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Supplementary Text 
Total FeO in melt as an oxygen fugacity indicator for magnetite-saturated mafic magma. 
 The NWA 7533/7034 meteorites are known to have been affected by thermal resetting, 
e.g., magnetite-ilmenite pairs in the igneous clasts provide an equilibrium temperature range of 
587-706 °C (8). To determine the magmatic oxygen fugacity of these clasts, a new oxybarometer 
that does not require the minerals to be equilibrated at magmatic temperature is needed. In the 
following, we show that, for a mafic silicate melt that is saturated in magnetite, its magmatic 
oxygen fugacity can be directly derived from its chemical composition with an oxybarometer 
updated after the FeTiMM method from Arató and Audétat (17). Arató and Audétat (17) noticed 
that the effects of alumina saturation index on TiO2 solubility were similar to that on magnetite 
solubility, making the combination of Fe and Ti partitioning between magnetite and melt an 
oxygen fugacity indicator for silicate melts of basaltic to rhyolitic compositions, even the slowly 
cooled intrusive rocks like granites (17):  

            (1) 
where ΔFMQ is oxygen fugacity in logarithmic deviation relative to the Fayalite-Magnetite-
Quartz buffer, and  and  are the partition coefficients of total FeO (FeOtot) and 

TiO2 between magnetite and melt, respectively. AMCNK is a melt compositional parameter:  

                (2) 
where  stands for the molar proportion of  in phase . 
We notice that for experimental melts with MgO ≥ 3 wt% in the dataset from Arató and Audétat 
(17), the partitioning of Ti between magnetite and melt is sensitive to the Mg and Fe contents of 
the melt (for experimental runs with = 0.284-0.596 and SiO2 = 47.56-57.57 

wt% in the quenched melts, n = 16, R2 = 0.917; fig. S4a): 

             (3) 

We are also aware of the definition of : 
 

             (4) 

where  is concentration of  in phase . After, equation 1 can be transformed into:  

       

(5)

 
Since the FeOtot contents in magnetite from mafic melts ( ) should be 65-75 wt%, ΔFMQ 

in equation 5 would actually be a function of the melt chemical composition ( , , 

 and AMCNK). In other words, once the saturation in magnetite is reached, the ΔFMQ of a 
mafic melt can be determined from its major element composition. The effects on ΔFMQ from 
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the uncertainties on , , 
 
and AMCNK can be quantified with the following 

partial differential equations: 

                  (6)
 

                   (7)
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After error propagation, the typical uncertainty on the estimated ΔFMQ ranges from ± 0.3-

0.6 log unit for ΔFMQ = +0-2 to ± 0.6-1.0 log unit for ΔFMQ = +2-5, with which the estimated 
ΔFMQ values are consistent with the ΔFMQ values derived from magnetite-ilmenite pairs or 
experimental ΔFMQ values (fig. S4b). In the compiled dataset in (17), two runs with high SiO2 
contents of 59.03-59.73 wt% did not follow equation 3, whereas the re-estimated 

 
using 

equation 3 did return to the ΔFMQ values fitting with their experimental ΔFMQ values within ± 
0.5 log unit. The application of equation 5 provided ΔFMQ values of +0.9 ± 0.3 and +2.4 ± 0.4 
for samples HEK-14-09 (Hekla volcano, Iceland) and AGU21 (Agung volcano, Sunda Arc), 
respectively, which have been shown to be oxide-saturated by the Ti isotopic studies in (10) and 
(11). These two estimated ΔFMQ values agree well with those calculated for oceanic island 
basalts (ΔFMQ = +0.54 ± 0.83, SD) (57) and arc lavas from Sunda Arc (ΔFMQ = +1.7-2.7) (58).  

