioinformatics/article/34/13/i555/5045793
https://www.pnas.org/content/116/13/6491


POINT BY POINT RESPONSE 
 
Reviewer #1 

1. The figures S1 and S2 were switched. 
a. Thank you for noticing this. We have corrected the labels of the figure captions 

on page 22 of the revised manuscript so that the figure caption matches the 
appropriate figure. 

2. The authors should also cite PEER (PMID: 22343431), which is currently one of the 
most widely used package to correct for experimental noises. 

a. Thank you for the suggestion. We have added this new citation to the 
introduction. The sentence with this citation states: “​Numerous methods have 
been designed to correct for various types of effects​.” (page 3) 

3. It would be interesting if the authors could explore the influence of experiment numbers 
in the noise effects. 

a. We showed that with increasing the number of partitions (noise) we can recover 
our original signal without correction. However, as both reviewers point out, the 
effect of the number of partitions is confounded by the number of experiments or 
samples per partition since more partitions equated to each partition having fewer 
samples or experiments. We introduced a new analysis where we held the 
partition size fixed. The approach for this new analysis is described in the new 
“Experiment-effect analysis” section of the methods (page 16): “​First, we used 
the experiment-based simulation approach to simulate P. aeruginosa compendia 
with [2, 3, 5, 10, 20, 30, 50, 70, 100, 200, 300, 400, 500, 600] experiments. Next, 
we divided the simulated compendium into the same number of partitions so that 
there was one experiment per partition. For each partition we added simulated 
noise as described in the previous section. Finally we used SVCCA to compare 
the noisy compendia with X number experiments with the unpartitioned 
compendia with X number of experiments. We also used SVCCA to compare the 
noise-corrected compendia with X experiments with the unpartitioned compendia 
with X experiments​.” We added the following text to “​Simulating gene expression 
compendia with synthetic experiments​” section of the results (page 10): “​With few 
experiments in a compendia, the main signal is the difference between 
experiments so adding noise to each experiment drives signal detection down. 
Additionally, applying noise correction removed the main experiment-specific 
signal, as it was designed to do. With more experiments in a compendia, we gain 
a more global gene expression representation, where the main signal is no 
longer focused on the difference between experiments. Thus, adding noise to 
each experiment does not affect our signal detection and our similarity remains 
constant. However, applying noise correction will consistently remove more of 
our signal of interest. The results of this analysis exemplifies how existing 
experiments can be combined and used without need for correction.​” A new 
supplementary figure, S5, has been added with the results of the additional 
analysis 



b.  
4. Much of the description regarding the analyses and discussions were included in 

Methods part, the authors might consider to move some of the text to Results and 
Discussion to facilitate the understanding of readers. 

a. This is a very good point. We have moved some of the statements that were 
originally in the methods section into the discussion and results section in the 
revised manuscript. Some of the sections that were moved include: moving the 
explanation for the model limitation to the discussion section, moving details 
about the number of partitions to the results section, moving the intuition behind 
the simulations to the results. 

 
Reviewer #2 
Major revisions: 

1. In gene expression analysis, the objective is commonly to seek for differentially 
expressed genes and gene co-expression networks. The experiments should be 
designed to investigate these relevant signals rather than only compare the structure 
with original data. In single experiment-based simulation, the paper had some work on 
differentially expressed genes and enriched pathways in Figure 3C and Table 2, but the 
results look a little bit weird. There were 505 and 14 differentially expressed genes found 
in the original experiment and experiment-simulated data, where many signals were 
removed in VAE-based simulation.  Also, in Figure 3C, I found the top differentially 
expressed genes for original data and experiment-level simulation data are quite 
different. The author concluded "Repeating this process for each experiment allowed us 
to generate new simulated compendia comprised of realistic experimental designs.", but 
I don't think it is correct if their differentially expressed genes are not from the same pool. 
For simulating multiple synthetic experiments, I do suggest to add another set of 
experiments to evaluate the similarity between corrected and uncorrected data by 



calculating the proportion of differentially expressed genes or strong gene co-expression 
connections from original data can be captured. E.g. collecting several experiments from 
the same disease with both patients and controls. I think it is a more practical scenario in 
biomedical research. 

a. I​n the original manuscript, we presented DE analysis using the original 
experiment, VAE compression and latent space transformed experiment 
(experiment-level), and VAE with random sampled experiment (sample-level). It 
seems there was a misunderstanding and this reviewer thought that we 
presented the DE results using the original experiment, VAE compression only 
experiment, VAE random sampled experiment (sample-level simulation). We 
apologize for the confusion and realized that adding an additional panel to Figure 
3 would help to make the logic more clear. We revised Figure 3 and the 
associated text to present the DE analysis using the original experiment, VAE 
compressed only experiment, VAE compressed and latent space translated 
experiment (experiment-level), VAE compressed and random sampled 
experiment (sample-level). We then examined the retention of the original 
differential expression signature by comparing the set of differentially expressed 
genes (DEGs) found in the original experiments versus the other simulated 
experiments. Applying only the VAE compression to the original experiment, 
generated an experiment that had the same sample grouping as the original. 
However, only a subset of the differentially expressed genes found in the VAE 
compressed were also found in the original experiment. We found that the 
correlation between genes, based on log fold change values, is high (R​2​ = 0.822) 
between the original and the VAE compressed only experiment as expected. The 
VAE compression step adds some noise to the expression signal in the original 
experiment, as expected, since the data is being compressed into a low 
dimensional space. Next, the original samples in an experiment and the VAE 
compressed and latent space translated simulated experiment have consistent 
clustering of samples (experiment-level simulated experiment). However the 
genes that were differentially expressed were different between the two 
experiments. The correlation between genes in the original and the 
experiment-level experiment are lower, R​2​ = 0.230, since they represent unique 
experiments. The residual similarity is likely due to commonly differentially 
expressed genes that have been observed previously , .  Finally, the original 1 2

experiment structure is not well preserved using the VAE compressed and 
random sampling approach (sample-level simulated experiment). The correlation 
between genes in the original and sample-level experiment is non-existent, R​2​ = 
-0.055, since we did not account for experiment structure in the sample-level 
simulation. 

