Resveratrol attenuates TLR-4 mediated inflammation and elicits therapeutic

potential in models of sepsis

Binbin Wang^{1,2,*}, Gregory Lucien Bellot^{1,3,*}, Kartini Iskandar¹, Tsung Wen Chong⁴, Fera Yiqian Goh⁴, June Jingyi Tai⁵, Herbert Schwarz¹, Siew Cheng Wong^{5,6,#}, and Shazib Pervaiz^{1,2,7,8,#}

¹Department of Physiology, National University of Singapore, Singapore. ²NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore. ³Department of Hand & Reconstructive Microsurgery, University Orthopedic, Hand & Reconstructive Microsurgery Cluster, National University Health System, Singapore. ⁴Department of Urology, Singapore General Hospital (SGH). ⁵Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore. ⁶Department of Biochemistry, National University of Singapore, Singapore. ⁷National University Cancer Institute, National University Health System, Singapore, Singapore. ⁸Faculte de Medicine, University of Paris, Paris, France.

*Contributed equally to this work

[#]Correspondence: Shazib Pervaiz, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597. E-mail: <u>phssp@nus.edu.sg</u> or Siew Cheng Wong, Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore 138648. E-mail: <u>wong_siew_cheng@immunol.a-star.edu.sg</u>.

Running title: Resveratrol mitigates inflammation in sepsis

Keywords: Sepsis, Resveratrol, signaling, autophagy, monocytes

Supplementary Figure 1

IFN

Supplementary Figure 2

Supplementary Figures Legends

Supplementary figure 1: Levels of L-1 β , IL-5, IL-6, MCP-1, IFN γ , MIP-1 α , MIP-1 β and CXCL1(KC) in serum of mice treated as in figure 4A, were measured 24h after CLP by ELISA. Statistical analysis did not reveal any significant variation between PBS and RSV-treated groups in these conditions. Data were derived from Dr. Wang Binbin PhD Thesis.

Supplementary figure 2: A) U937 cells were treated with increasing concentrations of resveratrol ranging from 0 to 100 μ M for 6h with or without pre-incubation of chloroquine 50 μ M or 100 μ M for 1h. Western blot analysis of p62, MyD88, LC3 was performed using GAPDH as loading control. **B**) Human primary monocytes were treated with 40 μ M RSV for the indicated time points (2-6h). Western blot analysis of MyD88, LC3 and p62 was performed using β -tubulin as loading control. **C**) Immunoblot analysis of expression of MyD88, LC3 and p62 in U-937 cells (upper panel) or human primary monocytes (lower panel) treated with 40 μ M RSV for 0, 2, 3, 4, 5 and 6h pre-incubated with 5mM 3MA for 1h and then treated. GAPDH was used as loading control. **D**) Immunoblot analysis of expression of p62, MyD88 and LC3 in human monocytic U-937 cells (left panel) or human primary monocytes (right panel) treated with 40 μ M RSV for 6 human primary monocytes (right panel) treated with 40 μ M RSV for 6 human primary monocytes (right panel) treated with 40 μ M RSV for 6 human primary monocytes (right panel) treated with 40 μ M RSV for 6 human primary monocytes (right panel) treated with 40 μ M RSV for 6 human primary monocytes (right panel) treated with 40 μ M RSV for 6 human primary monocytes (right panel) treated with 40 μ M RSV for 6 human primary monocytes (right panel) treated with 40 μ M RSV for 6 human primary monocytes (right panel) treated with 40 μ M RSV for 6 human primary monocytes (right panel) treated with 40 μ M RSV for 6 human primary monocytes (right panel) treated with 40 μ M RSV for 6 human primary monocytes (right panel) treated with 40 μ M RSV for 6 human primary monocytes (right panel) treated with 40 μ M RSV for 6 human primary monocytes (right panel) treated with 40 μ M RSV for 6 human primary monocytes (right panel) treated with 40 μ M RSV for 6 human primary monocytes (right panel) treated with 40 μ M RSV for 6 human primary monocytes (right panel) treated with 40 μ M RSV for 6 human primary monocytes (right