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1 Supplementary Note: Scoring Function

As in [1], we consider p-values x ∈ [0, 1] to follow a beta–uniform mixture (BUM)
distribution which is a mixture of noise and signal component [2]. The noise
follows a uniform distribution U([0, 1]) with the probability density function
(pdf)

fU (x) =

!
1 , for x ∈ [0, 1]

0 , else .
(1)

and the signal follows a beta distribution B(α,β = 1) with the pdf

fB(x) =

!
αxα−1 , for x ∈ [0, 1]

0 , else .
(2)

∗Corresponding author. Email: f.klimm@gmail.com
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Figure 1: The distribution of p-values of differential expression for each cell
cluster. As expected, they follow roughly a beta–uniform distribution.

The shape parameter α ∈ [0, 1] is a free parameter. We use λ ∈ [0, 1] as mixture
parameter to construct the distribution of p-values

fBUM (x) = λfU (x) + (1− λ)fB(x) (3)

=

!
λ+ (1− λ)αxα−1 , for x ∈ [0, 1]

0 , else .
(4)

For each run of our algorithm, we obtain estimates of shape parameter α
and mixture parameter λ by performing a maximum-likelihood estimation. For
this, we use an iterative limited-memory Broyden-Fletcher-Goldfarb-Shanno al-
gorithm [3].

Fig. 2 shows a histogram of the p-values for the one-vs-one comparison be-
tween clusters H1 and H3 and the fitted distribution. Fitting a BUM model
yields a mixture parameter of λ ≈ 0.549 and a shape parameter of α ≈ 0.482.
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The BUM is in decent agreement with the observed p-values (a one-sample
Kolmogorov–Smirnov test yields a statistic of D ≈ 0.014 and a p-value of 0.086).
The p-values for the other clusters follow roughly a beta–uniform distribution,
too (see Fig. 1). We calculate the value of the pdf at x = 1, which represents
the background noise, as

f̃ = fBUM (x = 1) = λ+ (1− λ)α ≈ 0.77 , (5)

and show is a dotted horizontal line in Fig. 2.
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Figure 2: Fit of the BUM model to p-values for comparison cluster H1 vs
cluster H3. We show a histogram of the observed p-values and the fitted BUM
model (blue dashed curve). The mixture parameter is λ ≈ 0.549 and the shape
parameter of the beta distribution is α ≈ 0.482. We show the probability
f̃ = f(x = 1) ≈ 0.77 as a horizontal dotted orange line.

We use an approach as outlined in [1] to construct an additive score S(x) ∈ R
with negative values indicating background noise and positive values represent-
ing signal. This allows us to compute the differential expression of a set of genes
by adding their associated scores. An appropriate choice is

S(x) = (α− 1) (log(x)− log(τ)) , (6)

where we consider p-values below the significance threshold τ > 0 as noise and
those above as signal. As shown in [2], the significance threshold is a function
of the FDR and we may estimate it for a BUM as
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τ(FDR) =

"
f̃ − FDR · λ
FDR(1− λ)

#1/(FDR−1)

with f̃ = fBUM (x = 1) = λ+ (1− λ)α .

(7)

To summarise, the procedure for computation of the node scores from p-
values is as follows:

1. estimation of mixture parameter λ and shape parameter α from the dis-
tribution of p-values,

2. choice of an FDR as appropriate for data of choice,

3. computation of the the appropriate significance threshold through Eqn. (7),
and

4. computation of the node scores through Eqn. (6).

2 Supplementary Note: Optimisation

As outlined in Supplementary Note 1, we assign each gene a score S ∈ R. Under
the null hypothesis, these scores are independent and identically distributed
random variables. For any set Q of genes, we can compute the score

SQ =
$

i∈Q

S(xi) , (8)

which indicates to what extent this set Q is significantly differently expressed.
The aim of our optimisation algorithm is the identification of a set of genes

that maximises this score (i.e., being strongly differently expressed in a module)
while the associated proteins are connected to each other in the PPIN. Math-
ematically, this problem is known as a maximum-weight connected subgraph
(MWCS) problem.

Problem. (Maximum-weight connected subgraph, MWCS) Given a vertex-
weighted graph G = (V,E,W ), find a connected subgraph T = (VT , ET ,W ) ⊂ G
that maximises the score W (T ) =

%
i∈VT

W (i).

Here, we use T ⊂ G to indicate that T = (VT , ET ) is a subgraph of G, i.e.,
VT ⊂ V and ET ⊂ E. A graph is connected if there is a path between every
pair of edges [4].

Finding a MWCS is NP-hard. A heuristic approach was used in [5] to identify
the MWCS. It is computationally advantageous to transform this problem into
an equivalent prize-collecting Steiner tree (PCST) problem because it is often
possible to obtain provably optimal solutions for this transformed instance [1, 6].
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Problem. (Prize-collecting Steiner tree, PCST) Given a graph G = (V,E, c, p)
in which the edge weights c : E → R≥0 indicate costs and the node weights
p : V → R≥0 indicate profits, find a connected subgraph T ⊂ G that maximises
the profit

p(T ) =
$

i∈VT

p(v)−
$

e∈ET

c(e) .