1 ​"​Predictability of human differential gene expression | PNAS." 7 Mar. 2019, 
https://www.pnas.org/content/116/13/6491​. Accessed 28 Aug. 2020​. 
2 "GSEA-InContext: identifying novel and common patterns in ...." 27 Jun. 2018, 
https://academic.oup.com/bioinformatics/article/34/13/i555/5045793​. Accessed 28 Aug. 2020. 

https://www.pnas.org/content/116/13/6491
https://academic.oup.com/bioinformatics/article/34/13/i555/5045793


b.  
2. With a large number of partitions, I am not surprised the correlation is low between the 

original data and corrected simulated data. Besides the number of partitions, the sample 
size per partition is another factor influence batch effect correction. E.g.  Based on the 
information from Table 1, if we assume the no. samples per partition is 10 and one 
partition corresponding to one experiment, before the partition ca. 350 (in Figure 2D), the 
corrected data is better than the uncorrected one. We have the experiments by fixing 
sample size and changing the partition number. And I wonder if the no. samples per 
partition is fixed (e.g 10), what happens when the number of partition increases? Also, 
the conclusion should be more precise with the information for both number of partition 
and sample size.  

a. This is a very good suggestion. Both reviewers have asked this question. We 
designed an experiment, also described in response to the first reviewer 1.3, to 
address this. As noted above, “We showed that with increasing the number of 
partitions (noise) we can recover our original signal without correction. However, 
as both reviewers point out, the effect of the number of partitions is confounded 
by the number of experiments or samples per partition since more partitions 
equated to each partition having a smaller effect size (i.e. each partition having 
fewer samples or experiments). We introduced a new analysis where we held the 
partition size fixed. First, we used the experiment-based simulation approach 
(defined in Figure 3A) to simulate ​P. aeruginosa ​compendia with varying number 



of experiments (compendia with [2, 3, 5, 10, 20, 30, 50, 70, 100, 200, 300, 400, 
500, 600] experiments). Next, we divided the​ ​simulated compendium into the 
same number of partitions so that there was one experiment per partition. For 
each partition we added simulated noise as described in the previous section. 
Finally we used SVCCA to compare the noisy compendia with X number 
experiments with the unpartitioned compendia with X number of experiments. We 
also used SVCCA to compare the noise-corrected compendia with X experiments 
with the unpartitioned compendia with X experiments. With few experiments in a 
compendia, the main signal is the difference between experiments so adding 
noise to each experiment drives signal detection down. Additionally, applying 
noise correction removed the main experiment-specific signal, as it was designed 
to do. With more experiments in a compendia, we gain a more global gene 
expression representation, where the main signal is no longer focused on the 
difference between experiments. Thus, adding noise to each experiment does 
not affect our signal detection and our similarity remains constant. However, 
applying noise correction will consistently remove more of our signal of interest. 
The results of this analysis exemplifies how existing experiments can be 
combined and used without need for correction.”  

b.  
3. Most parts of this paper are well-written, but the structure of several long sentences 

should be further revised. 
a. This is a very good suggestion. We have rewritten some of the previously long 

sentences to be shorter to hopefully make reading the manuscript smoother. 
Minor revisions: 

4. For the VAE model, how to determine the number of hidden layers and hidden nodes? 
Why you choose 30 latent space features finally? Do the users need GPU to run the 
simulation codes? 



a. This is a good suggestion. We have added text to explain the process by which 
we chose the neural network architecture. The added text reads: “​A similar 
assessment was performed to determine the neural network architecture. We 
manually inspected the validation loss using multiple different 2-layer designs 
(300-10, 2500-10, 2500-20, 2500-30, 2500-100, 2500-300) and found 2,500 layer 
to 30 hidden layer VAE to be most optimal.​”(page 14 of the revised manuscript). 
Overall, we used the validation loss of the trained VAE as our metric to determine 
which set of parameters, including neural network architecture, to select.  

b. A GPU was not required to run these simulations. We have added the following 
text to the ​implementation and software availability​ section: “​All simulations were 
run on a CPU.”​(page 20) 

5. Page 5, "We evaluated the training and validation set loss at each epoch, which 
stabilized after roughly 100 epochs (Figure 1B)". Although the authors mentioned the 
dataset they used in Figure legend, but not in the text. 

a. We have added the size of the datasets used for training to the text on page 5 of 
the revised manuscript. The added text states: “​We trained VAEs for each 
dataset: recount2 (896 samples with 58,037 genes) and P. aeruginosa(989 
samples with 5,549 genes)​. ”  

6. Page 7, "We used UMAP to visualize the structure of the original and data…", data 
refers to simulated data? 

a. You’re correct in your interpretation of the text. We have added “simulated” to this 
sentence to clarify which datasets are being compared (see page 5 of the revised 
manuscript).  

7. The authors should involve some key numbers in the result section, such as the number 
of simulated samples, the list of number of partitions etc. 

a. We have added the number of simulated samples and partitions to both the 
“​Simulating gene expression compendia with synthetic samples​” and “​Simulating 
gene expression compendia with synthetic experiments” ​sections​.  

8. In Methods section, delete "The P. aeruginosa dataset was previously processed by Tan 
et. al.2 ", this have been mentioned two times before. 

a. The additional citation has been deleted in the revised manuscript (page 12) 
9. Page 13, "58,037 gene". This is not for "gene", using "transcript" is more precise 

a. Thank you for checking this detail of the manuscript. We have confirmed that 
these numbers refer to genes instead of transcripts. Recount’s website 
(​https://jhubiostatistics.shinyapps.io/recount/​) states in the documentation (which 
we cannot directly link because of the way the shiny app is constructed): “​The 
RangedSummarizedExperiment object for the counts summarized at the gene 
level using the Gencode v25 (GRCh38.p7, CHR) annotation as provided by 
Gencode​.” When we downloaded the ​Comprehensive gene annotation Gencode 
v25 GTF​ file from this link: 
https://www.gencodegenes.org/human/release_25.html​, we get 58,037 genes, 
which includes pseudogenes, lncRNAs, snRNA, and other types in addition to 
protein coding genes. 

https://jhubiostatistics.shinyapps.io/recount/
https://www.gencodegenes.org/human/release_25.html


10. Page14.  I suggest to divide the "Constructing a generative model of gene expression 
compendia" into three sections, 1. The strategy to construct VAE and define its structure 
and hyperparameters, 2. Sample-based simulation; 3. Experiment-based simulation 

a. Thank you for the helpful suggestion. We have divided the “​Constructing a 
generative model of gene expression compendia​" into the three suggested 
sections (page 14-16 of the revised manuscript) 

11. Page 14, move "Though linear noise is an over-simplification of the types…" to 
discussion. 

a. This sentence has been moved to the discussion section on page 11 of the 
revised manuscript. 

12. Page 9. "We exampled how the original samples in an experiment (E-GEOD- 51409)…. 
However the genes that were differently expressed were different between the two 
datasets." This sentence should be revised. 

a. This sentence has been updated to reflect the additional experiment described in 
1.3 and 2.2. 
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Abstract: 

 

Motivation:  In the last two decades, scientists working in different labs have assayed gene 

expression from millions of samples. These experiments can be combined into compendia and 

analyzed collectively to extract novel biological patterns. Technical variability, sometimes 

referred to as batch effects, may result from combining samples collected and processed at 

different times and in different settings. Such variability may distort our ability to interpret and 

extract true underlying biological patterns. As more multi-experiment, integrative analysis 

methods are developed and available data collections are increased in size, it is crucial to 

determine how technical variability affect our ability to detect desired patterns when many 

experiments are combined 

 

Objective: We sought to determine the extent to which an underlying signal was masked by 

technical variability by simulating compendia comprised of data aggregated across multiple 

experiments. 

 

Method:  We developed a generative multi-layer neural network to simulate compendia of gene 

expression experiments from large-scale microbial and human datasets. We compared 

simulated compendia before and after introducing varying numbers of sources of undesired 

variability. 