 
Furnace melting and crystallization experiments 

Based on equation 5, there can be two mechanisms leading to magnetite precipitation (in 
other words to lower FeOtot in melt): (i) a decrease in  when ΔFMQ is 

constant, or (ii) an increase in ΔFMQ when  is fixed (fig. S5). For terrestrial 

lavas, magnetite precipitation is triggered by mechanism (i), whereas the melts equivalent to the 
NWA 7533 igneous clasts seem to have been controlled by mechanism (ii). While mechanism (i) 
can be described by melting experiments in Toplis and Carroll (18), and terrestrial magma 
differentiation, it is necessary to examine mechanism (ii) in the lab. We carried out melting and 
crystallization experiments at atmospheric pressures. Oxide powders (MgO-Al2O3-SiO2-TiO2-
Cr2O3-MnO-FeO) and carbonates (NaCO3-K2CO3-CaCO3) were weighed out to make ≈ 1 g 
mixture shergottite-like powder. The mixture was ground in an agate mortar to reach 
homogenization, and aliquots of 50 mg mass were mixed into a viscous slurry and loaded on Pt 
loops. Since the experiments have been carried out at high fO2 conditions, the Fe loss due to 
absorption into Pt wire should be negligible. The samples were heated to 1350 °C at ΔFMQ = 
−2.9 to reach a complete melting in a furnace system as described by Sossi et al. (59), and a 
switch of ΔFMQ value from −2.9 to +2.6 or +6.5 was conducted while cooling the systems to 
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1100-1250 °C. Oxygen fugacity was buffered by monitoring CO-CO2 gas mixtures, and at a 
given temperature, the oxygen fugacity can be estimated with an accuracy of ± 0.05 log unit. An 
Eurotherm® controller with a thermocouple external to the alumina muffle tube allows the 
temperature control to be within ± 1 °C (59). For the runs, the cooling rate was set to be 5 °C/h, 
and the system stayed at the aimed temperature (1100-1250 °C) for 6-10 h to allow sufficient 
crystallization, after which the melt droplets were dropped into a water tank for quenching. The 
samples were mounted into epoxy, and measured for major element compositions by SEM at 
IPGP (data file S5). The results show that oxidation at a given temperature can lower magnetite 
solubility in mafic melts, and causes magnetite crystallization, thus leading to lower FeOtot 
contents but higher Mg# values

 
in the melts (fig. S5). Using equation 5, the melts from two runs 

quenching at 1250 °C and 1150 °C return to ΔFMQ values of +2.5 ± 0.8 and +2.3 ± 0.8 (fig. 
S4b), respectively, which fit with the experimental ΔFMQ value of +2.64 ± 0.05. The melt from 
a run quenching at 1100 °C and air condition provides ΔFMQ = +5.1 ± 1.0, which is lower than 
the supposed ΔFMQ value when equilibrating with air (~ +6.5). We suspect that equation 3 
cannot be exactly extrapolated to  > 0.596 and SiO2 = 60.6 wt%. For 

instance, the  value estimated for a melt with  = 0.604 is 1.73 ± 0.63, 

which is higher than the measured  value of 0.92 (fig. S4a). Nonetheless, the 

experiments in this study can confirm that oxidation is a viable mechanism to trigger and 
forward magnetite crystallization at 1100-1250 °C.  

 
Quantifying the effects from oxidation on chemical and Ti isotopic compositions of magmas.  
 Upon the mechanisms described, equation 3 can be used to estimate the partition 
coefficients of TiO2 between magnetite and melt ( ) from the silicate melt composition, 

and equation 5 provides a link between melt oxygen fugacity and magnetite solubility if 
considering that AMCNK is fixed to be 0.35 and magnetite is the only crystallizing phase. Based 
on an incremental removal of Fe-Ti oxides, we can estimate the remaining Ti fractions (fTi) in the 
melts experiencing a redox change from ΔFMQ ≤ −2.5 to ΔFMQ = +3-4 from various starting 
melts, e.g. the melt with i) Mg# = 45 and FeOtot = 20.5 wt% or ii) Mg# = 35 and FeOtot = 20.5 
wt%. While fTi after magnetite removal can be quantified, Ti isotopic fractionation factors 
between different melts and magnetite (usually referred as Δ49Timelt-oxide, i.e., the delta difference 
on 49Ti/47Ti ratio between the two phases) are less constrained, whereas there have been studies 
showing that Δ49Timelt-oxide can vary between +0.1‰ and +0.5‰, depending on temperature, melt 
composition and oxide composition (10, 11, 13-15, 60). After assigning Δ49Timelt-oxide values, the 
δ49Ti of the oxidized melt after oxidation can be calculated following Rayleigh distillation: 