We can identify a MWCS by transforming the node-weighted network G =
(V,E,W ) into a network G = (V,E, c, p) with non-negative node and edge
weights. Specifically, we compute p(i) = w(i)− wmin and c(e) = −wmin, where
wmin = mini∈V (G) wi, so that all edges have the same weight. See Fig. 3, for an
example and [1] for a proof of this equivalence.

Here, we use the dual ascent-based branch-and-bound framework dapc-
stp [7, 8] to find the PCST. While this algorithm is not guaranteed to find
an optimal solution, in practice it finds solutions close to optimality for net-
works with hundreds of thousands of nodes and millions of edges in minutes to
hours. For all computations on the PPINs in this manuscript, we found optimal
solutions in less than ten seconds.

PCSTs are always trees (i.e., if they have N nodes they have N − 1 edges)
because adding additional edges to the PCST decreases the profit P . Accord-
ingly, MWCSs are also trees. When visualising the active modules, however, we
construct a node-induced subgraph, which is the set of nodes in T with all edges
from G. Therefore the modules may contain loops.
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Figure 3: Example of a node-weighted network for which we want to find the
MWCS (left) and its equivalent node- and edge-weighted network for which we
find the PCST (right). We transform this problem by shifting all node weights
by wmin = −8 and assigning each edge a cost of c = −wmin = 8. We show
nodes with a positive score in the node-weighted network in red and nodes with
negative score in blue. We highlight the optimal solution in both instances by
colouring the edges red. The MWCS has a weight ofW = 5+2−2+3+1 = 9 and
the PCST has a profit of P = 13+10+6+11+9−4×8 = 49−32 = 17 = 9+8.

6



2.1 Pairwise comparison between cell clusters
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Figure 4: We can compare also the expression between two clusters. Here, we
show the active module in cluster H2 vs cluster H4.

In the main manuscript, we have identified active modules in cell clusters
by comparing the expression of genes against the expression of all other cells
(‘one-vs-all’). It is also possible to compare the expression of any two clusters
pairwise (’one-vs-one’) and obtain a potentially more nuanced picture of two
clusters that have a similar but distinct transcriptional state.

In Fig. 4, we show the detected functional module in a pairwise comparison of
clusters H2 and H4. To compute the p-values of differential expression between
two clusters, we can also use the FindMarkers function in Seurat. The rest of
the analysis pipeline in scPPIN is the same. We identify a module that consists
of proteins such as TPT1, a tumour protein, and SOD1, which is involved in
apoptosis.

We compare cluster H1 vs H3 and detect a functional module as shown in
Fig. 5. Note that the FDR= 0.01 is very large (in comparison with earlier
calculations and FDR= 10−19 in the main manuscript) as both clusters have a
very similar gene expression. A GO-term enrichment analysis finds only the term
’regulation of symbiosis, encompassing mutualism through parasitism’ enriched.
Our method identifies TRIM25, an E3 ubiquitin ligase enzyme [9]. TRIM25
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Figure 5: We can compare also the expression between two clusters. Here, we
show the active module in cluster H1 vs cluster H3.

binds to viral RNA and so regulates immune response against viruses. These
results indicate that either: one of the clusters is infected with a virus or this
clusters shows a response to inflammation that is using pathways that are usually
associated with antiviral response.
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3 Supplementary Note: Missing expression data

In the method described in the main manuscript and Supplementary Note 1,
we assign each node in a PPIN a score based on the p-value of differential
expression. This is only possible if we have the gene-expression measurement
for a given protein. In practice, we delete nodes that represent proteins without
available expression value. One alternative approach is to assign each node in a
PPIN for which we have no expression information of the corresponding gene,
a small negative score (i.e., S = S0 = −1). There is no a priori correct way to
choose S0 and smaller value decrease the likelihood that such proteins are part
of the detected functional module. For S0 → −∞, we recover the case without
missing-data replacement.

In Fig. 6, we show a detected functional module for a node-weighted PPIN
in which we assigned proteins without gene expression data S0 = −1. It is
the same underlying data and FDR = 0.01 as in Fig. 5. As before, we detect
TRIM25 and interacting proteins. In addition, we also detect three proteins
without expression information, RPA2, RBM4, and SOX2. The total number
of proteins in this active module increases from 16 to 20. Note that for some
of these additional proteins (e.g., JUND and RPP40), we have gene expression
data but they were not in the MWST. We now detect them as part of the
functional module because they are connected to the original module via the
missing-data nodes.