 

Results:  We found that the signal from a baseline compendium was obscured when the number 

of added sources of variability was small. Perhaps as expected, applying statistical correction 

methods rescued the underlying signal in these cases. However, Aas the number of sources of 

variability increased, surprisingly, we observed that detecting the original signal became 

increasingly easier even without correction. In fact, applying statistical correction methods 

reduced our power to detect the underlying signal. 

 

Conclusion:  When combining a modest number of experiments, it is best to correct for 

experiment-specific noise. However, when many experiments are combined, statistical 

correction reduces one’s our ability to extract underlying patterns. 

 

  



Introduction: 

 

OverFor the last two decades, unprecedented amounts of transcriptome-wide gene expression 

profiling data have been generated. , mMost of these datasetswhich are shared in public 

platforms for the research community.1 Researchers are now combining samples across 

different experiments to form compendia, and analyzing these compendia is revealing new 

biology.2–6 It is well-understood that technical sources of variability pervade large-scale data 

analysis such as transcriptome-wide expression profiling studies.7–10 Numerous methods have 

been designed to correct for various types of effects.7,11–13 Despite the prevalence of technical 

sources of variability, researchers have successfully extracted biological patterns from multi-

experiment compendia without applying correction methods.2–5,14 We sought tTo determine the 

basis of these seemingly contradictory results, we by examineding the extent to which 

underlying statistical structure can be extracted from compendium-style datasets in the 

presence of sources of undesired variability. 

 

A number of methods have been developed to simulate transcriptome-wide expression 

experiments.15–18  However, simulating a compendium of many experiments withthese existing 

approaches would require defining a statistical model that describes the  process by which 

researchers design and carry out experiments, which is often likely to be very challenging to 

obtain. Instead, we developed an approach to simulate compendia by sampling from the low-

dimensional representation produced by multi-layer generative neural networks trained on gene 

expression data from an existing compendium. This allowed us to simulate gene expression 

experiments that mimic real experimental configurations. We combined these experiments to 

create compendia.  

 

Using this simulation approach, we studied how adding varying amounts of experiment-specific 

noise affects the statistical structure of gene expression compendia and our ability to detect 

underlying patterns in the gene expression compendia. This topic is becoming pressing as more 

large-scale expression compendia are becominge available. We found that prior reports of 

pervasive technical noise and analyses that succeed without correcting for it are, in fact, 

consistent. In settings with relatively few experiment-specific sources of undesired variation, the 

added noise substantially alters the structure of the data. In these settings, statistical correction 

produces a data representation that better captures the original variability in the data. On the 



other hand, when the number of experiment-specific sources of undesired variability isbecomes 

large, attempting to correct for these sources does more harm than good. 

 

Results: 

 

We characterized publicly available data compendia using refine.bio19, a meta-repository that 

integrates data from multiple different repositories. We found that, on average, an average 

experiments contained hundreds to thousands of samples in most widely studied organisms 

(Table 1). These samples were derived from hundreds to thousands of experiments, and the 

most common experimental designs had relatively few samples (medians from 5-12). We 

compared compendia from refine.bio these to two readily available compendia, recount2 and 

one for P. aeruginosa, that have been used for compendium-wide analyses.2,3,6 The compendia 

that have been successfully used in prior work2,3,6 have similar median numbers of samples per 

experiment (recount2 = 4, P. aeruginosa = 6) to the current publicly available data. 

 

Table 1:   Public data usually have only a modest number of samples per experiment, though in 

aggregate many samples are available in aggregate. Statistics for the 10 largest transcriptomic 

compendia found in refine.bio, which is a meta-repository containing publicly available expression data 

from the Sequence Read Archive (SRA)20, Gene Expression Omnibus (GEO)21 and ArrayExpress22.    

 No. experiments Median no. samples Total no. samples 

Homo sSapiens 15,440 12 571,862 

Mus mMusculus 13,224 10 296,829 

Arabidopsis Tthaliana 1,627 9 24,855 

Rattus nNorvegicus 1,368 12 38,530 

Drosophila mMelanogaster 853 9 17,836 

Saccharomyces Ccerevisiae 627 12 12,972 

Danio Rrerio 546 9.5 28,518 

Caenorhabditis Eelegans 375 10 7,953 

Sus Sscrofa 280 12 6,063 

Zea Mmays 274 5 3,458 

 

Constructing a generative model for gene expression samples 

 

We developed an approach to simulate new gene expression compendia using generative 

multi-layer neural networks. Specifically, we trained a variational autoencoder (VAE)23, which 
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was comprised of an encoder and decoder neural network. The encoder neural network 

compressed the input data through two layers into a low-dimensional representation and the 

decoder neural network expanded the dimensionality back to the original input size. The VAE 

learned a low-dimensional representation that can reconstruct the original input data.  

Simultaneously, the VAE optimized the lowest dimensional representation to follow a normal 

distribution (Figure 1A).  This normal distribution constraint, which distinguishes VAE’s from 

other types of autoencoders, and allowed us to generate variations of the input data by 

sampling from a continuous latent space.23  

 

We trained VAEs for each compendiumdataset: (recount2 (896 samples with 58,037 genes) and 

P. aeruginosa)(989 samples with 5,549 genes). We evaluated the training and validation set 

losses at each epoch, which stabilized after roughly 100 epochs (Figure 1B). We observed a 

similar stabilization after 40 epochs for recount2 (Figure S1A). We simulated new genome-wide 

gene expression data by sampling from the latent space of the VAE using a normal distribution 

(Figure 1C). We used UMAP24 to visualize the structure of the original and simulated data and 

found that the simulated data generally fell near original data for both compendia (Figure 1D; 

Figure S1B). 

 

Simulating gene expression compendia with synthetic samples 

 

We designed a simulation study to assess the extent to which artifactual noise associated with 

individual partitions of a large compendium affects the structure of the overall compendium. Our 

simulation is akin to asking: if different labs performing transcriptome-wide experiments 

randomly sampled from the available set of possible conditions, to what extent would 

experiment-specific biases dominate the signal of the data. First, we We simulated new 

compendia. Then we , randomly divided the samples within these compendia into partitions, and 

then added noise to each partition. Finally, we, and compared the simulated compendia with 

added noise to the unpartitioned one (Figure 2A). Each partition representeds groups of 

samples with shared experiment-specific noise. We evaluated the similarity  before and after 

applying an algorithm designed to correct for technical noise in each partition – given that the 

added noise was linear, noise added we used limma25 to correct. Singular Vector Canonical 

Correlation Analysis (SVCCA)26 was used to assess similarity. The SVCCA analysis measured 

the correlation between the distribution of gene expression in the compendia without noise 

compared to the distribution in the compendia with multiple sources of technical variance. 
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We performed a study with this design using the VAE trained from the P. aeruginosa 

compendium. We simulated a P. aeruginosa compendium with 6,000 samples for [1, 2, 5, 10, 

20, 50, 100, 500, 1000, 2000, 3000, 6000] 2 to 6,000 partitions. We found that adding technical 

noise variance to partitions always reduced the similarity between the simulated data without 

partitions and the partitioned simulated data. However, the nature of the change in similarity 

differed substantially between the partitioned sets compendia before and after the correction 

step (Figure 2B). With the correction step (dark blue line) similarity dropped throughout the 

range of the study, eventually reaching the same level as the permuted data (dashed grey line). 