                                 (10) 

where parent melts can be assumed to have a shergottite-like δ49Ti of +0.015‰. Considering that 
Δ49Timelt-oxide increases with lower temperature and more silicic melt composition (10, 11, 13-15, 
60), we can reasonably assign the Δ49Timelt-oxide to be +0.2‰ at Mg# = 45 and to be +0.4‰ at 
Mg# = 35. Afterwards, we can observe that for parent melts with lower Mg# values, oxidation 
can result in larger Ti isotopic fractionations in the differentiated melts (Fig. 2 and fig. S6), 
arising from their higher  and Δ49Timelt-oxide values.  
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 The Ni concentrations in the melt after oxidation can also be estimated with an 
incremental removal of Fe-Ti oxides after assigning Ni = 1750 ppm and FeOtot = 20.5 wt% to 
the parent melt, as well as . The Ni-FeOtot systematics of the NWA 7034/7533 igneous 

clasts can be reproduced by continuous Fe-Ti oxide removal with = 13 (Fig. 3). While 
the δ49Ti-Mg# systematics of the differentiated melts are quite sensitive to the inconsistent 

 and Δ49Timelt-oxide values in parent melts with various Mg# values (or MgO contents), the 

differentiated melts should follow almost the same oxide-controlled trajectory on the Ni vs. 
FeOtot plot, as soon as these parent melts have been assigned to have the same FeOtot contents 
and Ni concentrations. This explains why the NWA 7533/7034 clasts provide a continuous Ni vs. 
FeOtot pattern (Fig. 3), whereas their distribution seems more scattered on the δ49Ti vs. Mg# plot 
(Fig. 2). The effects on V and Co in melts can be also quantified following an incremental 
removal of Fe-Ti oxides.  

 
Quantifying oxygen contribution in the melts from the oxidant. 
 After estimating the ΔFMQ values of the silicate melts, the oxygen contribution from the 
oxidant can be calculated. Note that 10 wt% addition of rocky material from the impactors may 
alter the oxygen fugacity of the melts by sub log unit, depending on the oxidation state of 
possible chondritic impactors. While the types of the chondritic impactor are less constrained, we 
temporarily consider that oxidation of melt can be represented by reaction with free oxygen 
coming from decomposition of water: 

                                          (11) 
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The ferric-ferrous ratio of silicate melt is a function of oxygen fugacity, temperature, pressure 
and composition as shown by Gaillard et al. (61): 

  (13) 
where T is temperature in K, P is pressure in bar,  is coefficient for  in melt, and  is 

molar proportion of  in melt. The uncertainty on  can be estimated from the partial 

differential equations from equation 13: 
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To oxidize a reduced parent melt containing negligible ferric iron (e.g., ΔFMQ ≤ −2.5), the 
oxygen contribution from the oxidant in the oxidized melt ( fO−oxidant

melt ) can be approximated to: 
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where  represents the oxygen number in oxide  with molecular formula of . The 

uncertainty on  fO−oxidant
melt  can be estimated from the errors from  and : 
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Assuming FeOtot = 20.5 wt% for parent melt and a temperature of 1100 °C, integration of the 
equations above provides  fO−oxidant

melt  values of 0.024 ± 0.006, 0.026 ± 0.007 and 0.029 ± 0.008 for 
the igneous clasts C16, C7 and C27, respectively. Afterwards, the effects from impact-induced 
oxidation on the melt Δ17O would be dependent on the oxygen contributions from the oxidant 
(water or perchlorates) and rocky impactor (i.e.,  fO−oxidant

melt  and 
 
fO−rocky impactor

melt , respectively): 
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based on oxygen fugacity change and highly siderophile element concentrations, respectively, 
the effects from oxidation on the Δ17O values of oxidized melts would depend on the Δ17O 
differences of oxidant and rocky impactor relative to the reduced parent melt (equation 20).  
 