This example demonstrates that incorporating nodes with no associated
scRNA-seq data may alter the detected modules. The choice of S0 is a free
parameter and a principled approach for detecting them will be part of future
research.
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Figure 6: Assigning proteins without expression data for corresponding genes a
score S0 allows to keep these proteins in the node-weighted PPIN. Here, we show
the active module in cluster H1 vs cluster H3 for S0 = −1. In comparison with
Fig. 5, we detect here three proteins without expression information: RPA2,
RBM4, and SOX2 (shown as red boxes).
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4 Supplementary Figure: Detected modules for
six hepatocyte clusters

Fig. 7 shows the detected modules for all six hepatocyte clusters FDR = 1027.
It is identical to Fig. 4 in the main manuscript but with all proteins labelled.
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Figure 7: Detected modules for all six hepatocyte clusters for FDR = 1027. We
find that the detected modules vary strongly in size with the smallest consisting
of a single protein and the largest consisting of 51 proteins. Colour indicates
p-value of associated gene from low (white) to high (purple). We show nodes as
squares if the could not have been detected without PPIN information.

5 Supplementary Note: Influence of FDR on
size of detected modules

In the main manuscript, we show the influence of the FDR on the size of the
detected module for one cluster. Here, we show this for all six clusters. For
all clusters we compute the functional modules for FDR ∈ [10−45, 10−15]. Note
that the horizontal axes are scaled differently for each cluster for illustration
purposes.

For all clusters, we find that the size of the functional modules is increasing
with the FDR. Furthermore, for all clusters, there are FDR-choices for which

11



we detect modules that have some proteins that we would not have detected
from a DEG analysis alone.
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Figure 8: The module size as a function of the FDR for clusters H1 and H2.
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Figure 9: The module size as a function of the FDR for clusters H3 and H4.
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Figure 10: The module size as a function of the FDR for clusters H5 and H6.
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6 Supplementary Results: Human adipose tis-
sue

6.1 Data

Pre-processed single cell RNA-sequencing data from human adipose tissue was
downloaded from GEO accession GSE129363 [10]. Only cells from non-diabetic
patients were retained for analysis. The data was then processed similarly to
the original publication. After clustering, clusters expressing high levels of CFD
were kept and re-clustered using highly variable genes in this sub-dataset (3563
cells). Differential expression analysis for each cluster was performed as de-
scribed in the main manuscript.

6.2 Functional modules

A modularity-based clustering (see Method section in main manuscript) with
Seurat reveals four clusters. For each cluster, we compute a functional module
with scPPIN and choose a FDR of 10−20.

We show the detected modules in Fig. 11. The modules vary in size from 30
to 56. To test their biological significance, we perform a GO-term enrichment
analysis (see Method section). We find that all of them have biological functions
enriched (see Tab. 1). These reflect the distinct function of cells in the different
clusters. Clusters 3 and 4, for example, are associated with the extracellular
matrix organisation, which has been identified as one component of the tissue
development [11]. Cluster 4 shows a specific response to wounding, which
indicates a state-change as a result of a stimulus indicating damage to the
organism [12]. Cluster 1 seems to be involved in generic signalling pathways as
a response to a stimulus, while Cluster 2 is specific to cytokine signalling, which
are a major regulator of adipose tissue metabolism [13].

In addition to testing the association of a module with biological function,
we also compare it to disease annotations with Enrichr [14]. We find that that
the module of cluster 3 is most strongly associated with ‘familial partial lipodys-
trophy’ (p < 0.008) and ‘unspecified disorder of lipoid metabolism’ (p < 0.01),
both hinting at malfunction in the synthesis and degradation of lipids in the adi-
pose cells. Somewhat surprisingly, Cluster 2 is associated with ‘postmenopausal
osteoporosis’. There exists, however, emerging evidence for an interaction be-
tween adipose tissue and the skeleton, which especially includes the secretion of
cytokines [15]. This indicates that scPPIN is not only able to detect functional
modules but also sets of genes that are associated with diseases.

7 R library scPPIN

The R library is available under https://github.com/floklimm/scPPIN. It
contains multiple tutorials that describe the usage of the available functions.
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cluster module size M top enriched GO terms log10(p-value)
1 43 response to organonitrogen compound -8

negative regulation of biological process -7
cell surface receptor signaling pathway -7

aging -6
2 30 response to oxygen-containing compound -8

response to cytokine -5
regulation of cell migration -4

3 50 extracellular matrix organization -7
protein targeting to ER -7

cell adhesion -4
4 56 extracellular matrix organization -7

response to wounding -5
response to endogenous stimulus -4

Table 1: For each of the four clusters we give, the size M , the most enriched
GO terms and the multiple-testing corrected p-value.

The function detectFunctionalModule(ppin,pValues,FDR) can be
used to directly compute the functional module in a PPIN. It has three in-
put parameters: ppin, which allows users to use a protein–protein interaction
network of their choice; pValues, which is the list of p-values; and FDR, which
is the false-discovery rate. We provide PPINs constructed from BioGrid for
sixty-eight organisms.

We also provide a tutorial on how to use scPPIN in combination scanpy [16].
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Figure 11: Functional modules in the four cell clusters in the adipose tissue
data.
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