Without the correction step (light blue line), similarity dropped immediately to near the random 

level and then recovered throughout the rest of the tested range. We Vvisualized theing 

simulated data on the top 2 principle components from the original data (Figure 2C, grey points). 

with tThe corrected (Figure 2C, dark blue) and uncorrected (Figure 2C, light blue) data at 

various numbers of partitions revealed that the correction step removes both wanted and 

unwanted variability, eventually removing all variability in the data. Without correction, the data 

were initially dramatically transformed.; hHowever, as the number of partitions grows very large 

the effect on the structure of the data was diminished.  

 

To determine whether or not this correction removing signal was a more general property of 

such compendia, we repeated the same simulation study using a VAE trained on a recount2 

compendium. recount2 is a compendium comprised of human RNA-seq samples, so it is 

generated using a different technology and consists of assays of a very different organism. 

WeResults with recount2 simulated a compendium with 500 samples for [1, 2, 5, 10, 20, 50, 

100, 250, 500] partitions. The results with recount2 mirrored our findings with the P. aeruginosa 

compendium. The correction step initially retained more similarity, but performance crossed 

over and by 500 partitions the end of the study the uncorrected data were more similar to the 

unpartitioned simulated compendium (Figure 2D). Visualizing the top principle components, 

again, revealed that correction better retainedrestored the structure of the original data with few 

partitions, but with many partitions the structure was better retained without correction (Figure 

2E).  Additionally, the same trends arewere observed when we varied the magnitude of the 

noise added (Figure S2) or useding a different noise correction method, such as COMBAT12 

(Figure S3). In general, there exists some minimum number of experiment-specific sources of 



noise that determines the effectiveness of applying noise correction to these multi-experiment 

compendia.    

 

A generative model for gene expression experiments 

 

We randomly selected samples from the range of all possible samples in the compendium. For 

the next simulation, we developed an approach that could simulate realistic experimental 

structure. This next simulation added another level of complexity to the model, by simulating 

experiments as opposed to samples, in order toto make the simulated compendia more 

representative of true expression data. This simulation generated synthetic experiments for 

which the gene expression patterns were consistent with those from the types of experiments 

that are used within the field. The technique that we developed uses the same underlying 

approach of sampling from a VAE. However, in this case  

we randomly selected a template experiment (E-GEOD-51409, which 
compared P. aeruginosa at 22˚C and 37˚C) and a vector that would move that template 

experiment to a new location in the gene expression space (Figure 3A).  The simulation 

preserved the relationship between samples within the template experiment while also shifting 

the activity of the samples in the latent space (Figure 3B). Intuitively, this process maintained 

the relationship between samples but changed the underlying perturbation; this simulation 

maintained the same experimental design but is akin to studying a distinct biological process. 

We used this process to generate compendia of new gene expression experiments. We then 

examined the retention of the original differential expression signature by comparing the set of 

differentially expressed genes (DEGs) found in the simulated experiments (Figure 3D). Applying 

only the VAE compression to the original experiment (E-GEOD-51409), generated an 

experiment that had the same sample grouping as the original. However, only a subset of the 

DEGs found in the VAE compressed experiment were also found in the original experiment. The 

VAE compression step added some noise to the expression signal in the original experiment, as 

expected, since the data was being compressed into a low dimensional space. Overall, the 

correlation between the genes, based on their log2 fold-change values, in the original and VAE 

compressed experiment was high, R2 = 0.822 (Figure 3C). Next, Wwe exampled how the 

original samples in an experiment (E-GEOD- 51409) and a simulated experiment, applying VAE 

compression and latent space translation of the generated using E-GEOD-51409 experiment as 

a template, hadve consistent clustering of samples (Figure 3DC original and experiment- level 

simulated experiment).27 However the sets of genes that were differentially expressed were 
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different between the two datasetsexperiments. This demonstrated that the perturbation 

intensity and experimental design were relatively consistent in gene expression space, even 

though the nature of the perturbation differed. The correlation between genes in the original and 

the experiment-level experiment was lower, R2 = 0.230, since it represented a unique 

experiment. The residual similarity was likely due to commonly differentially expressed genes 

that have been observed previously28,29.  Finally, as a control, we demonstrated that the original 

experiment structure was not well preserved using the random sampling approach (Figure 3D, 

sample-level simulated experiment). The correlation between genes in the original and sample-

level experiment was non-existent, R2 = -0.055, since we did not account for experiment 

structure in the sample-level simulation. 

 

In general, the numbers of differentially expressed genes found in the experiment-preserving 

simulated experiments (78 DEGs in VAE compressed, 14 DEGs in experiment-level) were lower 

compared to the original experiment (505 DEGs). This was because the The simulated 

experiments had a lower variance compared to the original dataset experiment. This reduced 

variance was due to the normality assumption made by the VAE, which compresseds the latent 

space data representation.23 However, in general, the clustering of samples wasis conserved 

between the simulated and original experiments, and this was alsoas observed in the additional 

template experiments with more complex structures experimental setups (Figure S4).  

 

Given the fact that we preserved the association between samples and experiments in this new 

experiment-level simulation, we would expected that new simulated experiments would 

preserve the correlation in expression of genes that are in the same pathway. In our previous 

example experiment, E-GEOD-51409, the simulated experiment generated using the original E-

GEOD-51409 as a template (i.e. experiment-level, Figure 3A) identified 14 differentially 

expressed genesDEGs (Figure 3DC). In contrast, the simulated experiment generated by 

randomly sampling (i.e. sample-level, Figure 1C) did not identify any differentially expressed 

genesDEGs; the median log2 fold- change was 0.08. Furthermore, when simulating 100 new 

experiments using E-GEOD-51409 as a template, the experiments generated using the 

workflow in Figure 3A identified a median of 2,588 differentially expressed genesDEGs 

compared to those new simulated experiments generated by randomly sampling from the 

compendium resulting from the workflow in Figure 1C (Figure 3D) which identified a median of 0 

differentially expressed genesDEGs (Figure 3E). Additionally, the median number of enriched 

KEGG pathways wais 1 using the workflow in Figure 3Atemplate shifting approach compared to 
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0 using the random sampling approach using the previous simulation strategy (Figure 3FE). 

Overall, it appeareds that this new simulation approach generated a compendium of more 

realistic experiments with some real underlying biology. and therefore this new simulation 

represents a more realistic simulation compared to the previous one. (Eexamples of the 

significantly enriched pathways can be seen in Table 2). The top over-represented pathway 

wasis the ribosome pathway, which is likely a commonly altered pathway found in many 

experiments regardless of experiment type, similar to the findings from human array 

experiments in Crow et. al.28,29 The remaining pathways found in the original experiment were 

generally related to metabolism related, which is consistent with the finding from the original 

publication.27 The simulated experiment was particularly enriched in sulfur metabolism and ABC 

transporters, which is consistent with an different previous experiment that found upregulation of 

transport systems in response to sulfate limitations.30 Overall, in accordance with real gene 

expression experiments, the new simulated experiments contain related groups of enriched 

pathways which that reflect the specific hypotheseis being tested. These results demonstrate 

the use of a VAE as a hypothesis generating tool.; wWe can now simulate new experiments in 

order to study the response of P. aeruginosa in response to untested conditionsstimuli. 