 
 

 

  

∂
X Fe2O3

melt

X FeO
melt

⎛

⎝
⎜

⎞

⎠
⎟

∂T
=
−0.196× ln 10( )× 25096− 0.11× P −1( )⎡⎣ ⎤⎦ −1.1492×104

T 2 ×
X Fe2O3

melt

X FeO
melt

 βi  i  
xαOβ

  
X Fe2O3

melt / X FeO
melt

 X FeOtot
melt

  Δ
17Oi   Δ17O  i



 
 

 
 

 

Fig. S1. 
Rare earth element abundances of the NWA 7533/7034 igneous clasts after a normalization onto 
CI chondrite values (39). Data of the NWA 7533 igneous clasts with a unique monzonite clast (3) 
and whole rock NWA 7034 meteorite (31) are also shown. 
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Fig. S2. 
Highly siderophile element (HSE) abundances and FeOtot contents of the NWA 7533 clasts 
obtained by laser ablation measurements in Humayun et al. (3). 
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Fig. S3. 
In situ triple O isotopic results on seven NWA 7533/7034 igneous clasts obtained by SIMS 
measurements in this study. The values for whole rock NWA 7034 meteorite (4), SNC 
meteorites (41) and the Earth are also shown.  
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Fig. S4. 

(a) Plot showing the correlation between  and melt Mg# in 16 experimental runs from 

the compilation in Arató and Audétat (17), except for two runs with high SiO2 contents of 59.03-
59.73 wt%. (b) Plot comparing the ΔFMQ values calculated from the oxybarometer updated 
after Arató and Audétat (17) with the values from experimental settings or those estimated using 
magnetite-ilmenite pairs (17). Results from the experimental runs in this study are also shown. 
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Fig. S5. 
Plots of FeOtot versus MgO (a) and FeOtot versus molar Mg/(Mg + Fe) (b) for the NWA 7533 
clasts and experimental glass samples at ΔFMQ values of −2.9, +2.6 and +6.5 from the furnace 
experiments in this study. The black curves show the compositional variations predicted by 
equation 5 for oxide-saturated silicate melts at ΔFMQ values of +0, +1, +2, +3 and +4, assuming 
the AMCNK value fixed to be 0.35. The two colored trajectories with arrow represent the effects 
from oxide removal, caused by oxidation of the basaltic shergottite-like melts (FeOtot = 20.5 
wt%) at Mg# values of 35 (the orange) and 45 (the blue).  
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Fig. S6. 
Plot of δ49Ti versus ΔFMQ for the NWA 7533 clasts. The crust at equilibrium with martian 
mantle is considered to have a δ49Ti value of +0.015 ± 0.036‰ based on the Ti isotopic results 
from shergottites in this study, and an average ΔFMQ value of −2.5 ± 1.5 (6). The two colored 
trajectories with arrow represent the effects from oxide removal, caused by oxidation of the 
basaltic shergottite-like melts (FeOtot = 20.5 wt%) at Mg# values of 35 (the orange) and 45 (the 
blue). 
 
  

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

-6 -4 -2 0 2 4 6

δ4
9 T

i (
‰

)

ΔFMQ

Parent magma 
at Mg# = 35

Parent magma 
at Mg# = 45

Crust equilibrated 
with martian mantle

NWA 7533 igneous clasts

Figure S6



 
 

 
 

 

Fig. S7. 
Chemical map with SIMS (~15 µm) and laser ablation (~160 µm in the inset) spots for clast C11.  
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Fig. S8. 
Chemical map with SIMS (~15 µm) and laser ablation (~160 µm in the inset) spots for clast C16. 
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Fig. S9.  
Chemical map with SIMS (~15 µm) and laser ablation (~160 µm in the inset) spots for clast C27.  
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Fig. S10. 
Chemical map with SIMS (~15 µm) and laser ablation (~160 µm in the inset) spots for clast C18. 
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Fig. S11. 
Chemical map with SIMS (~15 µm) and laser ablation (~160 µm in the inset) spots for clast C7.  
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Fig. S12. 
Chemical map with SIMS (~15 µm) spots for clast C4. 
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Fig. S13. 
Chemical map with SIMS (~15 µm) and laser ablation (~160 µm in the inset) spots for clast C3.  
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Fig. S14. 
Chemical maps for clasts D6, C21, P10, P10A, P10B, C2 and N12.  
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