 

Table 2: Enriched pathways found in the original E-GEOD-51409 experiment and the pseudo-experiment generated 

using the experiment-level simulation. 

 

 

Simulating gene expression compendia with synthetic experiments 

 

We used our method to simulate new experiments that followed existing patterns to examine the 

patterns fromthat we observed for generic partitions (Figure 4A). We simulated 600 experiments 

using the P. aeruginosa compendium. We divided these experiments into [1, 2, 3, 5, 10, 20, 30, 

50, 70, 100, 200, 300, 400, 500, 600] partitions. These partitions represented groupings of 

Original Adjusted  

p-value 

Experiment level simulation Adjusted  

p-value 

Pae03010: Ribosome 2.966E-11 Pae03010: Ribosome 7.96E-07 

Pae00500: Starch and sucrose 

metabolism 

0.0015121.512

E-03 

Pae02010: ABC transporters 0.0040094.009

E-03 

Pae01200: Carbon metabolism 0.0044664.466

E-03 

Pae00920: Sulfur metabolism 0.015761.576E-

02 

Pae00640: Propanoate 

metabolism 

0.0019541.954

E-03 

  

Formatted: Font: (Default) Arial, 10 pt

Formatted: Font: (Default) Arial, 10 pt

Formatted: Font: (Default) Arial, 10 pt

Formatted: Font: (Default) Arial, 10 pt



experiments with shared noise, such as experiments from the same lab or experiments with the 

same experimental design.  Each partition containeds technical sources of variance within and 

between experiments. Results with simulated experiments were similar to those from arbitrarily 

partitioned samples. We observed a monotonic loss of similarity after the correction step as the 

number of partitions increased (Figure 4B). Visualizing the top principal components revealed 

that statistical correction initially better recapitulated the overall structure of the data but that 

with many partitions similarity decreased with many partitions (Figure 4C, dark blue). Without 

statistical correction there was a larger initial drop in similarity but a later recovery (Figure 4B) 

and visualizing the top principal components recapitulated this finding (Figure 4C, light blue). 

We performed analogous experiments using the recount2 VAE and 5100 simulated experiments 

with [1, 2, 5, 10, 20, 30, 50] partitions. We observed consistent results with this dataset using 

both SVCCA similarity (Figure 4D) and visual inspection of the top principal components (Figure 

4E).  

One caveat in the design of the previous analysis, is that the effect of the number of partitions 

was confounded by the number of experiments per partition. For example, more partitions 

equated to each partition having a smaller effect size since each partition had fewer 

experiments. To study the contribution of individual experiments in our signal detection, we 

performed an analysis where we held the number of experiments per partition fixed and varied 

the number of total experiments within a compendia (Figure S5A). With few experiments in a 

compendia, the main signal was the difference between experiments so adding noise to each 

experiment drove signal detection down (Figure S5B). Additionally, applying noise correction 

removed the main experiment-specific signal, as it was designed to do. With more experiments 

in a compendia, we gained a more global gene expression representation, where the main 

signal was no longer focused on the difference between experiments. Thus, adding noise to 

each experiment did not affect our signal detection and our similarity remained constant. 

However, applying noise correction will consistently remove more of our signal of interest. The 

results of this analysis exemplify how existing experiments can be combined and used without 

need for correction. 

 

In summary, as the number of partitions or experiments increase the experiment-specific 

technical sources contribute less overall to the overall signal and the underlying patterns 

dominate the overall signal. When many partitions or experiments are present, even ideal 

statistical approaches to correct for noise over-corrects and removes the underlying signal.   
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Discussion: 

 

Our findings reveal that compendia-wide analyses do not always require correction for 

experiment-specific technical variance and that correcting for such variance may remove signal. 

This simulation study provides an explanation for the observation that past studies2–6 have 

successfully extracted biological signatures from gene expression compendia despite the 

presence of uncorrected experiment-specific sources of technical variability. In general, there 

exists compendia that contain some small number of experiment-specific sources where 

traditional correction methods can be effective at recovering the biological structure of interest.; 

hHowever, there also exist large-scale gene expression compendia where these methods may 

be harmful instead of helpful. The number of experiment-specific sources that determine 

whether to apply correction will vary depending on the dataset – the size of the compendia, and 

the magnitude and structure of the signals. Using the associated repository 

(https://github.com/greenelab/simulate-expression-compendia) users can customize the scripts 

to run the simulation experiments on their own expression data in order to examine the effect of 

a linear noise model with linear noise correction on their dataset. Though our analysis uses 

simplifying assumptions that preclude us from defining a specific threshold for noise correction, 

these simulations define a set of general properties that will guide compendia analyses moving 

forward. This study suggests that new large-scale datasets can be created by distributing 

different experiments across many different labs and centers as opposed to being consolidated 

within a single lab. 

 

We introduce a new method to simulate genome-wide gene expression experiments, using 

existing gene expression data as starting material, which goes beyond simulating individual 

samples. This allowsed us to examine the extent to which our findings hold with realistic 

experimental designs. The ability to simulate gene expression experiments with a realistic 

structure may havehas many potential legitimate uses: e.g., pre-training for machine learning 

models, providing synthetic test data for software, and other such applications. Additionally, this 

simulation technique can be used to explore hypothetical experiments that have not been 

previously performed and generate hypotheses. However, such approaches could also be used 

by nefarious actors to generate synthetic data for publications. Forensic tools that detect 

synthetic genome-wide data may be needed to combat potential fraudulent uses. 
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Our study has several limitations. We assume a certain noise model that differs between 

experiments. However, the sources of real noise are multifaceted and any such assumption will 

necessarily be an oversimplification, though such assumptions are not uncommon.10,12,31 By 

selecting a specific noise model and using an ideal noise-removal step, we provide a best case  

scenario for artifact removal. While any simulation study will necessarily make simplifying 

assumptions, this work is the first to use deep generative models as part of a simulation study to 

probe the long-standing assumption that correcting for technical variability is necessary for 

analyses that span multiple experiments. Our findings reveal that in settings with hundreds or 

thousands of experiments, correcting for experiment-specific effects can harm performance and 

that it can be best to do nothingforgo statistical correction. Adjusting the choices of 

normalization, noise magnitude, and noise patterns will result in different selections of the 

precise cross-over point where it becomes beneficial to perform correction. With this design, we 

do not expect that it is possible to estimate exactly where this precise cross-over point is. Such 

an estimationThat would require a compendium where investigators systematically performed 

the same combination of different experiments in multiple labs at different times. We were 

unable to identify such a compendium on the scale of thousands of samples from tens to 

hundreds of labs.  Thus, though our analysis necessarily includes simplifying assumptions that 

limit our ability to precisely define the thresholds for correction for arbitrary datasets and noise 

sources, it remains suitable for examining the overriding principles that govern compendium-

wide analyses. 

 

 

Our study also has broader implications for efforts to standardize scientific processes. 

Centralization of large-scale data generation has the potential to reduce experiment-specific 

technical noise, though it comes at a cost of flexibility. Our results suggest that a highly 

distributed process where experiments are carried out in many different locations, with their own 

specific sources of technical noise, can also lead to valuable data collections. 

 

 

Methods: 

 

Pseudomonas aeruginosa gene expression compendium 
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We downloaded a compendium of P. aeruginosa data that was previously used for 

compendium-wide analyses.2 Previous studies identified biologically-relevant processes such as 

oxygen deprivation2 and phosphate starvation3 by applying denoising autoencoders. We 

obtained the processed and normalized gene expression matrices from the ADAGE GitHub 

repository (https://github.com/greenelab/adage/tree/master/Data_collection_processing). The P. 

aeruginosa dataset was previously processed by Tan et. al.2 During processing, raw microarray 

data were downloaded as .cel files, rma was used to convert probe intensity values from the .cel 

files to log2 base gene expression measurements, and these gene expression values were then 

normalized to 0-1 range per genes. 

 

This compendium includes measurements from 107 experiments that contain 989 samples for 

5,549 genes.2 It contains experiments that accrued between the release of the GeneChip P. 

aeruginosa genome array and at the time of data freeze in 2014.  Approximately 70% of the 

samples were from cultures of strain PAO1 and derivatives, 13% were in strain PA14 

background, 0.6% were from PAK strains and the remaining were largely clinical isolates.  Of 

the strains, 73% were wild-type (WT) genotypes and the rest were mutants that had undergone 

genetic modification. Approximately 60% of the samples were grown in lysogeny broth (LB) 

medium while the rest were grown in Pseudomonas Isolation Agar (PIA), glucose, pyruvate or 

amino acid-based media.3 Roughly 80% were grown planktonically, 15% were grown in biofilms 

and the remaining samples were in vivo or not annotated. Overall, this P. aeruginosa 

compendium covered a wide range of gene expression patterns including: characterization of 

clinical isolates from cCystic fFibrosis infections, differences between response of mutant 

versus WT, response ofto antibiotic treatment, microbial interactions, adaptation from water to 

GI tract infection. Despite having 989 samples, this compendium represents the heterogeneity 

of P. aeruginosa gene expression.  

 

recount2 gene expression compendium 

 

We downloaded human RNA-seq data from recount2.32  The dataset includes over 70,000 

samples collected from Sequencing Read Archive (SRA).  It is comprised of more than 50,000 

samples from different types of experiments, roughly 10,000 samples from Genotype-Tissue 

Expression project (GTEx v6) covering 44 types of normal tissue, and more than 10,000 

samples from The Cancer Genome Atlas (TCGA) measuring 33 cancer types.20,33,34  The 

recount2 authors uniformly processed and quantified these data. We downloaded data using the 

https://github.com/greenelab/adage/tree/master/Data_collection_processing


recount library in Bioconductor (version 1.14.0).32  The entire recount2 dataset is 8TB. Based on 

the P. aeruginosa compendium we expected that a subset of the compendium would be 

sufficient for this simulation, so we selected a random subset of 50 NCBI studies, which resulted 

in 896 samples with 58,037 genes for our simulation. Each project (imported from NCBI 

bioproject) is akin to an experiment in the P.  aeruginosa compendium, and we used the term 

experiment to describe different projects in order to maintain consistency in this paper. The 

downloaded recount2 dataset was in the form of raw read counts, which was normalized to 

produce RPKMs used in our analysis.  The normalized gene expression data was then scaled to 

a 0-1 range per gene. 

 

Constructing a generative model of gene expression compendia 

Strategy to construct VAE: structure and hyperparameters 

We designed an approach to simulate gene expression compendia with a multi-layer variational 

autoencoder (VAE). We built this model in Keras (version 2.1.6) with a TensorFlow backend 

(version 1.10.0), modifying the previously published Tybalt method.35–37  Our architecture used 

each input gene as a feature. These genes were compressed to 2,500 intermediate features 

using a rectified linear unit (ReLU) activation function to combine weighted nodes from the 

previous layer. These features were encoded into 30 latent space features, also using a ReLU 

activation function, which were optimized via the addition of a Kullbach-Leibler (KL) divergence 

term into the loss function (binary cross entropy) to follow a standard normal distribution. These 

features were then reconstructed back to the input feature dimensions using decoding layers 

that mirror the structure of the encoder network. We trained the VAE using 90% of the input 

dataset, leaving 10% as a validation set.  We determined training hyperparameters by manually 

adjusting parameters and selecting the parameters that optimized the validation loss based on 

visual inspection. These were a learning rate of 0.001, a batch size of 100, warmups set to 0.01, 

100 epochs for the P. aeruginosa compendium and 20 epochs for the recount2 compendium. A 

similar assessment was performed to determine the neural network architecture. We manually 

inspected the validation loss using multiple different 2-layer designs (300-10, 2500-10, 2500-20, 

2500-30, 2500-100, 2500-300) and found a 2,500 layer to a 30 hidden layer VAE to be most 

optimal. 

 

Simulating gene expression compendiaSample-based simulation 
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We used the VAE trained from each compendium to generate new compendia by randomly 

sampling from the latent space. We generated a simulated compendium containing 6,000 P. 

aeruginosa samples or 500 recount2 samples. For our first simulation, we sampled randomly - 

ignoring the relationship between samples within a specific experiment. We simulated 

experiment-specific sources of undesired variability within compendia by dividing the data into 

partitions and adding noise to each partition. 

 

We divided the P. aeruginosa simulated compendium into [1, 2, 5, 10, 20, 50, 100, 500, 1000, 

2000, 3000, 6000] partitions and divided the recount2 simulated compendium into [1, 2, 5, 10, 

20, 50, 100, 250, 500] partitions.  Each partition of data representeds a group of samples that 

are from the same experiment or lab. We randomly added linear noise to each partition by 

generating a vector of length equal to the number of genes (5,549 P. aeruginosa genes and 

58,037 hHuman genes) where each value in the vector was drawn from a normal distribution 

with a mean of 0 and a variance of 0.2. With the 0-1 scaling, a value of 0.2 produces a relatively 

large difference in gene expression space (Figure S1).  

 

Though linear noise is an over-simplification of the types of noise that affect gene expression 

data, it allowed us to design an approach to optimally remove noise. Adjusting the choices of 

normalization, noise magnitude, and noise patterns will result in different selections of the 

precise cross-over point where it becomes beneficial to perform correction. With this design, we 

do not expect that it is possible to estimate exactly where this precise cross-over point is. That 

would require a compendium where investigators systematically performed the same 

combination of different experiments in multiple labs at different times. We were unable to 

identify such a compendium on the scale of thousands of samples from tens to hundreds of 

labs.  Thus, though our analysis necessarily includes simplifying assumptions that limit our 

ability to precisely define the thresholds for correction for arbitrary datasets and noise sources, it 

remains suitable for examining the overriding principles that govern compendium-wide 

analyses. 

 

Experiment-based simulation 

 

For the experiment-level simulation, we developed an approach that could simulate realistic 

experimental structure.  There was no consistent set of annotated experimental designs, so we 

developed a simulation method that did not depend on a priori knowledge of experimental 



design. For each synthetic experiment, we randomly sampled a “template experiment” from the 

set of P. aeruginosa or recount2 experiments. We then simulated new data that matched the 

template experiment by selecting a random location from the low dimensional representation of 

the simulated compendia (i.e. selecting a location according to the low dimensional distribution) 

and calculating the vector that connected this random location and the encoded template 

experiment. We then linearly shifted the template experiment in the low-dimensional latent 

space by adding this vector to each sample in the experiment. This process preserved the 

relationship between samples within the experiment but shifted the samples to a new location in 

the latent space. Repeating this process for each experiment allowed us to generate new 

simulated compendia comprised of realistic experimental designs.   

 

We divided the P. aeruginosa simulated compendium into [1, 2, 3, 5, 10, 20, 30, 50, 70, 100, 

200, 300, 400, 500, 600] partitions and divided the recount2 simulated compendium into [1, 2, 5, 

10, 20, 30, 50] partitions, where experiments are divided equally amongst the partitions. For 

each partition we added simulated noise as described in the previous section. Experiments 

within the same partition had the same noise added.  Each partition represented a group of 

experiments generated from the same lab or with the same experimental design.  

 

Experiment-effect analysis 

 

For this analysis we wanted to examine the effect of individual experiments in our ability to 

detect underlying gene expression structure. First, we used the experiment-based simulation 

approached to simulate P. aeruginosa compendia with [2, 3, 5, 10, 20, 30, 50, 70, 100, 200, 

300, 400, 500, 600] experiments. Next, we divided the simulated compendium into the same 

number of partitions so that there was one experiment per partition. For each partition we added 

simulated noise as described in the previous section. Finally we used SVCCA to compare the 

noisy compendia with X number experiments with the unpartitioned compendia with X number 

of experiments. We also used SVCCA to compare the noise-corrected compendia with X 

experiments with the unpartitioned compendia with X experiments. 

 

 

Removing technical variability from noisy compendia 

 



Our model of undesired variability wasis a linear signature applied separately to each partition of 

the data, which we considered akin to experiments or groups of experiments in a compendium 

of gene expression data. We used the removeBatchEffect function in the R library, limma 

(version 3.44.0), to correct for the technical variation that was artificially added to the simulated 

compendia.25  Limma removes the technical noise by first fitting a linear model to describe the 

relationship between the input gene expression data and the experiment labels.  The input 

expression data contains both a biological signal and technical noise component.  By fitting a 

linear model, limma will extract the noise contribution and then subtract this from the total input 

expression data. This method presents a best-case scenario for removing the undesired 

variability in the simulated compendia because the model matches the noise pattern we’ve used 

in the simulation.   

 

Simulating experiments that comprise gene expression compendia 

 

For the next simulation, we developed an approach that could simulate realistic experimental 

structure.  We next generated synthetic experiments for which the gene expression patterns 

were consistent with the types of experiments that are used within the field. There was no 

consistent set of annotated experimental designs, so we developed a simulation method that did 

not depend on a priori knowledge of experimental design. For each synthetic experiment, we 

randomly sampled a “template experiment” from the set of P. aeruginosa or recount2 

experiments. We then simulated new data that matched the template experiment by selecting a 

random sample from the low dimensional representation of the simulated compendia and 

calculating the vector that connects this random sample and the encoded template experiment. 

We then linearly shifted the template experiment in the low-dimensional latent space by adding 

this vector to each sample in the experiment. This process preserves the relationship between 

samples within the experiment but shifts the samples to a new location in the latent space. 

Intuitively this simulation maintains the same experimental design but is akin to studying a 

distinct biological process. Repeating this process for each experiment allowed us to generate 

new simulated compendia comprised of realistic experimental designs.   

 

We divided the P. aeruginosa simulated compendium into [1, 2, 3, 5, 10, 20, 30, 50, 70, 100, 

200, 300, 400, 500, 600] partitions and divided the recount2 simulated compendium into [1, 2, 5, 

10, 20, 30, 50] partitions, where experiments are divided equally amongst the partitions. For 

each partition we added simulated noise as described in the previous section. Experiments 



within the same partition have the same noise added.  Each partition represents a group of 

experiments generated from the same lab or with the same experimental design.  

 

Measuring the similarity of matched compendia 

 

We used Singular Vector Canonical Correlation Analysis (SVCCA)26 to estimate similarities 

between different compendia. SVCCA is a method designed to compare two data 

representations26. Given two multivariate datasets, X1 and X2, the goal of SVCCA is to find the 

basis vectors, w and s, to maximize the correlation between wTX1 and sTX2. In other words, 

SVCCA attempts to find the space, defined by a set of basis vectors, such that the projection of 

the data onto that space is most correlated.  Two datasets are considered similar if their linearly 

invariant correlation is high (i.e., if X1 is a shift or rotation of X2 then X1 and X2 are considered 

similar).  

 

We compared the statistical structure of the gene expression, projected onto the first 10 

principle components, in the baseline simulated compendia (those with only one experiment or 

partition, X1) versus those with multiple experiments or partitions (X2). Our SVCCA analysis was 

designed to measure the extent to which the gene expression structure of the compendia 

without noise iswas similar to the gene expression structure of the compendia with multiple 

sources of technical variance has been added as well as those where correction has been 

applied. Here we use 10 principle components for computational simplicity. Selecting a different 

value would affect the crossover point but not the general trends that we describe 

 

A case study of differential expression in a template experiment 

 

We compared the E-GEOD-51409 experiment38 with two different simulated representations to 

provide a case study for experiment-based simulation. E-GEOD-51409 included P. aeruginosa 

in two different growth conditions. For one simulation, we generated random samples and 

randomly assigned them to conditions, which we termed the sample-simulated experiment. For 

the second we used the latent space transformation process described above, which we termed 

the experiment-simulated experiment. We used the eBayes module in the limma library to 

calculate differential gene expression values for each gene between the two different growth 

conditions in the real and simulated data. We built heatmaps for the 14 most differentially 

expressed genes, where differentially expressed genes where those with FDR adjusted cutoff 
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(using Benjamini-Hochberg correction) < 0.05 and log2 fold- change >1, which are thresholds 

frequently used in practice. We selected 14 genes because there were 505, 14 and, 0 

differentially expressed genes found in the original experiment, experiment-simulated 

experiment, and sample-simulated experiment, respectively. Since there were 0 differentially 

expressed genes found in the sample-simulated experiment, we displayed the top 14 genes 

sorted by adjusted p-value to provide a visual summary of the simulation process. 

 

Comparing sample-level and experiment-level simulated datasets 

 

We simulated 100 experiments using the template E-GEOD-51409 experiment38. We sought to 

compare the sample-level and experiment-level simulation processes. We set a threshold for 

differentially expressed genes at a Bonferroni-corrected p-value cutoff of 0.05/5549. We used 

the enrichKEGG module in the clusterProfiler library to conduct an over-representation 

analysis39. We used the Fisher’s exact test to calculate a p-value for over-representation of 

pathways in the set of differentially expressed genes. We considered pathways to be over-

represented if the Bonferroni corrected pq-value was less than 0.025. 

 

Implementation and Software Availability 

 

All scripts to reproduce this analysis are available the GitHub repository 

(https://github.com/greenelab/simulate-expression-compendia) under an open source license. 

The repository contains 98% python jupyter notebooks, 2% python and 0.1% R scripts.  The 

repository’s structure is separated by input dataset. Pseudomonas/ and Human/ directories 

each contain the input data in the data/input/ directory. Scripts for the sample level simulation 

can be found in Pseudomonas /Pseudomonas_sample_lvl_sim.ipynb for the P. aeruginosa 

compendium and Human/Human_sample_lvl_sim.ipynb for the recount2 compendium. Scripts 

for the experiment level simulation can be found in 

Pseudomonas/Pseudomonas_experiment_lvl_sim.ipynb and 

Human/Human_experiment_lvl_sim.ipynb respectively. The virtual environment was managed 

using conda (version 4.6.12), and the required libraries and packages are defined in the 

environment.yml file. Additionally, scripts to simulate gene expression compendia using the 

sample-level and experiment-level approaches are available as a separate module, called 

ponyo, and can be installed from PyPi (https://github.com/greenelab/ponyo). We describe in the 
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Readme file how users can analyze different compendia or use different noise patterns. All 

simulations were run on a CPU. 

 

 

 

 



Figure Legends: 

 

Figure 1. Simulating gene expression data using VAE. A) Architecture of the VAE, where the 

input data gets compressed into intermediate layer of 2500 features and then into a hidden layer 

of 30 latent features.  Each latent feature follows a normal distribution with mean µ and variance 

σ. The input dimensions of the Pseudomonas P. aeruginosa dataset are shown here as an 

example (989 samples, 5549 genes). The same architecture is used to train the recount2 

dataset except the input has 896 samples and 58,037 genes. B) Validation loss plotted per 

epoch during training using the P. aeruginosa compendium. C) Workflow to simulate gene 

expression samples from a compendium model, where new samples are generated by sampling 

from the latent space distribution. D) UMAP projection of P. aeruginosa gene expression data 

from the real dataset (pink) and the simulated compendium using the workflow in C (grey).   

 

Figure 2. Results of simulating compendia. A) workflow describing how experiment-specific 

noise was added to the simulated compendia and how the noisy simulated compendia were 

evaluated for similarity compared to the original inputunpartitioned simulated compendia. B,D) 

SVCCA curve measuring the similarity between a compendia without noise versus a 

compendium with noise (light blue), compendium with noise corrected for (dark blue). As a 

negative control, we used the similarity between the gene expression pattern of the simulated 

data with a single partition compared with the simulated data that has been permuted to destroy 

any meaningful structure in the data. C,E) Subsampled gene expression data (500 samples per 

compendia) projected onto the first two principal components showing the overlap in structure 

between the compendia without noise (gray) versus the compendia with noise (light blue), 

compendia with noise corrected for (dark blue).  

 

Figure 3. Simulating gene expression compendia by experiment. A) Workflow to simulate gene 

expression per experiment. B) UMAP projection of P. aeruginosa gene expression data 

highlighting a single experiment, E-GEOD-51409, (red) in the original dataset (left) and the 

simulated dataset (right), which was subsampled to 1000 samples. C) Differential expression 

analysis of experiment E-GEOD-51409 (left), random simulated samples (middle), simulated 

samples using the same experiment as a template (right). D) Number of differentially expressed 

genes identified across 100 simulated experiments generated using experiment-level simulation 

and sample-level simulation. E) Number of enriched pathways identified across 100 simulated 

experiments generated using experiment-level simulation and sample-level simulation.  

Formatted: Font: Italic



Figure 4. Results of simulating compendia comprised of gene expression experiments. A) 

workflow describing how experiment-specific noise was added to the simulated compendia and 

how the noisy simulated compendia were evaluated for similarity compared to the original 

inputunpartitioned simulated compendia. B,D) SVCCA curve measuring the similarity between a 

compendia without noise versus a compendium with noise (light blue), compendium with noise 

corrected for (dark blue). As a negative control, we used the similarity between the gene 

expression pattern of the simulated data with a single partition compared with the simulated 

data that has been permuted to destroy any meaningful structure in the data. C,E) Subsampled 

gene expression data (500 samples per compendia) projected onto the first two principal 

components showing the overlap in structure between the compendia without noise (gray) 

versus the compendia with noise (light blue), compendia with noise corrected for (dark blue).   

 

Figure S1. Results of varying the magnitude of the experiment-specific noise added to each 

partition. SVCCA curve measuring the similarity between a compendia without noise versus a 

compendium with noise (light blue), compendium with noise corrected for (dark blue).  As a 

negative control, we used the similarity between the gene expression pattern of the simulated 

data with a single partition compared with the simulated data that has been permuted to destroy 

any meaningful structure in the data.  Using noise model with A) 0.2 variance, B) 0.05 variance 

with a zoomed in view on the left, C) 0.025 variance with a zoomed in view on the left. 

  

Figure S12. Simulating recount2 gene expression data using VAE. A) Validation loss plotted 

per epoch during training. B) UMAP projection of gene expression data from the real dataset 

(pink) and the simulated compendium using the workflow in Figure 1C (grey).  

 

Figure S21. Results of varying the magnitude of the experiment-specific noise added to each 

partition. SVCCA curve measuring the similarity between a compendia without noise versus a 

compendium with noise (light blue), compendium with noise corrected for (dark blue).  As a 

negative control, we used the similarity between the gene expression pattern of the simulated 

data with a single partition compared with the simulated data that has been permuted to destroy 

any meaningful structure in the data.  Using noise model with A) 0.2 variance, B) 0.05 variance 

with a zoomed in view on the left, C) 0.025 variance with a zoomed in view on the left. 
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Figure S3. Results of simulating P. aeruginosa compendia using A) sample-level simulation or 

B) experiment-level simulation with COMBAT noise correction. 

 

Figure S4. Clustering of 100 random gene expression profiles in original versus simulated 

experiments using A) E-GEOD-21704 and B) E-GEOD-10030 as templated. 

 

Figure S5. Results of simulating compendia with fixed number of experiments. A) workflow 

describing how each compendia is designed to have a fixed number of experiments, 

experiment-specific noise was added to the simulated compendia and how the noisy simulated 

compendia were evaluated for similarity compared to the unpartitioned simulated compendia. B) 

SVCCA curve measuring the similarity between a compendia without noise versus a 

compendium with noise (light blue), compendium with noise corrected for (dark blue). As a 

negative control, we used the similarity between the gene expression pattern of the simulated 

data with a single partition compared with the simulated data that has been permuted to destroy 

any meaningful structure in the data. C) Subsampled gene expression data (fewer than 500 

samples per compendia) projected onto the first two principal components showing the overlap 

in structure between the compendia without noise (gray) versus the compendia with noise (light 

blue), compendia with noise corrected for (dark blue).  
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